JPS6323745B2 - - Google Patents

Info

Publication number
JPS6323745B2
JPS6323745B2 JP55037539A JP3753980A JPS6323745B2 JP S6323745 B2 JPS6323745 B2 JP S6323745B2 JP 55037539 A JP55037539 A JP 55037539A JP 3753980 A JP3753980 A JP 3753980A JP S6323745 B2 JPS6323745 B2 JP S6323745B2
Authority
JP
Japan
Prior art keywords
armature coil
diagnosing
interlayer insulation
voltage
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55037539A
Other languages
Japanese (ja)
Other versions
JPS56136157A (en
Inventor
Takeshi Yamagiwa
Kenji Matsunobu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3753980A priority Critical patent/JPS56136157A/en
Publication of JPS56136157A publication Critical patent/JPS56136157A/en
Publication of JPS6323745B2 publication Critical patent/JPS6323745B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/346Testing of armature or field windings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)

Description

【発明の詳細な説明】 本発明は回転電機電機子線輪の層間絶縁診断方
法に係り、特に直流機の電機子線輪に好適な、非
破壊による層間絶縁診断方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for diagnosing interlayer insulation of an armature coil of a rotating electric machine, and particularly to a non-destructive method of diagnosing interlayer insulation suitable for an armature coil of a DC machine.

直流電動機はミルプラントや一般工業用動力源
として広く使用されているが、これらの動力機器
は使用環境がきびしく、金属酸化物やカーボン粉
または湿気にさらされることが多い。また、化学
プラントの場合には、雰囲気中に薬品性成分を含
んでいるものがある。この様な環境下では、直流
電動機は絶縁抵抗の低下を起こすので、その電気
絶縁の信頼性や予備保全が重要である。
Direct current motors are widely used as power sources for mill plants and general industry, but these power devices are used in harsh environments and are often exposed to metal oxides, carbon powder, or moisture. Furthermore, in the case of chemical plants, the atmosphere may contain chemical components. In such an environment, the insulation resistance of DC motors decreases, so the reliability and preliminary maintenance of the electrical insulation is important.

ところで、回転電機における電機子線輪の絶縁
状態を検証する方法としては、従来から絶縁メガ
ー法が用いられてきたが、この方法では、電機子
線輪の層間絶縁については巻線を解体して取り出
さない限り全く情報が得られない。また、電機子
線輪の層間絶縁試験法として、インパルス耐圧試
験法も知られている。この試験法は、たとえば波
形の立ち上がり時間が1〜2μsで波長が40μs程度
のインパルスを被試験電機子線輪の層間に印加す
る方法である。この様にインパルスを印加する
と、各線輪において、設定電圧に耐えられない線
輪は層間で電気的破壊をひき起こす。このインパ
ルス耐圧試験法は、回転電機の製作初期にチエツ
クする場合や、修理する場合には有効であるが、
現在使用中の回転電機に対しては危険である。す
なわち、線輪のインダクタンスによる電圧分担を
試験しているので、デツドシヨートの虞れがあ
る。また、回転電機を永年使用した後、その電機
子線輪の層間絶縁物の劣化がどの程度進んでいる
かを把握することは困難である。
By the way, the insulation megger method has traditionally been used to verify the insulation condition of armature coils in rotating electric machines, but in this method, the interlayer insulation of the armature coils is determined by disassembling the windings. You won't get any information unless you take it out. In addition, an impulse withstand voltage test method is also known as a method for testing interlayer insulation of armature coils. This test method is a method in which, for example, an impulse with a waveform rise time of 1 to 2 μs and a wavelength of about 40 μs is applied between the layers of the armature coil to be tested. When an impulse is applied in this manner, in each wire, those wires that cannot withstand the set voltage cause electrical breakdown between the layers. This impulse withstand voltage test method is effective when checking the initial production of rotating electric machines or when repairing them, but
It is dangerous for rotating electric machines currently in use. In other words, since we are testing the voltage sharing by the inductance of the coil, there is a risk of dead shot. Further, after a rotating electric machine has been used for many years, it is difficult to grasp the extent to which the interlayer insulation of the armature coil has deteriorated.

本発明の目的は、上記した従来技術の欠点を除
き、電機子線輪を解体することなく、その各線輪
の層間絶縁物の劣化程度を非破壊で安全に、かつ
正確に診断することのできる回転電機電機子線輪
の層間絶縁診断方法を提供するにある。
An object of the present invention is to eliminate the drawbacks of the prior art described above and to be able to non-destructively, safely and accurately diagnose the degree of deterioration of the interlayer insulation of each armature coil without disassembling the armature coil. The present invention provides a method for diagnosing interlayer insulation of an armature coil of a rotating electric machine.

この目的を達成するため、本発明は、診断すべ
き電機子線輪の層間に、電機子線輪の素線に接続
された整流子片を介して、診断すべき電機子線輪
のインダクタンスとキヤパシタンスによつて共振
状態となる周波数帯域の高周波電圧を印加し、そ
のインピーダンスの周波数特性あるいは電圧と電
流の位相差を測定し、これを正常時のインピーダ
ンスの周波数特性あるいは電圧と電流の位相差と
比較してその変化の程度より電機子線輪の層間絶
縁物の劣化状態を診断することを特徴とする。
In order to achieve this object, the present invention provides an inductance between the layers of the armature coil to be diagnosed, which is connected to the strands of the armature coil through commutator pieces connected to the wires of the armature coil. Apply a high-frequency voltage in a frequency band that resonates due to capacitance, measure the frequency characteristics of the impedance or the phase difference between the voltage and current, and compare this with the normal frequency characteristics of the impedance or the phase difference between the voltage and current. The method is characterized by diagnosing the state of deterioration of the interlayer insulation of the armature coil based on the extent of the change.

以下、本発明の一実施例を図面について詳細に
説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明の診断方法を実施するための、
直流機の電機子巻線の結線図、第2図は第1図の
展開図である。これらの図において、1は電機子
線輪、2は整流子片、3は均圧線、4,5は電機
子鉄心の歯部およびスロツト、#1〜#288は整
流子片番号であり、ここでは、4極で線輪数72、
1スロツト当りに入る素線数、つまり1線輪当り
の素線数4、整流子片数288、均圧線またがり1
〜145、電機子線輪素線またがり1〜2の例が示
されている。
FIG. 1 shows the steps for carrying out the diagnostic method of the present invention.
A wiring diagram of the armature winding of a DC machine, FIG. 2 is an expanded view of FIG. 1. In these figures, 1 is the armature coil, 2 is the commutator piece, 3 is the equalizing wire, 4 and 5 are the teeth and slots of the armature core, #1 to #288 are the commutator piece numbers, Here, the number of wires is 72 with 4 poles,
Number of strands per slot, that is, 4 strands per wire ring, 288 commutator pieces, 1 across equalizing wires.
~145, examples of 1 to 2 armature wire strands are shown.

本実施例の診断方法では、印加電圧として波形
の立ち上がり時間が数ps(ピコ秒)〜数ns(ナノ
秒)と極めて短かい高周波電圧を用い、これを同
一スロツト5内に挿入されている電機子線輪1の
素線間(層間)に印加し、これを各線輪について
実施する。印加電圧の周波数としては電機子線輪
のインダクタンスとキヤパシタンスで共振を起こ
す付近の十分高い周波数を選定し、また電機子線
輪1の層間に電圧を印加するには、露出導電部で
ある整流子片2を利用して、その1枚飛び間隔で
電圧を印加する。前述の如き、波形の立ち上がり
時間の極めて短かい高周波電圧を印加すると、電
機子線輪の電圧はキヤパシタンスが分担すること
になり、これによつて直流機の実際に使用してい
る誘起電圧の数分の1〜数十分の1のチエツク電
圧しか掛からなくなる。
In the diagnostic method of this embodiment, a high frequency voltage whose waveform has an extremely short rise time of several ps (picoseconds) to several ns (nanoseconds) is used as the applied voltage. The voltage is applied between the strands (interlayers) of the child coil 1, and this is applied to each coil. As the frequency of the applied voltage, select a sufficiently high frequency in the vicinity where the inductance and capacitance of the armature coil cause resonance, and in order to apply the voltage between the layers of the armature coil 1, select the commutator, which is an exposed conductive part. Using piece 2, voltage is applied at intervals of one piece. As mentioned above, when a high frequency voltage with an extremely short waveform rise time is applied, the voltage of the armature coil will be shared by the capacitance, and this will reduce the number of induced voltages actually used in the DC machine. Only one to several tenths of the check voltage is required.

第2図の整流子片#73、#75間に前述の如き高
周波電圧を印加した時の電機子の代表的等価回路
は第3図の如く表わされる。すなわち、測定する
端子(整流子片)に直接接続された電機子線輪1
のインピーダンスをZ1、均圧線3を介して整流子
片に接続された電機子線輪1のインピーダンスを
Z2として、上記等価回路により測定端子間のイン
ピーダンスの周波数特性を計算すると次の如くな
る。
A typical equivalent circuit of the armature when the aforementioned high frequency voltage is applied between commutator segments #73 and #75 in FIG. 2 is shown in FIG. 3. In other words, the armature coil 1 directly connected to the terminal (commutator piece) to be measured
Z 1 is the impedance of the armature coil 1 connected to the commutator bar via the equalizing wire 3.
Assuming Z 2 , the frequency characteristics of the impedance between the measurement terminals are calculated as follows using the above equivalent circuit.

ただし、この計算において、10MHz以下で影響
の小さい整流子片間の静電容量C0およびインダ
クタンスL0は無視できる。また、Z1,Z2に並列
に存在するその他の線輪によるインピーダンスは
大きいため無視できる。
However, in this calculation, the capacitance C 0 and inductance L 0 between the commutator pieces, which have a small effect below 10 MHz, can be ignored. Further, the impedance due to other wires existing in parallel to Z 1 and Z 2 is large and can be ignored.

Z=
1/1+(Pλ1′)2/PL1・〔1+(Pλ12〕+1+
(Pλ2′)2/PL2・〔1+(Pλ22
…(1) ただし P=jω …(2) 1/Z1=1+(Pλ1′)2/PL1・〔1+(Pλ12〕…(
3) 1/Z2=1+(Pλ2′)2/PL2・〔1+(Pλ22〕…(
4) L11+L12=L1、L21+L22=L2 L11/L1=k1 2 L21/L2=k2 2 L12C1=λ1 2 L22C2=λ2 2 λ1′=k1λ1 λ2′=k2λ2 …(5) ここに、L11,L12は測定素子に直結した線輪の
直列インダクタンスおよび層間静電容量C1と並
列分のインダクタンスを示し、またL21,L22は均
圧線を通して短絡された線輪の直列分インダクタ
ンス、層間静電容量C2と並列分のインピーダン
スを示す。これ等の構成要素は、それぞれの線輪
の等価インピーダンスZ1,Z2を構成する。
Z=
1/1+(Pλ 1 ′) 2 /PL 1・[1+(Pλ 1 ) 2 ]+1+
(Pλ 2 ′) 2 /PL 2・[1+(Pλ 2 ) 2 ]
…(1) However, P=jω …(2) 1/Z 1 =1+(Pλ 1 ′) 2 /PL 1・[1+(Pλ 1 ) 2 ]…(
3) 1/Z 2 =1+(Pλ 2 ′) 2 /PL 2・[1+(Pλ 2 ) 2 ]…(
4) L 11 +L 12 = L 1 , L 21 +L 22 = L 2 L 11 /L 1 = k 1 2 L 21 /L 2 = k 2 2 L 12 C 1 = λ 1 2 L 22 C 2 = λ 2 2 λ 1 ′=k 1 λ 1 λ 2 ′=k 2 λ 2 …(5) Here, L 11 and L 12 are the series inductance of the wire directly connected to the measuring element and the interlayer capacitance C 1 and the parallel component. In addition, L 21 and L 22 represent the series inductance of the coils short-circuited through the pressure equalization line, and the parallel impedance with the interlayer capacitance C 2 . These components constitute the equivalent impedance Z 1 , Z 2 of each coil.

電機子巻線の種類には、この他、いくつかの場
合が考えられるが、もつとも代表的な例として(1)
式によるインピーダンス|Z|の周波数特性を示
すと、第4図のようになる。電機子の絶縁が異常
を生じた場合、インダクタンスには変化は生じな
いが、静電容量C1は、絶縁物で構成しているた
め変化する。いま、静電容量C1が増大したとす
ると、λ1、λ1′が大きくなるので、インピーダン
ス特性は図中の破線の如く変化する。この変化
を、各整流子片毎に測定する。静電容量C2が変
化しても同様のインピーダンス変化が生じるが、
均圧線によるインピーダンスにより逆にイメージ
側のピーク値が高くなることもあり、注意を要す
る。
There are several other possible types of armature windings, but (1) is a typical example.
The frequency characteristic of impedance |Z| according to the formula is shown in FIG. 4. If an abnormality occurs in the armature insulation, the inductance will not change, but the capacitance C1 will change because it is made of an insulator. Now, if the capacitance C 1 increases, λ 1 and λ 1 ' increase, so the impedance characteristic changes as shown by the broken line in the figure. This change is measured for each commutator segment. A similar change in impedance occurs when the capacitance C 2 changes, but
The peak value on the image side may become higher due to the impedance caused by the pressure equalization line, so care must be taken.

このようにL,Cの共振周波数付近の高周波を
印加する事によつて、絶縁物の特性変化を検知す
る。1〜10MHzの可変周波数電源を用いて層間静
電容量C1に敏感な特定周波数を選択することに
より、各線輪毎に局所診断が出来る。
By applying a high frequency near the resonance frequency of L and C in this manner, changes in the characteristics of the insulator are detected. By selecting a specific frequency sensitive to the interlayer capacitance C1 using a variable frequency power source of 1 to 10 MHz, local diagnosis can be performed for each wire ring.

実際上の測定手段は、電流変化として読み取る
場合より、電圧と電流の位相差として変化を読み
取つた方が安定した作業ができる。
In practice, measuring means can perform more stable operations by reading changes as a phase difference between voltage and current than by reading changes in current.

第5図に150kW、4極直流電動機の電機子に
おいて、ダミーの静電容量を用いて電機子線輪の
層間静電容量C1を100%(正常)から150%(異
常)に変化させたときのインピーダンスの周波数
特性の実測値を、また第6図にその等価回路によ
る計算結果を示す。第5図において、ハツチング
を施こした部分は正常部のバラツキ範囲を、破線
は異常部を示し、また第6図において、実線は
C1が100%のときの特性、破線はC1が150%のと
きの特性である。
Figure 5 shows how the interlayer capacitance C 1 of the armature coil was changed from 100% (normal) to 150% (abnormal) using a dummy capacitance in the armature of a 150kW, 4-pole DC motor. Fig. 6 shows the measured values of the frequency characteristics of the impedance and the calculation results using the equivalent circuit. In Fig. 5, the hatched area indicates the variation range in the normal area, the broken line indicates the abnormal area, and in Fig. 6, the solid line indicates the variation range in the normal area.
The characteristics when C 1 is 100%, and the broken line is the characteristics when C 1 is 150%.

この実測値と計算値を比較すると、各ピーク値
を示す周波数は両者ともよく一致していることが
わかる。また、層間絶縁物の性状変化、すなわち
層間絶縁物の静電容量C1の変化に敏感な部分は
第2ピーク値の付近、すなわち周波数4〜5MHz
であり、この周波数帯域では層間静電容量C1
100%(正常)から150%(異常)に変化した場
合、その特性は正常時のバラツキ範囲外に出るこ
とが確認された。
Comparing the measured values and the calculated values, it can be seen that the frequencies showing each peak value are in good agreement with each other. In addition, the part that is sensitive to changes in the properties of the interlayer insulator, that is, changes in the capacitance C1 of the interlayer insulator, is near the second peak value, that is, the frequency is 4 to 5 MHz.
and in this frequency band, the interlayer capacitance C 1 is
It was confirmed that when the characteristics change from 100% (normal) to 150% (abnormal), the characteristics fall outside the normal variation range.

したがつて、この第2ピーク値付近の周波数を
選定し、これを固定して、全周の各線輪について
実測した。その結果を、第7図に示す。正確な位
相角を測定してもよいが、時間がかかるので、実
際の測定では、任意に定められた位相レベルから
どれだけ変化するか、すなわち相対位相差を測定
するのが簡便である。
Therefore, a frequency near this second peak value was selected, fixed, and measured for each wire ring around the entire circumference. The results are shown in FIG. Although it is possible to measure the exact phase angle, it takes time, so in actual measurement, it is convenient to measure how much the phase angle changes from an arbitrarily determined phase level, that is, measure the relative phase difference.

この第7図からわかる様に、均圧線またがり間
隔に欠陥部A〜DおよびA′〜D′が現われる。こ
れらの欠陥部のうち、A〜Dが実際の欠陥部であ
り、A′〜D′は均圧線で接続されているために発
生するイメージと呼ばれている現象で、実際には
この部分に接続されている線輪の層間が異常とな
つているわけではない。測定結果現われたこれら
の欠陥部のうち、どちらの欠陥部が本物か、イメ
ージかを見分けるには、例えば診断すべき線輪の
層間にダミーの静電容量を挿入し、前述の高周波
電圧を印加して、このダミーの静電容量によつて
現われる、診断すべき線輪側とこの線輪に均圧線
を通して接続された線輪の位相差の傾向、つまり
本物の欠陥部とイメージの欠陥部ではどちらの方
が層間静電容量の影響が大きく出るかを調べ、こ
の傾向と測定結果を突き合わせて判断すればよ
い。
As can be seen from FIG. 7, defective portions A to D and A' to D' appear at intervals spanning the pressure equalization line. Of these defective parts, A to D are actual defective parts, and A' to D' are a phenomenon called an image that occurs because they are connected by equalizing wires. There is no abnormality between the layers of the wire connected to the wire. In order to distinguish which of these defective parts that appear in the measurement results is real or an image, for example, insert a dummy capacitance between the layers of the coil to be diagnosed, and apply the high-frequency voltage described above. Then, the tendency of the phase difference between the wire to be diagnosed and the wire connected to this wire through an equalizing wire, which appears due to this dummy capacitance, is the difference between the real defect and the image defect. Then, it is best to find out which one has the greater effect of interlayer capacitance, and compare this tendency with the measurement results to make a decision.

なお、絶縁物が劣化して炭化したり、吸湿した
りすると、その誘電率は数倍に変化するので、径
時変圧を見ることにより電機巻線全体としての劣
化状態を診断することもできる。
Note that when an insulator deteriorates and carbonizes or absorbs moisture, its dielectric constant changes several times, so it is also possible to diagnose the deterioration state of the electric machine winding as a whole by looking at the radial transformation.

以上説明した様に、本発明の診断方法によれ
ば、電機子線輪を解体することなく、その各線輪
の層間絶縁物の劣化程度を非破壊で安全に、かつ
正確に診断することができるので、回転電機にお
ける電気絶縁の信頼性を向上しうるとともに、そ
の予備保全を行なうことも可能となる。
As explained above, according to the diagnostic method of the present invention, the degree of deterioration of the interlayer insulation of each armature coil can be diagnosed non-destructively, safely, and accurately without dismantling the armature coil. Therefore, it is possible to improve the reliability of electrical insulation in the rotating electric machine, and also to perform preliminary maintenance thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の診断方法を実施するための直
流機の電機子巻線の結線図、第2図はその一部展
開図、第3図は第2図の等価回路図、第4図は電
機子線輪におけるインピーダンスの周波数特性
図、第5図および第6図は実機についての電機子
線輪におけるインピーダンスの周波数特性の実測
値および計算値を示す特性図、第7図は各電機子
線輪の相対位相差の測定結果を示す特性図であ
る。 1……電機子線輪、2……整流子片、3……均
圧線、Z1,C1,L11,L12……測定端子に接続され
た電機子線輪のインピーダンス、静電容量、直列
インダクタンス成分、静電容量C1と並列なイン
ダクタンス成分、Z2,C2,L21,L22……均圧線を
介して接続された電機子線輪のインピーダンス、
静電容量、直列インダクタンス成分、静電容量
C2と並列なインダクタンス成分。
Fig. 1 is a wiring diagram of the armature winding of a DC machine for carrying out the diagnostic method of the present invention, Fig. 2 is a partially expanded view thereof, Fig. 3 is an equivalent circuit diagram of Fig. 2, and Fig. 4 is a frequency characteristic diagram of impedance in the armature coil, Figures 5 and 6 are characteristic diagrams showing measured and calculated values of the frequency characteristic of impedance in the armature coil for an actual machine, and Figure 7 is a characteristic diagram showing the frequency characteristics of impedance in the armature coil for an actual machine. It is a characteristic diagram which shows the measurement result of the relative phase difference of a coil. 1... Armature wire, 2... Commutator piece, 3... Equalizing wire, Z 1 , C 1 , L 11 , L 12 ... Impedance of the armature wire connected to the measurement terminal, static electricity Capacitance, series inductance component, inductance component in parallel with capacitance C 1 , Z 2 , C 2 , L 21 , L 22 ... impedance of the armature coil connected via the equalizing wire,
capacitance, series inductance component, capacitance
Inductance component in parallel with C 2 .

Claims (1)

【特許請求の範囲】 1 回転電機における電機子線輪の層間絶縁物の
劣化状態を診断する方法において、診断すべき電
機子線輪の層間に、電機子線輪の素線に接続され
た整流子片を介して、前記診断すべき電機子線輪
のインダクタンスとキヤパシタンスによつて共振
状態となる周波数帯域の高周波電圧を印加し、そ
のインピーダンスの周波数特性を測定し、これを
正常時のインピーダンスの周波数特性と比較して
その変化の程度より電機子線輪の層間絶縁物の劣
化状態を診断することを特徴とする回転電機電機
子線輪の層間絶縁診断方法。 2 回転電機における電機子線輪の層間絶縁物の
劣化状態を診断する方法において、診断すべき電
機子線輪の層間に、電機子線輪の素線に接続され
た整流子片を介して、前記診断すべき電機子線輪
のインダクタンスとキヤパシタンスによつて共振
状態となる周波数帯域の高周波電圧を印加し、そ
の電圧と電流の位相差を測定し、この位相差を正
常時の電圧と電流の位相差と比較してその変化の
程度より電機子線輪の層間絶縁物の劣化状態を診
断することを特徴とする回転電機電機子線輪の層
間絶縁診断方法。
[Scope of Claims] 1. In a method for diagnosing the deterioration state of interlayer insulation of an armature coil in a rotating electric machine, a rectifier connected to the strands of the armature coil is provided between the layers of the armature coil to be diagnosed. A high-frequency voltage in a frequency band that is in a resonance state due to the inductance and capacitance of the armature coil to be diagnosed is applied through the child piece, the frequency characteristic of the impedance is measured, and this is calculated as the normal impedance. A method for diagnosing interlayer insulation of an armature coil of a rotating electrical machine, comprising diagnosing a deterioration state of interlayer insulation of the armature coil based on the degree of change in comparison with frequency characteristics. 2. In a method for diagnosing the deterioration state of interlayer insulation of an armature coil in a rotating electrical machine, a commutator piece connected to the strands of the armature coil is inserted between the layers of the armature coil to be diagnosed, Apply a high-frequency voltage in a frequency band that is in a resonant state due to the inductance and capacitance of the armature coil to be diagnosed, measure the phase difference between the voltage and current, and calculate this phase difference between the normal voltage and current. A method for diagnosing interlayer insulation of an armature coil of a rotating electrical machine, comprising diagnosing a deterioration state of interlayer insulation of the armature coil based on the degree of change in comparison with the phase difference.
JP3753980A 1980-03-26 1980-03-26 Diagnosis for interlayer insulation of armature coil for rotary electrical machine Granted JPS56136157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3753980A JPS56136157A (en) 1980-03-26 1980-03-26 Diagnosis for interlayer insulation of armature coil for rotary electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3753980A JPS56136157A (en) 1980-03-26 1980-03-26 Diagnosis for interlayer insulation of armature coil for rotary electrical machine

Publications (2)

Publication Number Publication Date
JPS56136157A JPS56136157A (en) 1981-10-24
JPS6323745B2 true JPS6323745B2 (en) 1988-05-18

Family

ID=12500324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3753980A Granted JPS56136157A (en) 1980-03-26 1980-03-26 Diagnosis for interlayer insulation of armature coil for rotary electrical machine

Country Status (1)

Country Link
JP (1) JPS56136157A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4367784B2 (en) * 2006-09-01 2009-11-18 国立大学法人 名古屋工業大学 Short-circuit diagnosis system for motor stator windings
KR101136493B1 (en) * 2011-04-18 2012-04-19 부산대학교 산학협력단 Method for stator shorted turn fault detection using opposed pair-phase voltage/current of electric motor

Also Published As

Publication number Publication date
JPS56136157A (en) 1981-10-24

Similar Documents

Publication Publication Date Title
Zoeller et al. Evaluation and current-response-based identification of insulation degradation for high utilized electrical machines in railway application
Stone Condition monitoring and diagnostics of motor and stator windings–A review
US4156846A (en) Detection of arcing faults in generator windings
Hudon et al. Partial discharge signal interpretation for generator diagnostics
Stone et al. Common questions on partial discharge testing: A review of recent developments in IEEE and IEC standards for offline and online testing of motor and generator stator windings
US20050035768A1 (en) Method and electromagnetic sensor for measuring partial discharges in windings of electrical devices
JP5738511B2 (en) Insulation test method in manufacturing process of rotating electrical machine winding and manufacturing method of rotating electrical machine winding
Firoozi et al. Transformer fault diagnosis using frequency response analysis-practical studies
Verginadis et al. Diagnosis of stator faults in synchronous generators: Short review and practical case
Yousof et al. FRA indicator limit for faulty winding assessment in rotating machine
Pemen Detection of partial discharges in stator windings of turbine generators
Brandt et al. Analysis of winding fault in electric machines by frequency method
JPS6323745B2 (en)
Stone et al. Experience with DC polarization-depolarization measurements on stator winding insulation
US10107852B2 (en) Interstrand short circuit testing of stator winding bars of electric machines
JPH09257862A (en) Device for diagnosis of winding insulation
Toudji et al. Predictive diagnostic based on HF modeling of electrical machines windings
Rathnayaka et al. Early detection of induction motor's defects using an inductively coupled impedance extraction method
McDermid et al. Partial discharge screening test for internal voids and delaminations in stator coils and bars
Rylander A high-frequency voltage test for insulation of rotating electrical apparatus
Mayora et al. Experiences of fra measurements on medium voltage rotating machines
Billard et al. Using non-intrusive sensors to detect partial discharges in a PWM inverter environment: A twisted pair example
Premalatha et al. Instrument transformer winding fault analysis using frequency response analysis
Zoeller et al. Online insulation condition monitoring of traction machines using inverter induced voltage injection
Korenciak et al. Fault diagnostics of transformer winding in time and frequency domain