JPS63237232A - Optical recording medium and its production - Google Patents

Optical recording medium and its production

Info

Publication number
JPS63237232A
JPS63237232A JP62070014A JP7001487A JPS63237232A JP S63237232 A JPS63237232 A JP S63237232A JP 62070014 A JP62070014 A JP 62070014A JP 7001487 A JP7001487 A JP 7001487A JP S63237232 A JPS63237232 A JP S63237232A
Authority
JP
Japan
Prior art keywords
chemical vapor
vapor deposition
recording medium
films
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62070014A
Other languages
Japanese (ja)
Inventor
Hiroshi Kukimoto
柊元 宏
Atsushi Takano
高野 敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP62070014A priority Critical patent/JPS63237232A/en
Publication of JPS63237232A publication Critical patent/JPS63237232A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B7/2433Metals or elements of groups 13, 14, 15 or 16 of the Periodic System, e.g. B, Si, Ge, As, Sb, Bi, Se or Te
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24304Metals or metalloids group 2 or 12 elements (e.g. Be, Ca, Mg, Zn, Cd)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)

Abstract

PURPOSE:To improve long-term preservable stability, to obviate deterioration in characteristics even at and under a high temp. and high humidity, and to increase a contrast ratio by laminating plural thin chemically vapor-grown films on a base in superlattice structure in such a manner that said films have an eutectic point with adjacent layers. CONSTITUTION:The thin chemically vapor-grown film layers 2 laminated on the base 1 form the superlattice structure laminated alternately with 4 layers of Zm films 21 and Ge films 22 which are grown films of metals, nonmetals or alloys. A part 30 of the laminate 2 provides a region 2' where the superlattice structure is annihilated when a light beam 3 is projected to this part. Said region can be utilize as an optical information bit, since the optical characteristics in this part are different. The region 2' is deformed to form a recess or hole part when the energy of the light beam is increased. This part acts as an optical information bit. The optical recording medium which has the excellent long-term preservable stability, decreases the deterioration in the characteristics even at and under a high temp. and high humidity and has the large contrast ratio at the time of recording is thus obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光ビームを用い情報の記録再生を行う光学的
記録媒体およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical recording medium for recording and reproducing information using a light beam, and a method for manufacturing the same.

(従来の技術) 近年になり、高密度記録が可能である光学的記録媒体が
普及しだしたが、この光学的記録媒体に設けられている
記録層としては、 ■To、Te系合金あるいは有機色素からなり、光ビー
ムが照射された時に孔が形成されて情報が記録されるタ
イプ、あるいは■Te系化合物からなり光ビームが照射
された時に非結晶、結晶の相転移が生じ、この非結晶と
結晶の光の反射率の差を利用して情報が記録されるタイ
プ等が代表的である。
(Prior art) In recent years, optical recording media that are capable of high-density recording have become widespread, but the recording layer provided on these optical recording media is: ■To, Te-based alloys, or organic This type consists of a pigment, and when irradiated with a light beam, holes are formed to record information; or it is made of a Te-based compound, which undergoes a phase transition between amorphous and crystalline when irradiated with a light beam; A typical example is a type in which information is recorded using the difference in light reflectance between the crystal and the crystal.

しかし、上記の記録媒体は光ビームの照射熱により記録
がなされるため、記録層に用いられる物質は融点が低い
こと、あるいは相転移点が低いことが要求され、これを
満たすために酸化され易いTeや、不安定な有機物が用
いられ長期保存安定性に欠けたり高温多湿の環境で特性
の劣化を生じるという問題点があった。
However, since recording is performed on the above-mentioned recording medium using the heat of irradiation with a light beam, the material used for the recording layer is required to have a low melting point or a low phase transition point, and in order to meet this requirement, it is easily oxidized. Te and unstable organic substances are used, which causes problems such as lack of long-term storage stability and deterioration of properties in hot and humid environments.

この問題点を解決するために安定性に優れた材料を記録
層として用いる種々の研究がなされている。
In order to solve this problem, various studies have been conducted using materials with excellent stability as the recording layer.

これら一つとして、安定性のある複数の金属あるいは合
金を積層し記録層を形成する研究がある。
One of these is research into forming a recording layer by laminating a plurality of stable metals or alloys.

例えば、特開昭58−155541号公報には、金属と
この金属と異なる金属またはGeを積層して記録層とす
ることにより、安定性の問題を解決し、情報の記録は記
録層にレーザを照射することにより2層の金属の混合も
しくは合金化またはそれらの層の相互拡散により光学的
特性が変化することを利用して行われる記録媒体が提供
されている。
For example, Japanese Patent Laid-Open No. 58-155541 discloses that the problem of stability is solved by laminating a metal and a metal different from the metal or Ge to form a recording layer, and information is recorded by using a laser on the recording layer. A recording medium has been provided that takes advantage of the fact that optical properties change due to mixing or alloying of two metal layers or interdiffusion of those layers by irradiation.

また、特開昭60−226039号公報には、複数の異
なる金属よりなる超薄膜を交互に積層して記録層とする
ことにより安定性の問題を解決し、情報の記録はレーザ
を照射することによる合金化により光学特性が変化する
ことを利用して行われる記録媒体が記載されている。
In addition, Japanese Patent Application Laid-Open No. 60-226039 discloses that the problem of stability is solved by alternately laminating ultra-thin films made of a plurality of different metals to form a recording layer, and information is recorded by irradiating a laser. A recording medium is described that takes advantage of the fact that optical properties change due to alloying.

(発明が解決しようとする問題点) しかしながら、上記の特開昭58−220794号公報
および特開昭60−226039号公報では、スパッタ
法または蒸着法により記録層の薄膜を成形しており、ス
パッタ法または蒸着法により薄膜の積層体では、積層界
面における2層を構成する金属原子同士の混じり合いが
大きくなり、原子組成の積層界面における断面方間の急
激な変化を持たせることが困難になる。この結果、スパ
ッタ法または蒸着法による薄膜の積層体では、光ビーム
照射による記録の前後における光学特性の変化を十分に
大きくすることができずに、記録のコントラスト比が小
さいという問題がある。
(Problems to be Solved by the Invention) However, in the above-mentioned JP-A-58-220794 and JP-A-60-226039, the thin film of the recording layer is formed by sputtering or vapor deposition. In a stack of thin films produced by the laminate method or vapor deposition method, the metal atoms constituting the two layers at the stack interface become more mixed with each other, making it difficult to have a rapid change in atomic composition between the cross-sectional directions at the stack interface. . As a result, in a stack of thin films formed by sputtering or vapor deposition, the change in optical properties before and after recording by light beam irradiation cannot be made sufficiently large, resulting in a problem that the contrast ratio of recording is low.

さらに、スパッタ法または蒸着法によって、2種類以上
の薄膜の積層体を成形する場合、2種類以上の金属等の
蒸発源またはスパッタカソードを用意し、成形中は基材
をこれら2種類以上の蒸発源あるいはスパッタカソード
間を高速に移動させる必要があり、このため使用する装
置が複雑となり、かつ製造製品の再現性も悪いという問
題がある。
Furthermore, when forming a laminate of two or more types of thin films by sputtering or vapor deposition, two or more metal evaporation sources or sputter cathodes are prepared, and during forming, the base material is evaporated from these two or more types. It is necessary to move between sources or sputter cathodes at high speed, which makes the equipment used complicated and there are problems in that the reproducibility of manufactured products is also poor.

(発明の目的) 本発明は上記の問題点を解決するためになされたもので
あり、長期保存安定性に優れ、高温多湿の環境下におい
ても特性劣下が少な(、小出力光ビームでも十分に記録
でき得る怒度を有し、且つ記録時のコントラスト比の大
きい光学的記録媒体を提供するものである。
(Purpose of the Invention) The present invention has been made to solve the above problems, and has excellent long-term storage stability, with little deterioration of characteristics even in high temperature and humidity environments (and a low output light beam is sufficient An object of the present invention is to provide an optical recording medium which has a degree of anger that can be recorded in a range of 1 to 30 degrees and has a high contrast ratio during recording.

(問題点を解決するための手段) 本発明者らは、種々研究の結果、共晶点を有する2種以
上の金属、非金属あるいは合金の薄膜を化学気相成長膜
で形成すれば、この薄膜の積層体断面では断面方向の急
峻な組成分布の変化を形成することができ、これに光ビ
ームを照射すれば照射前後にで大きな光学特性の変化が
生じ優れた記録媒体として利用でき得ることを見出して
本発明を完成させたものである。
(Means for solving the problem) As a result of various studies, the present inventors have found that if a thin film of two or more metals, nonmetals, or alloys having eutectic points is formed by chemical vapor deposition, A sharp change in the composition distribution in the cross-sectional direction can be formed in the cross section of a thin film laminate, and if this is irradiated with a light beam, the optical properties will change significantly before and after the irradiation, making it possible to use it as an excellent recording medium. The present invention was completed by discovering the following.

すなわち、本発明の第1番目の発明は支持体上に金属、
非金属あるいは合金からなる複数の化学気相成長薄膜が
、隣接する層と共晶点を有するように超格子構造で積層
されていることを特徴とする光学的記録媒体を要旨とし
、本発明の第2番目の発明は、支持体上に化学気相成長
法により、互いに共晶点を有するように金属、非金属あ
るいは合金からなる複数の薄膜を積層して超格子構造の
記録層を形成することを特徴とする光記録媒体の製造方
法を要旨とするものである。基材上に複数の化学気相成
長薄膜が、隣接する層において共晶点を有するように積
層されていることを特徴とする光学的記録媒体を要旨と
するものである。
That is, the first aspect of the present invention is to provide metal on a support,
The gist of the present invention is an optical recording medium characterized in that a plurality of chemical vapor deposition thin films made of nonmetals or alloys are laminated in a superlattice structure so as to have eutectic points with adjacent layers. The second invention is to form a recording layer with a superlattice structure by laminating a plurality of thin films made of metals, nonmetals, or alloys on a support by chemical vapor deposition so that they have eutectic points with each other. The gist of the present invention is a method for manufacturing an optical recording medium characterized by the following. The gist of the present invention is an optical recording medium characterized in that a plurality of chemical vapor grown thin films are stacked on a base material so that adjacent layers have eutectic points.

(作用) −S的に、薄膜を作製する手段としては、蒸着法やスパ
ッタ法が用いられる。
(Function) -S-wise, a vapor deposition method or a sputtering method is used as a means for producing a thin film.

これらいずれの方法でも、基板に付着する被着物質の蒸
気あるいは粒子は、千度から数万度の熱量に達するエネ
ルギーを持つので基板表面上を激しく運動し、形成され
る薄膜が島状あるいは網状になったり、または基板表面
にすでに形成された薄膜中にこれらが拡散して表面原子
層の再配列を生じせしめたりする。
In either of these methods, the vapor or particles of the adhering substance that adheres to the substrate have energy reaching from 1,000 to tens of thousands of degrees, so they move violently on the substrate surface, resulting in a thin film formed in the form of islands or networks. or they can diffuse into the thin film already formed on the substrate surface, causing a rearrangement of the surface atomic layers.

従って、この方法により厚み数人〜数十人の2種以上の
金属薄膜を交互に積層させた場合、その断面方向の組成
分布は隣接する2種の金属が界面において混じりあって
おり、明確な界面を形成することができない。このため
に、このような積層体に光ビームを照射して合金化を行
っても、照射前後における大きな光学特性の変化は得る
ことができない。
Therefore, when thin films of two or more metals with a thickness of several to several tens of layers are alternately laminated using this method, the composition distribution in the cross-sectional direction is such that the two adjacent metals are mixed at the interface and have a clear distribution. cannot form an interface. For this reason, even if such a laminate is alloyed by irradiating it with a light beam, it is not possible to obtain a large change in optical properties before and after the irradiation.

これに対して、本発明では化学気相成長膜を用いる。In contrast, the present invention uses a chemical vapor deposition film.

化学気相成長膜とは化学気相成長法により作製された薄
膜のことである。
A chemical vapor deposition film is a thin film produced by chemical vapor deposition.

化学気相成長法では外部から与えたエネルギーは原料ガ
ス分解に用いられ、薄膜成長は化学反応により進行する
ので、上述の蒸着法やスパッタ法で見られた成長物質の
膜内への拡散、表面原子層の再配列は少なく、一様均一
な薄膜が形成される。
In the chemical vapor deposition method, externally applied energy is used to decompose the raw material gas, and thin film growth progresses through chemical reactions. There is little rearrangement of the atomic layers, and a uniform thin film is formed.

従って、2種類以上の化学気相成長膜からなる積層体の
断面方向の組成分布は、隣接する2種の金属が界面にお
いて混じりあってなく、断面方向の急峻な変化を有して
いる。このため、この積層体に光ビームを照射した場合
は、照射前後にて大きな光学特性の変化を得ることがで
きる。
Therefore, the composition distribution in the cross-sectional direction of a stacked body composed of two or more types of chemical vapor deposition films has a steep change in the cross-sectional direction without mixing of two adjacent metals at the interface. Therefore, when this laminate is irradiated with a light beam, a large change in optical properties can be obtained before and after irradiation.

次に、合金には固容体合金と共晶合金の2種がある。Next, there are two types of alloys: solid state alloys and eutectic alloys.

固容体合金を形成する第1の金属と第2の金属の化学気
相成長膜の積層体に光ビームを照射して、合金化を行う
ためにはその界面温度を実質的には両方の金属の融点よ
り高くすることが必要である。
In order to perform alloying by irradiating a light beam onto a laminate of chemical vapor deposition films of a first metal and a second metal that form a solid-state alloy, the interfacial temperature of both metals is substantially lowered. It is necessary to raise the temperature higher than the melting point of

また、固容体合金を形成する2種の金属の組合わせには
、ヒユーム・ロザリー則〔02種の原子の大きさかの違
いが15%以下である。■同じ結晶構造を有する。■電
気陰性度に大きな差がない。■原子価が同じである。〕
を満足しなくてはならない。
Furthermore, for the combination of two types of metals forming a solid-state alloy, the difference in size of the two types of atoms is 15% or less according to the Huyum-Rosaly rule. ■Have the same crystal structure. ■There is no big difference in electronegativity. ■The valences are the same. ]
must be satisfied.

従って、固容体合金を形成する2種の金属の積層体に光
ビームを照射して合金化しても、照射前後の光学特性の
変化は僅かである。
Therefore, even if a laminate of two metals forming a solid-state alloy is irradiated with a light beam to form an alloy, the optical properties before and after irradiation will change only slightly.

これに対して、本発明では共晶合金を形成する金属の組
み合わせを用いる。
In contrast, the present invention uses a combination of metals that form a eutectic alloy.

共晶合金を形成する第1の金属と第2の金属の化学気相
成長膜の積層体に光ビームを照射して、合金化を行うた
めの界面温度は実質的に両方の金属の融点より低い共晶
点であればよい。従って固容体合金を形成するに必要な
ほどの大きな光ビームの強度を必要としない、また、積
層体を構成する各薄膜層の厚さを適宜選択することによ
り、共晶点より低い温度で合金化反応が進行する場合も
ある。この理由は正確には不明であるが、各薄膜層を構
成する原子の相互拡散が共晶点以下の温度で生じている
ためと考えられる。
A light beam is irradiated onto a stack of chemical vapor deposition films of a first metal and a second metal forming a eutectic alloy, so that the interface temperature for alloying is substantially higher than the melting point of both metals. A low eutectic point is sufficient. Therefore, the intensity of the light beam that is as high as that required to form a solid-state alloy is not required, and by appropriately selecting the thickness of each thin film layer constituting the laminate, the alloy can be formed at a temperature lower than the eutectic point. In some cases, a chemical reaction may proceed. Although the exact reason for this is unknown, it is thought that it is because interdiffusion of atoms constituting each thin film layer occurs at a temperature below the eutectic point.

さらに、共晶合金を形成する金属の積層体では、各層を
構成する金属の光学特性に大きな差があるため記録前後
の共晶合金の光学特性も大きく変化する。
Furthermore, in a metal laminate forming a eutectic alloy, there is a large difference in the optical properties of the metals forming each layer, so the optical properties of the eutectic alloy also change significantly before and after recording.

すなわち、共晶合金を形成する2種の金属の化学気相成
長膜の積層体は、高感度、高コントラスト比を有する光
記録媒体として用いることができる。
That is, a laminate of chemical vapor deposition films of two metals forming a eutectic alloy can be used as an optical recording medium having high sensitivity and high contrast ratio.

(実施例) 以下、本発明を図面を参照して詳述する。(Example) Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図(a)に本発明に係る光記録媒体の一実施例の基
本構造を示す。この例では支持体1上に化学気相成長薄
膜積層体2が積層されて光記録媒体10が構成されてい
る。第1図(b)は同図(a)の部分拡大図である。化
学気相成長薄膜積層体2は、互いに共晶点を有する第1
の金属、非金属あるいは合金の化学気相成長膜21と、
第2の金属、非金属あるいは合金の化学気相成長膜22
とを交互に4層積層したものであ、る。ここでは、第1
の金属、非金属あるいは合金の化学気相成長膜21は厚
み60人のZnの化学気相成長膜であり、第2の金属、
非金属あるいは合金の化学気相成長膜22は厚み60人
のGeの化学気相成長膜であり、これらを積層すること
により超格子構造を形成している。
FIG. 1(a) shows the basic structure of an embodiment of an optical recording medium according to the present invention. In this example, an optical recording medium 10 is constructed by laminating a chemical vapor deposition thin film laminate 2 on a support 1. FIG. 1(b) is a partially enlarged view of FIG. 1(a). The chemical vapor deposition thin film stack 2 consists of first layers having eutectic points with each other.
a chemical vapor deposition film 21 of metal, nonmetal or alloy;
Second metal, nonmetal or alloy chemical vapor deposition film 22
It is made by laminating four layers alternately. Here, the first
The chemical vapor deposition film 21 of metal, nonmetal or alloy is a chemical vapor deposition film of Zn with a thickness of 60 mm, and the second metal,
The nonmetal or alloy chemical vapor deposition film 22 is a Ge chemical vapor deposition film with a thickness of 60 nm, and a superlattice structure is formed by stacking these films.

ここで、第1図(e)に示すように化学気相成長薄膜積
層体2の一部分30に光ビーム3を照射すると、この照
射エネルギーにより部分30以下の化学気相成長薄膜積
層体2の一部に超格子構造消失領域2°が形成されるに
の消失領域2°の詳細な原子レベルの詳細な構造は不明
であるが、照射部分30の表面には大きな凹凸は生じず
に合金化反応と考えられる反応が生じており、化学気相
成長薄膜積層体2の超格子構造領域に対して光学特性が
異なるため、光学的情報ピ・7トとして利用できまた、
ここで照射する光ビームのエネルギーを高めると、超格
子構造消失領域2″は変形し凹部または孔部となり光学
的情叩ピットとして利用できる。尚、この現象は支持体
1に熱伝導性の低い物を用いた場合には、エネルギー熱
が蓄積されるので比較的低い光ビームでなすことができ
る。
Here, when a part 30 of the chemical vapor deposition thin film stack 2 is irradiated with the light beam 3 as shown in FIG. A superlattice structure vanishing region 2° is formed in the irradiated region 30.Although the detailed structure of the vanishing region 2° at the atomic level is unknown, the alloying reaction does not occur on the surface of the irradiated region 30 without forming large irregularities. A reaction that is considered to occur occurs, and since the optical properties are different for the superlattice structure region of the chemical vapor deposition thin film stack 2, it can be used as an optical information point.
When the energy of the light beam irradiated here is increased, the superlattice structure vanishing region 2'' deforms and becomes a recess or hole, which can be used as an optical impression pit. When using an object, energy heat is stored, so a relatively low light beam can be used.

このように、光学的情報ピットを超格子構造の光学的特
性の変化あるいは変形による凹部または孔部として形成
することは、所望する光学的記録媒体の用途により適宜
選択することができる。
In this way, forming the optical information pits as recesses or holes by changing or deforming the optical properties of the superlattice structure can be selected as appropriate depending on the desired use of the optical recording medium.

第2図は、3種類の金属、非金属あるいは合金の化学気
相成長膜21.22.23を順に積層して積層体2を形
成した実施例の拡大部分断面図である。
FIG. 2 is an enlarged partial cross-sectional view of an embodiment in which a laminate 2 is formed by sequentially stacking chemical vapor deposition films 21, 22, and 23 of three types of metals, nonmetals, or alloys.

このように化学気相成長薄膜積層体2では、少なくとも
2種類の金属、非金属あるいは合金の化学気相成長膜が
共晶点を有するように積層されていればよい。
In this way, in the chemical vapor deposition thin film stack 2, it is sufficient that chemical vapor deposition films of at least two types of metals, nonmetals, or alloys are laminated so as to have a eutectic point.

以上のような基本構造を有する記録媒体は、容易にハー
ドディスク、フレキシブルディスク、カード、テープ、
シート等の形状にして利用することができる。
Recording media with the above basic structure can easily be used as hard disks, flexible disks, cards, tapes,
It can be used in the form of a sheet or the like.

尚、実用上は第3図(a)に示すように表面に保護層4
を設けることが好ましい。この保護層4は透光性の材料
であればどのようものでもかまわない。例えば後述する
支持体に用いられる材料が用いられる。このような保護
層5を有していても、第3図(b)のように光ビーム4
によって、超格子構造消失領域2゛を形成することがで
きる。この保護層は化学気相成長薄膜積層体2を保護す
るものであるが、実質的には支持体と同一の働きをなし
、例えば支持体側より光ビームを照射する場合にはこの
保WLNが支持体となる。
In addition, in practical use, a protective layer 4 is provided on the surface as shown in FIG. 3(a).
It is preferable to provide This protective layer 4 may be made of any light-transmitting material. For example, a material used for the support described later may be used. Even with such a protective layer 5, as shown in FIG. 3(b), the light beam 4
Accordingly, the superlattice structure vanishing region 2' can be formed. This protective layer protects the chemical vapor deposition thin film laminate 2, but it essentially has the same function as the support. For example, when a light beam is irradiated from the support side, this protective WLN serves as a support. Becomes a body.

また、この他、化学気相成長薄膜積層体2と支持体1と
の接着性を向上するために接着剤層を設けたり、積層体
2の膜形成性を向上させる目的で積層体2と支持体lと
の間に一層以上の中間層を設けたりすることができる。
In addition, an adhesive layer may be provided to improve the adhesion between the chemical vapor grown thin film laminate 2 and the support 1, and the laminate 2 and the support may be provided for the purpose of improving the film formability of the laminate 2. One or more intermediate layers may be provided between the body 1 and the body 1.

さらに、化学気相成長薄膜積層体2の表面あるいは表面
に積層される層の表面に読み取り時のコントラスト比を
向上させるための反射層や反射防止層を設けたり、書き
込み・読み取り時に光ビームが積層体2の記録予定部、
被記録部を追跡できるように凹凸形状、濃淡状あるいは
光反射率の異なるトラッキングパターン層を設けたりす
ることができる。
Furthermore, a reflective layer or an anti-reflection layer is provided on the surface of the chemical vapor deposition thin film laminate 2 or on the surface of a layer laminated on the surface to improve the contrast ratio during reading. body 2 recording schedule section;
In order to track the recorded portion, a tracking pattern layer having an uneven shape, shading, or different light reflectance can be provided.

記録媒体の材料 本発明に係る光学的記録媒体の各構成要素に用いる材料
を以下に例示する。
Materials of Recording Medium Materials used for each component of the optical recording medium according to the present invention are illustrated below.

(支持体) 本発明に用いる支持体としては、一般的な無機物、例え
ばガラス、アルミ、ケイ素等、または有機物の板、フィ
ルム、シート等を用いることができ、媒体の形状により
適宜選択する。例えばカードであれば、塩化ビニル、ポ
リカーボネート、アクリル、ポリメチルメタクリレート
、ポリエステル、ポリスチレン、エポキシ樹脂等のプラ
スチックのシート、フィルムが用いられ、厚さは0.1
〜2mm程度である。
(Support) The support used in the present invention may be a general inorganic material such as glass, aluminum, silicon, etc. or an organic material plate, film, sheet, etc., and is appropriately selected depending on the shape of the medium. For example, for cards, plastic sheets or films such as vinyl chloride, polycarbonate, acrylic, polymethyl methacrylate, polyester, polystyrene, and epoxy resin are used, and the thickness is 0.1
It is about 2 mm.

(化学気相成長薄膜) 本発明の化学気相成長膜を形成する金属、非金属あるい
は合金としては、Cu、Zn、Cd、B。
(Chemical Vapor Deposition Thin Film) Examples of metals, nonmetals, or alloys forming the chemical vapor deposition film of the present invention include Cu, Zn, Cd, and B.

A ’ % G 3%  I n % CSS ’I 
s G e % 3 n 、、P −。
A' % G 3% I n % CSS 'I
s G e % 3 n ,,P −.

A3%、Sb、3% Se、Te、Mo、W等の金属、
非金属またはこれらの合金を用いることができる。
Metals such as A3%, Sb, 3% Se, Te, Mo, W,
Non-metals or alloys thereof can be used.

一般に2種類の化学気相成長膜を交互に積層して化学気
相成長薄膜積層体2を形成する場合、第1の化学気相成
長膜と第2の化学気相成長膜の膜厚は、光ビーム照射に
よる超格子構造の消失時に光学性質の変化が大となる組
成を与える膜厚でなければならない。また、光ビーム照
射時間内に、共晶合金化が十分に進み超格子構造の消失
がすみやかに行われる膜厚でなければならない。このた
め、膜厚は第1の化学気相成長膜と第2の化学気相成長
膜共に5〜1000人程度が好程度い。さらに詳しくは
、共晶点および光ビーム照射時間から決めることが望ま
しい。
Generally, when two types of chemical vapor deposition films are alternately laminated to form a chemical vapor deposition thin film laminate 2, the film thicknesses of the first chemical vapor deposition film and the second chemical vapor deposition film are as follows: The film thickness must be such that the composition provides a large change in optical properties when the superlattice structure disappears due to light beam irradiation. Further, the film thickness must be such that eutectic alloying sufficiently progresses and the superlattice structure disappears quickly within the light beam irradiation time. Therefore, the film thickness of both the first chemical vapor deposition film and the second chemical vapor deposition film is preferably about 5 to 1000 layers. More specifically, it is desirable to determine from the eutectic point and the light beam irradiation time.

このような互いに共晶点を有する第1の化学気相成長膜
と第2の化学気相成長膜の組み合わせとしてはA I/
Cu(548@) 、Ge/A I(424’)、I 
n/A I(637@)  、S i/A I(577
’)  、Sn / A 1 (228,3″’)  
、A I/Te(414’)  、A I/Zn(38
2’)  、A s/Cu(689’)  、A S/
Ge(736’)  、In/As(731°) 、A
 s/5(310”) 、A s /S i (786
’) 、A s/S n(579’)、Cd/Cu(3
14”)  、Cd/Ge(319’)  、Cd /
 I n (123°)  、C4/S e(220”
)  、Cd/5n(177@)  、Cd/Zn(2
66@)  、Cu/Ge(640’) 、Cu/ I
 n(153°) 、Cu/S 1(802’)  、
Cu/5n(227”) 、Cu/Te(340’)、
I n/S n(117°)  、I n/Te(42
7@)  、In/Z n(143,5’)  、S/
S e(105”)  、S/Te(107’)  、
S e/5n(640°)、Sn/Te(465”) 
 、Sn/Zn(198°)  、G e /T e 
(375’ ) 、G e / Z n (39B ”
 )等のものがある。
A combination of the first chemical vapor deposition film and the second chemical vapor deposition film having eutectic points is A I/
Cu (548@), Ge/A I (424'), I
n/A I (637@), S i/A I (577
'), Sn/A 1 (228,3''')
, A I/Te (414'), A I/Zn (38
2'), As/Cu(689'), As/
Ge (736'), In/As (731°), A
s/5 (310”), A s /S i (786
'), A s/S n (579'), Cd/Cu (3
14”), Cd/Ge(319’), Cd/
I n (123°), C4/S e (220”
), Cd/5n(177@), Cd/Zn(2
66@), Cu/Ge(640'), Cu/I
n (153°), Cu/S 1 (802'),
Cu/5n (227"), Cu/Te (340'),
I n/S n (117°), I n/Te (42
7@), In/Z n(143,5'), S/
S e (105”), S/Te (107’),
S e/5n (640°), Sn/Te (465”)
, Sn/Zn (198°), G e /T e
(375'), G e / Z n (39B"
) etc.

これらの組み合わせの内、A I / Cu (548
°)、Ge/A I (424@) 、 S i/A 
I(577m) 、AI/Te(414’) 、A I
/Zn(3B2@) 、Cd/Cu(314”) 、C
d/Ge(319’) 、Cu/S 1(802’) 
、Cu/Te(340@) 、Ge/Zn(398″)
のものは、薄膜界面での組成分布が急峻であり、高感度
、高コントラストの記録を可能にすることができる。
Among these combinations, A I / Cu (548
°), Ge/A I (424@), S i/A
I (577m), AI/Te (414'), AI
/Zn(3B2@), Cd/Cu(314”), C
d/Ge (319'), Cu/S 1 (802')
, Cu/Te (340@), Ge/Zn (398″)
The composition distribution at the thin film interface is steep, making it possible to record with high sensitivity and high contrast.

ここで、Znの化学気相成長膜は例えばジメチル亜鉛(
Zn (CH3)z 3を原料として作成されるが、こ
の場合作成した化学気相成長膜には不純物として炭素、
水素が取り込まれることがあり、またGeの化学気相成
長膜は例えばゲルマン〔GeHa)が原料として用いら
れ、不純物として水素が取り込まれることがある。しか
し、これら不純物が光記録に悪影響を与えることは認め
られていない。
Here, the chemical vapor deposition film of Zn is, for example, dimethyl zinc (
It is created using Zn (CH3)z3 as a raw material, but in this case, the created chemical vapor deposition film contains impurities such as carbon,
Hydrogen may be taken in, and hydrogen may be taken in as an impurity in a chemical vapor deposition film of Ge, for example, when germane (GeHa) is used as a raw material. However, it has not been recognized that these impurities have an adverse effect on optical recording.

翌遺友汰 以下に本発明に係る光学的記録媒体の製造方法を説明す
る。
The method for manufacturing an optical recording medium according to the present invention will be explained below.

本発明に用いる化学気相成長薄膜積層体の製造は化学気
相成長法により行われる。
The chemical vapor deposition thin film laminate used in the present invention is manufactured by chemical vapor deposition.

原料としては、薄膜を形成する金属あるいは非金属の水
素化物、ハロゲン化物(フッ素化物、塩素化物、臭素化
物)、あるいはフルキル化物(アルキル:メチル、エチ
ル等)が用いられ、通常はガス状態で用いられる。
The raw materials used are metal or nonmetal hydrides, halides (fluorides, chlorides, bromides), or fulkylated compounds (alkyl: methyl, ethyl, etc.) that form thin films, and are usually used in a gaseous state. It will be done.

このガス状態の原料を支持体近傍まで輸送し、支持体近
傍にて、熱、放電あるいは光などのエネルギーを与えて
原料ガスを分解し、金属あるいは非金属を支持体に付着
させて薄膜を成長させて薄膜を形成する。この薄膜の厚
みは、原料ガス供給バルブの開閉制御により任意の厚み
で容易に形成することができる。
This gaseous raw material is transported to the vicinity of the support, where energy such as heat, discharge, or light is applied to decompose the raw material gas, and metals or nonmetals are attached to the support to grow a thin film. to form a thin film. The thickness of this thin film can be easily formed to any desired thickness by controlling the opening and closing of the raw material gas supply valve.

この操作を隣接する層が共晶点を有するように原料ガス
を変えながら(隣接する薄膜が共晶点を有するように)
、所望の薄膜の層数だけ行うことで、隣接する層と共晶
点を有する金属あるいは非金属の化学気相成長膜の超格
子構造からなる積層体が形成された本発明の光学的記録
媒体を得ることができる。
This operation is performed while changing the raw material gas so that adjacent layers have eutectic points (so that adjacent thin films have eutectic points)
The optical recording medium of the present invention has a superlattice structure of metallic or nonmetallic chemical vapor deposition films having eutectic points with adjacent layers by forming a layered structure of a desired number of thin film layers. can be obtained.

尚、基板の一部分のみに化学気相成長薄膜積層体を形成
することもでき、この場合には形成部分を除いてマスク
を設ければよい。
Note that it is also possible to form the chemical vapor deposition thin film laminate on only a portion of the substrate, and in this case, a mask may be provided except for the forming portion.

また、合金の薄膜は2種類以上の原料ガスを混入して供
給して化学気相成長を行うことにより形成することがで
きる。
Further, the alloy thin film can be formed by chemical vapor deposition by mixing and supplying two or more types of raw material gases.

星廷方Å 以下に本発明に係る光学的記録媒体の記録方法を説明す
る。
A recording method for an optical recording medium according to the present invention will be explained below.

光記録媒体の化学気相成長薄膜積層体に合金化による超
格子構造の消失を引き起こすためには、薄膜の共晶点程
度の熱が加えられることが必要であり、この条件を満足
するように照射光ビームのエネルギーと照射時間を決め
る。光ビームとしてはレーザー光を収束したものを用い
ることができる。
In order to cause the disappearance of the superlattice structure due to alloying in the chemical vapor grown thin film stack of optical recording media, it is necessary to apply heat to the level of the eutectic point of the thin film, and this condition must be satisfied. Determine the energy and irradiation time of the irradiation light beam. A converged laser beam can be used as the light beam.

このようにして記録される情報ピットの大きさは特に限
定されず、記録される情報量あるいは記録再生装置によ
り任意の大きさをとることができる。
The size of the information pits recorded in this way is not particularly limited, and can be any size depending on the amount of information to be recorded or the recording/reproducing device.

検出用の光ビームとしては、特に制限がなく、記録部で
ある合金化部分と未記録部での反射率が異なる物を選べ
ばよく、例えば、低出力のレーザー収束光、LED等が
用いられる。
There are no particular restrictions on the light beam for detection, and it is sufficient to choose one that has a different reflectance between the alloyed part, which is the recorded part, and the unrecorded part; for example, a low-power laser convergence beam, an LED, etc. can be used. .

朋婆 上述の構成をとる本発明の光記録媒体は以下の用途に好
適に利用される。
Tomaba: The optical recording medium of the present invention having the above-described configuration is suitably used for the following applications.

(1)金融流通産業:キャソシュカード、クレジ・ノド
カード、プリペイドカード。
(1) Financial distribution industry: Cash cards, credit cards, prepaid cards.

(2)医療健康産業:健康保健書、カルテ、医療カード
、緊急カード。
(2) Medical and health industry: health records, medical records, medical cards, emergency cards.

(3)娯楽産業:ソフトウェア用媒体、会員カード、入
場券、遊戯機械制御媒体、テレビゲーム用媒体。
(3) Entertainment industry: software media, membership cards, admission tickets, game machine control media, video game media.

(4)運輸旅行産業:旅行者カード、免許証、定期券、
パスポート。
(4) Transportation and travel industry: traveler cards, licenses, commuter passes,
passport.

(5)出版産業:電子出版。(5) Publishing industry: electronic publishing.

(6)情報処理産業2電子機器の外部記録装置、ファイ
リング。
(6) Information processing industry 2 External recording devices and filing of electronic equipment.

(7)教育産業:教材プログラム、成績管理カード、図
吉館の人出管理および書符管理 (8)自動車産業:整備記録、運行管理。
(7) Educational industry: teaching material programs, grade management cards, Tsuyoshikan crowd management and bookmark management (8) Automobile industry: maintenance records, operation management.

f91FA : MC,NC、ロボット等のプログラム
記録媒体。
f91FA: Program recording medium for MC, NC, robot, etc.

(10)その他:ビルコントロール、ホームコントロー
ル、IDカード、クツキングカード、自動販売機用媒体
(10) Others: Building control, home control, ID cards, shoe king cards, media for vending machines.

(発明の効果) 本発明によれば、情報が記録される化学気相成長薄膜積
層体は共晶点を存する化学気相成長膜による超格子構造
で形成されているので、■光ビームの照射により容易に
合金化と考えられる反応が起こり、かつこの反応部分と
他の超格子構造部分との光学的特性の差が大きいので、
高感度、高コントラストの記録が可能となる。また、上
記の反応に要するエネルギーに比較して大きなエネルギ
ーを供給すれば、凹部または孔部を情報ピットとして形
成でき、さらに高コントラストの記録が可能となる。
(Effects of the Invention) According to the present invention, since the chemical vapor grown thin film stack in which information is recorded is formed with a superlattice structure of chemical vapor grown films having eutectic points, A reaction that can be considered as alloying easily occurs, and there is a large difference in optical properties between this reaction part and other superlattice structure parts, so
High-sensitivity, high-contrast recording becomes possible. Furthermore, if energy larger than the energy required for the above reaction is supplied, the recesses or holes can be formed as information pits, and recording with even higher contrast becomes possible.

■情報の記録は、化学気相成長薄膜積層体の構造変化に
より、体積変化を伴わない。このため本発明の光記録媒
体は従来の体積変化を増感させる手段、層構成は必要で
なく、多様な形状を取ることができる。
■Recording of information does not involve volume changes due to structural changes in the chemical vapor deposition thin film laminate. Therefore, the optical recording medium of the present invention does not require conventional means for sensitizing volume changes or layer structure, and can take various shapes.

■積層体を形成する薄膜は、安定性のある材料で形成さ
れるので、経時安定性、環境安定性に優れる。また、積
層体に保護層を形成したものは一層に優れたものとなる
■The thin film that forms the laminate is made of a stable material, so it has excellent stability over time and environmental stability. Further, a laminate in which a protective layer is formed is even more excellent.

■さらに、スパッタ法または蒸着法による薄膜作成と異
なり、作成中に基材を2種類以上の蒸発源あるいはスパ
ッタカソード間を高速に移動させる必要がなく、単に原
料ガスバルブのバルブ操作だけで薄膜を作成することが
でき、極めて容易に多層のiM積層体を作成することが
でき、かつ作成された薄膜の再現性も良好である。
■Furthermore, unlike thin film creation using sputtering or vapor deposition methods, there is no need to move the base material between two or more evaporation sources or sputter cathodes at high speed during creation, and thin films can be created simply by operating the source gas valve. It is possible to create a multilayer iM laminate extremely easily, and the reproducibility of the created thin film is also good.

(具体的実施例) 以下に、本発明を具体的実施例に基づいて説明する。(Specific example) The present invention will be explained below based on specific examples.

ス財U粗1 厚さ1.2mmの光学的に研磨されたガラスを支持体と
して用い、反応容器の所定の場所に設置した。
Material U Coarse 1 Optically polished glass with a thickness of 1.2 mm was used as a support and placed at a predetermined location in the reaction vessel.

次に、ジメチル亜鉛(Zn (CH3) 2 )をH2
ガスでバブリングして反応容器に導入し、0.30To
rrの圧力にて放電してこの原料ガスを分解し、支持体
上に厚さ60人のZnの化学気相成長薄膜を堆積させた
Next, dimethylzinc (Zn (CH3) 2 ) was added to H2
Bubble with gas and introduce into the reaction vessel to 0.30To
This source gas was decomposed by electrical discharge at a pressure of rr, and a chemical vapor deposition thin film of Zn with a thickness of 60 μm was deposited on the support.

次に、原料ガスのゲルマン〔GeH4〕を反応容器に導
入し、同様に原料ガスを分解し、Zn上に厚さ60人の
Geの化学気相成長薄膜を堆積させた。
Next, a source gas of germane [GeH4] was introduced into the reaction vessel, and the source gas was similarly decomposed to deposit a chemical vapor deposition thin film of Ge with a thickness of 60 nm on the Zn.

上記のガスバルブの開閉および放電操作を順次行い、1
0周期(20層)で一層厚み60人の化学気相成長薄膜
の積層体を支持体上に形成し本発明の光学的記録媒体を
得た。
Perform the above gas valve opening/closing and discharge operations in sequence, and
A laminate of chemical vapor deposition thin films having a thickness of 60 layers with 0 cycles (20 layers) was formed on a support to obtain an optical recording medium of the present invention.

得られた光学的記録媒体に、830 nm、 5mwの
半導体レーザー光を直径1μに集光して、500nsの
パルスにて照射し記録を行った。
Recording was performed by irradiating the obtained optical recording medium with a 500 ns pulse of semiconductor laser light of 830 nm and 5 mw focused to a diameter of 1 μm.

次に、この記録された光学的記録媒体を読み取ったとこ
ろ、記録部の反射率は60%であり、未記録部の反射率
は40%であり、記録媒体として良好な反射率の変化が
得られた。
Next, when this recorded optical recording medium was read, the reflectance of the recorded area was 60%, and the reflectance of the unrecorded area was 40%, indicating that a good change in reflectance was obtained as a recording medium. It was done.

夫冑旌l 厚さ0.6mmのポリカーボネートフィルムを支持体と
して用い、反応容器の所定の場所に謹賀した。
A polycarbonate film with a thickness of 0.6 mm was used as a support and placed in a predetermined place in the reaction vessel.

次に、原料ガスのゲルマン(GeH4)を反応容器に導
入し、0.30T o r rの圧力にて放電して原料
ガスを分解し、支持体上に厚さ30人のGeの化学気相
成長薄膜を堆積させた。
Next, the raw material gas germane (GeH4) was introduced into the reaction vessel, and the raw material gas was decomposed by discharging at a pressure of 0.30T or r, and a chemical vapor phase of Ge with a thickness of 30T was formed on the support. A grown thin film was deposited.

次に、トリメチルアルミ(A I  (CHs )j)
をH2ガスでバブリングして反応容器に導入反応容器に
導入し、同様にして原料ガスを分解し、Qe上に厚さ7
0人のAIの化学気相成長薄膜を堆積させた。
Next, trimethylaluminum (A I (CHs ) j)
was bubbled with H2 gas and introduced into the reaction vessel.The raw material gas was decomposed in the same way, and a 7-thick layer was formed on Qe.
A chemical vapor deposition thin film of 0 AI was deposited.

上記のガスバルブの開閉および放電操作を順次行い、5
周期(10層)で一層厚みGe30人、A170人の化
学気相成長薄膜の積層体を支持体上に形成し本発明の光
学的記録媒体を得た。
Perform the above gas valve opening/closing and discharge operations in sequence, and
A laminate of chemical vapor deposition thin films having a thickness of 30 layers of Ge and 170 layers of A was formed on a support in a periodic manner (10 layers) to obtain an optical recording medium of the present invention.

得られた光学的記録媒体に、830nm、2mwの半導
体レーザー光を直径1μに集光して、500nsのパル
スにて照射し記録を行った。
Recording was performed on the obtained optical recording medium by irradiating it with a 500 ns pulse of semiconductor laser light of 830 nm and 2 mw focused to a diameter of 1 μm.

次に、この記録された光学的記録媒体を読み取ったとこ
ろ、記録部の反射率は80%であり、未記録部の反射率
は40%であり、記録媒体として良好な反射率の変化が
得られた。
Next, when this recorded optical recording medium was read, the reflectance of the recorded part was 80%, and the reflectance of the unrecorded part was 40%, indicating that a good change in reflectance was obtained as a recording medium. It was done.

去旌炭ユ 厚さl、Qmmのポリメチルメタクリレートフィルムを
支持体として用い、反応容器の所定の場所に設置した。
A polymethyl methacrylate film having a thickness of 1 and Q mm was used as a support and was placed at a predetermined location in the reaction vessel.

次に、原料ガスの水素化テルル(TeHz)を反応容器
に導入し、ArFエキシマレーザ−(19mm)と赤外
ランプを照射して、原料ガスを分解し支持体上に厚さ3
0人のTeの化学気相成長薄膜を堆積させた。
Next, hydrogenated tellurium (TeHz) as a raw material gas is introduced into the reaction vessel, and irradiated with an ArF excimer laser (19 mm) and an infrared lamp to decompose the raw material gas and form a 3-thick layer on the support.
A chemical vapor deposition thin film of 0 Te was deposited.

次に、トリメチルアルミ(A l  (CHy )1)
をH2ガスでバブリングして反応容器に導入反応容器に
導入し、同様の方法で原料ガスを分解しTe上に厚さ7
0人のAIの化学気相成長薄膜を堆積させた。
Next, trimethylaluminum (A l (CHy)1)
was bubbled with H2 gas and introduced into the reaction vessel, and the raw material gas was decomposed in the same manner and deposited on Te to a thickness of 7.
A chemical vapor deposition thin film of 0 AI was deposited.

上記のガスバルブの開閉および照射操作を順次行い、5
周期(107i)で一層厚みGe30人、Al70人の
化学気相成長膜の積層体を支持体上に形成し本発明の光
学的記録媒体を得た。
Perform the above gas valve opening/closing and irradiation operations in sequence, and
An optical recording medium of the present invention was obtained by forming a laminate of chemical vapor deposition films having a period (107i) of 30 layers of Ge and 70 layers of Al on a support.

得られた光学的記録媒体に、830nm、7mwの半導
体レーザー光を直径1μに集光して、500nsのパル
スにて照射し、積層体に孔部を形成して記録を行った。
The resulting optical recording medium was irradiated with a 500 ns pulse of semiconductor laser light of 830 nm and 7 mw focused to a diameter of 1 μm to form a hole in the laminate for recording.

次に、この記録された光学的記録媒体を読み取ったとこ
ろ、記録部の反射率は3%であり、未記録部の反射率は
40%であり、記録媒体として良好な反射率の変化が得
られた。
Next, when this recorded optical recording medium was read, the reflectance of the recorded area was 3%, and the reflectance of the unrecorded area was 40%, indicating that a good change in reflectance was obtained as a recording medium. It was done.

大施■工 20mm X 75m+oの領域を除いてマスクをした
厚さ0゜6mmのポリカーボネートフィルムを支持体と
して用い反応容器の所定の場所に設置した。
A polycarbonate film with a thickness of 0.6 mm, which was masked except for an area of 20 mm x 75 m+o, was used as a support and placed at a predetermined location in the reaction vessel.

次に、原料ガスとしてゲルマン(GeHa)とトリメチ
ルアルミ(A 1  (CHz )*)を用い、実施例
2と同様に支持体の2011III+×75ml1の領
域に5周期(101i)で一層厚みGe30人、Al7
0人の化学気相成長薄膜の積層体を形成し本発明の光学
的記録媒体を得た。
Next, using germane (GeHa) and trimethylaluminum (A 1 (CHz ) *) as raw material gases, a further thickness of 30 Ge was applied to the 2011III+×75 ml area of the support in 5 cycles (101i) in the same manner as in Example 2. Al7
An optical recording medium of the present invention was obtained by forming a laminate of thin films by chemical vapor deposition.

得られた光記録媒体の積層体の面会面に感圧接着剤を塗
布し、厚み0.12m mのポリ塩化ビニルフィルムを
積層した。
A pressure-sensitive adhesive was applied to the facing surface of the resulting laminate of optical recording media, and a polyvinyl chloride film having a thickness of 0.12 mm was laminated thereon.

次に、この積層体をカードの大きさに打ち抜き光カード
を得た 得られた光カードの記録部(積層体部)に、83Q n
m、 2mwの半導体レーザー光を直径1μに集光して
、500 n sのパルスにて照射し記録を行った。
Next, this laminate was punched out to the size of a card to obtain an optical card. 83Q n
Recording was performed by condensing semiconductor laser light of 2 mw and 2 mw into a diameter of 1 μm and irradiating it with a 500 ns pulse.

次に、この記録された光りカードを読み取ったところ、
記録部の反射率は80%であり、未記録部の反射率は4
0%であり、記録媒体として良好な反射率の変化が得ら
れた。
Next, when I read this recorded light card,
The reflectance of the recorded area is 80%, and the reflectance of the unrecorded area is 4.
0%, and a good change in reflectance was obtained as a recording medium.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図fa+は本発明に係る光学記録媒体の一実施例の
構造を示す断面図、同図fblは同図(alの部分拡大
断面図、同図(C)は同図(a)に示す光学的記録媒体
への記録方法を示す図、第2図は本発明に係る光学記録
媒体の別の一実施例の構造を示す部分拡大断面図、第3
図(a)は本発明に係る光学記録媒体の別の一実施例の
構造を示す断面図、同図(blは同図fatに示す光学
的記録媒体への記録方法を示す図である。 l・・・支持体 2・・・化学気相成長薄膜積層体 2゛ ・・超格子構造消失部分 3・・・光ビーム 10・・・光学的記録媒体 21.22.23、・・・化学気相成長薄膜特許出願人
  大日本印刷株式会社 代理人 弁理士  小 西 淳 美 第1図(a) 第1図(C)
Fig. 1 fa+ is a sectional view showing the structure of an embodiment of the optical recording medium according to the present invention, Fig. 1 fbl is a partially enlarged sectional view of Fig. FIG. 2 is a partially enlarged sectional view showing the structure of another embodiment of the optical recording medium according to the present invention; FIG. 3 is a diagram showing a recording method on an optical recording medium;
Figure (a) is a cross-sectional view showing the structure of another embodiment of the optical recording medium according to the present invention. ...Support 2...Chemical vapor deposition thin film laminate 2゛...Superlattice structure disappearing portion 3...Light beam 10...Optical recording medium 21, 22, 23,...Chemical vapor Phase growth thin film patent applicant Dai Nippon Printing Co., Ltd. Representative Patent attorney Atsushi Konishi Figure 1 (a) Figure 1 (C)

Claims (2)

【特許請求の範囲】[Claims] (1)支持体上に金属、非金属あるいは合金からなる複
数の化学気相成長薄膜が、隣接する層と共晶点を有する
ように超格子構造で積層されていることを特徴とする光
学的記録媒体。
(1) An optical device characterized in that a plurality of chemical vapor deposition thin films made of metals, nonmetals, or alloys are stacked on a support in a superlattice structure so that they have eutectic points with adjacent layers. recoding media.
(2)支持体上に化学気相成長法により、互いに共晶点
を有するように金属、非金属あるいは合金からなる複数
の薄膜を積層して超格子構造の記録層を形成することを
特徴とする光学的記録媒体の製造方法。
(2) A recording layer with a superlattice structure is formed by laminating a plurality of thin films made of metals, nonmetals, or alloys on a support by chemical vapor deposition so that they have eutectic points with each other. A method for manufacturing an optical recording medium.
JP62070014A 1987-03-24 1987-03-24 Optical recording medium and its production Pending JPS63237232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62070014A JPS63237232A (en) 1987-03-24 1987-03-24 Optical recording medium and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62070014A JPS63237232A (en) 1987-03-24 1987-03-24 Optical recording medium and its production

Publications (1)

Publication Number Publication Date
JPS63237232A true JPS63237232A (en) 1988-10-03

Family

ID=13419330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62070014A Pending JPS63237232A (en) 1987-03-24 1987-03-24 Optical recording medium and its production

Country Status (1)

Country Link
JP (1) JPS63237232A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829169B2 (en) 2005-06-07 2010-11-09 Panasonic Corporation Information recording medium and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829169B2 (en) 2005-06-07 2010-11-09 Panasonic Corporation Information recording medium and method for producing the same
US8133567B2 (en) 2005-06-07 2012-03-13 Panasonic Corporation Information recording medium and method for producing the same
JP5042019B2 (en) * 2005-06-07 2012-10-03 パナソニック株式会社 Information recording medium and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP0288354B1 (en) Process for manufacturing an optical recording medium
CN100428334C (en) Magnetic recording medium and method for manufacturing same, and method for recording and reproducing with magnetic recording medium
AU608991B2 (en) Optical disc medium
CN101320576B (en) Information recording medium and process for producing the same
JPH0695388B2 (en) Information recording medium
EP1548722B1 (en) Optical information recording medium and method for manufacturing same
JPS63237232A (en) Optical recording medium and its production
US7573803B2 (en) Optical recording disc
JP5148629B2 (en) Information recording medium, manufacturing method thereof, and recording / reproducing apparatus
CN100372009C (en) Optical recording medium and method for manufacturing same
US20070098946A1 (en) Optical recording disc
JP2901433B2 (en) Optical recording medium
JP2918894B2 (en) Optical recording medium and manufacturing method thereof
JP2656296B2 (en) Information recording medium and method of manufacturing the same
DE60310088D1 (en) RETRIEVABLE CARRIER OF OPTICAL DATA STORAGE AND METHOD OF OPERATING THEREOF
JPH1116211A (en) Information recording medium and its manufacture
JP3020940B2 (en) Optical recording medium
JP3986332B2 (en) Optical recording medium
JP4117874B2 (en) Optical recording medium, recording method and apparatus therefor
JP2948899B2 (en) Optical recording medium and optical recording method
JPS63237993A (en) Optical recording material
JP2006182029A (en) Information recording medium
JP2000215509A (en) Optical recording medium and its production
JP2003011513A (en) Optical recording medium
JPS62137741A (en) Additional writing type optical information recording disk and its production