JPS6323671B2 - - Google Patents
Info
- Publication number
- JPS6323671B2 JPS6323671B2 JP57216614A JP21661482A JPS6323671B2 JP S6323671 B2 JPS6323671 B2 JP S6323671B2 JP 57216614 A JP57216614 A JP 57216614A JP 21661482 A JP21661482 A JP 21661482A JP S6323671 B2 JPS6323671 B2 JP S6323671B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- layer
- silicon compound
- photovoltaic device
- depositing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012535 impurity Substances 0.000 claims description 29
- 239000010409 thin film Substances 0.000 claims description 18
- 238000000151 deposition Methods 0.000 claims description 16
- 150000003377 silicon compounds Chemical class 0.000 claims description 13
- 239000010408 film Substances 0.000 claims description 11
- 239000007789 gas Substances 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 3
- 239000008246 gaseous mixture Substances 0.000 claims 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 239000000758 substrate Substances 0.000 description 13
- 229910021417 amorphous silicon Inorganic materials 0.000 description 7
- 238000009826 distribution Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical compound ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 description 2
- 238000011109 contamination Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
Classifications
-
- H01L31/202—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Description
産業上の利用分野
本発明は、非晶質または微結晶化されたシリコ
ンを用いた光起電力素子の製造方法に関する。
従来例の構成とその問題点
従来、非晶質または微結晶化されたシリコン
(以下a−Siで表す)を用いた光起電力素子の一
般的な製造方法は、大きく分けて次の2種類があ
る。
(1) 単一のチエンバ内で堆積させる方法。
(2) 複数のチエンバを用い、基板を移動させる方
法。
(1)の方法により、多層構造で堆積させる場合は
各層の堆積ごとにチエンバ内をいつたん高真空に
し、前の原料ガスを追い出した後、次の原料ガス
を導入することになる。この場合、各層で最適化
されるものは、従来膜厚のみであつた。また、前
の原料ガスを追い出しても、チエンバ内に吸着し
ている不純物は、完全にはとり除くことができな
いため、多層構造にした場合、次の層の前の層の
不純物が混合するという欠点が生じる。
(2)の方法は、(1)の方法の欠点を解決するために
開発されたものであるが、この場合でもチエンバ
内での各層の堆積は、膜厚のみの最適化であり、
不純物の膜厚方向(深さ方向)の分布の最適化に
ついては全く考慮されていなかつた。
発明の目的
本発明は、高効率な光起電力素子を得るための
不純物濃度分布の膜厚方向(深さ方向)の最適化
が行える新規な製造方法を提供するものである。
発明の構成
本発明は、金属基板または、絶縁性板上に導電
層を形成した基板を用い、気体状のシリコン化合
物に伝導型決定不純物を混合した気体を分解堆積
させて第1の薄膜を形成する工程と、伝導型形定
不純物を含まない気体状シリコン化合物を分解堆
積させて第1の薄膜上に第2の薄膜を形成する工
程と、前記伝導型決定不純物とは別の伝導型を決
定する不純物と気体状シリコン化合物を混合した
気体を分解堆積させて第2の薄膜上に第3の薄膜
を形成する工程を有する光起電子素子の製造方法
において、前記第1の薄膜を最適膜厚より厚く形
成するとともに、第2の薄膜を形成する前に、前
記第1の薄膜を真空中または不活性気体、気体状
シリコン化合物もしくは水素の雰囲気に保持する
ことを特徴とする。伝導型決定不純物を含まない
雰囲気で放置しておくと、第1の薄膜中に混入し
ていた前記不純物が表面から外郭に拡散放出され
る。拡散の原理から表面ほど放出される割合が高
く第1の薄膜を適当な膜厚にすれば深さ方向に不
純物の分布ができる。この不純物分布は自由空間
側ほど濃度が低く基板側ほど濃度が高い。
ここで、気体状シリコン化合物としてはSiH4、
SiF4等があり、これを分解堆積させてi層が得ら
れる。また、上記シリコン化合物にB2H6、BF3
等を混合し分解堆積してp層が、上記シリコン化
合物にPH3、POCl3等を混合し分解堆積してn層
が得られ、これらpin層によつて光起電力素子が
形成される。
実施例の説明
第1図〜第3図は本発明に基づく光起電力素子
の製造工程を示す。
まず、ガラス板1上に透明導電膜2を蒸着させ
た基板をa−Si膜堆積装置内に入れ、基板温度が
200〜350℃になるまで加熱する(第1図)。3は
基板を加熱するヒータである。従来のa−Si光起
電力素子のp層の膜厚の最適値は100Å程度であ
るが、本発明では300〜1500Åと最適値よりは厚
いp層4を堆積させる。こうして第1の薄膜層4
を堆積させた後、原料ガスを追い出す。基板温度
を一定に保つたまま、真空に保持するか、または
不活性ガス、原料ガスである気体状シリコン化合
物または水素を流しながら、保持させる(第2
図)。基板温度を下げても良いが、保持時間を長
くする必要がある。不純物ガス量と、上記保持時
間および基板温度によつてp層の実効的膜厚およ
び最適不純物分布が制御される。不純物濃度は、
B2H6/SiH4=500ppm〜2vol%である。保持時
間も堆積条件に依存するが、5分間〜2時間であ
る。
保持完了後、気体状シリコン化合物を分解堆積
し、i層5を作成する。次にPH3/SiH4=0.5〜
3vol%に混合したガスを分解堆積し、n層6を堆
積する。i層、n層とも前述したp層の不純物制
御は行わず、最適膜厚堆積させる。堆積順序が逆
の場合、すなわち、基板にn層、i層、p層の順
に堆積させる場合は、n層に前述した不純物制御
を行う。a−Si堆積後、外部電極7,8を付け素
子を完成させる(第3図)。
本発明の製造方法によつて得られた光起電力素
子Aと、従来の製造方法によつて得られた素子B
との特性比較を次表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing a photovoltaic device using amorphous or microcrystalline silicon. Conventional configurations and their problems Conventionally, general manufacturing methods for photovoltaic devices using amorphous or microcrystalline silicon (hereinafter referred to as a-Si) can be roughly divided into the following two types. There is. (1) Deposition method within a single chamber. (2) A method of moving the substrate using multiple chambers. When depositing a multilayer structure using method (1), the chamber must be brought to a high vacuum after each layer is deposited, and after the previous source gas is expelled, the next source gas is introduced. In this case, conventionally, only the film thickness was optimized for each layer. In addition, even if the previous raw material gas is expelled, the impurities adsorbed in the chamber cannot be completely removed, so if a multilayer structure is used, the impurities from the previous layer will mix with the next layer. occurs. Method (2) was developed to solve the drawbacks of method (1), but even in this case, the deposition of each layer within the chamber is only an optimization of the film thickness;
No consideration was given to optimizing the distribution of impurities in the film thickness direction (depth direction). Purpose of the Invention The present invention provides a novel manufacturing method that can optimize the impurity concentration distribution in the film thickness direction (depth direction) in order to obtain a highly efficient photovoltaic device. Structure of the Invention The present invention uses a metal substrate or a substrate in which a conductive layer is formed on an insulating plate, and forms a first thin film by decomposing and depositing a gas in which a gaseous silicon compound is mixed with a conductivity determining impurity. forming a second thin film on the first thin film by decomposing and depositing a gaseous silicon compound that does not contain conductivity type determining impurities; and determining a conductivity type different from the conductivity type determining impurity. A method for manufacturing a photovoltaic device comprising a step of forming a third thin film on a second thin film by decomposing and depositing a gas containing a mixture of impurities and a gaseous silicon compound. The first thin film is formed thicker, and the first thin film is maintained in vacuum or in an atmosphere of an inert gas, a gaseous silicon compound, or hydrogen before forming the second thin film. When left in an atmosphere that does not contain impurities that determine the conductivity type, the impurities mixed in the first thin film are diffused and released from the surface to the outer shell. According to the principle of diffusion, impurities are released at a higher rate toward the surface, and if the first thin film is made to have an appropriate thickness, impurities can be distributed in the depth direction. This impurity distribution has a lower concentration toward the free space and a higher concentration toward the substrate. Here, the gaseous silicon compound is SiH 4 ,
There are SiF 4 and the like, and the i-layer can be obtained by decomposing and depositing this. In addition, B 2 H 6 and BF 3 are added to the above silicon compound.
A p-layer is obtained by mixing the silicon compound with PH 3 , POCl 3 , etc. and decomposing and depositing the same, and an n-layer is obtained by mixing the silicon compound with PH 3 , POCl 3 , etc. and decomposing and depositing the same, and these pin layers form a photovoltaic element. DESCRIPTION OF EMBODIMENTS FIGS. 1 to 3 show the manufacturing process of a photovoltaic device according to the present invention. First, a substrate with a transparent conductive film 2 deposited on a glass plate 1 is placed in an a-Si film deposition apparatus, and the substrate temperature is
Heat until the temperature reaches 200-350℃ (Figure 1). 3 is a heater that heats the substrate. The optimum thickness of the p-layer in a conventional a-Si photovoltaic device is approximately 100 Å, but in the present invention, the p-layer 4 is deposited at a thickness of 300 to 1500 Å, which is thicker than the optimum thickness. In this way, the first thin film layer 4
After depositing, the raw material gas is expelled. While keeping the substrate temperature constant, the substrate is held in a vacuum or while an inert gas, a gaseous silicon compound as a raw material gas, or hydrogen is flowing (second
figure). Although the substrate temperature may be lowered, it is necessary to increase the holding time. The effective thickness and optimal impurity distribution of the p-layer are controlled by the amount of impurity gas, the holding time, and the substrate temperature. The impurity concentration is
B 2 H 6 /SiH 4 =500 ppm to 2 vol%. The holding time also depends on the deposition conditions, but ranges from 5 minutes to 2 hours. After the holding is completed, a gaseous silicon compound is decomposed and deposited to form an i-layer 5. Next, PH 3 /SiH 4 = 0.5~
A mixed gas of 3 vol% is decomposed and deposited to deposit the n layer 6. For both the i-layer and the n-layer, the impurity control of the p-layer described above is not performed, and the films are deposited to an optimum thickness. When the deposition order is reversed, that is, when the n-layer, i-layer, and p-layer are deposited on the substrate in this order, the impurity control described above is performed on the n-layer. After a-Si deposition, external electrodes 7 and 8 are attached to complete the device (FIG. 3). Photovoltaic device A obtained by the manufacturing method of the present invention and device B obtained by the conventional manufacturing method
The following table shows a comparison of characteristics with
【表】
この表に示した特性からもわかるように、特に
曲線因子の改善が著しいのは、ダイオード特性が
向上したためである。本発明による第1の不純物
層堆積後の保持によつて、チエンバ内の不純物が
とり除かれ、さらに最適膜厚よりも厚くつけられ
た膜そのものからの不純物の抜け出しによつて第
1不純物層の不純物分布が制御されたため、次に
堆積するi層中への不純物の汚染が少なくなると
ともに、p層、i層界面の電界がなめらかになつ
たものである。
発明の効果
以上のように、本発明によつてp型層に膜厚方
向に不純物の分布を作り込むことができるため、
高効率のa−Si光起電力素子を製造することがで
きる。[Table] As can be seen from the characteristics shown in this table, the reason why the improvement in fill factor is particularly remarkable is due to the improvement in diode characteristics. By holding the first impurity layer after being deposited according to the present invention, impurities in the chamber are removed, and furthermore, the impurities are released from the film itself, which is formed thicker than the optimum film thickness, to form the first impurity layer. Since the impurity distribution was controlled, impurity contamination into the next deposited i-layer was reduced, and the electric field at the interface between the p-layer and the i-layer became smooth. Effects of the Invention As described above, according to the present invention, it is possible to create an impurity distribution in the p-type layer in the film thickness direction.
A highly efficient a-Si photovoltaic device can be manufactured.
第1図〜第3図は本発明の光起電力素子の製造
工程を示す。
1……ガラス基板、2……透明電極、3……加
熱ヒータ、4……p層、5……i層、6……n
層、7,8……外部電極。
1 to 3 show the manufacturing process of the photovoltaic device of the present invention. DESCRIPTION OF SYMBOLS 1... Glass substrate, 2... Transparent electrode, 3... Heater, 4... P layer, 5... I layer, 6... n
Layer 7, 8...external electrode.
Claims (1)
混合した気体を分解堆積させて第1の薄膜を形成
する工程と、伝導型決定不純物を含まない気体状
シリコン化合物を分解堆積させて第1の薄膜上に
第2の薄膜を形成する工程と、前記伝導型決定不
純物とは別の伝導型を決定する不純物と気体状シ
リコン化合物を混合した気体を分解堆積させて第
2の薄膜上に第3の薄膜を形成する工程を有する
光起電力素子の製造方法であつて、前記第1の薄
膜を最適膜厚より厚く形成するとともに、第2の
薄膜を形成する前に、前記第1の薄膜を少なくと
も前記伝導型決定不純物を含まない真空中または
不活性気体、気体状シリコン化合物もしくは水素
の雰囲気に保持することを特徴とする光起電力素
子の製造方法。1 A step of forming a first thin film by decomposing and depositing a gaseous mixture of a gaseous silicon compound and a conductivity determining impurity; forming a second thin film on the second thin film by decomposing and depositing a gas containing a gaseous silicon compound and a conductivity determining impurity different from the conductivity determining impurity; The method for manufacturing a photovoltaic device includes the step of forming the first thin film thicker than the optimum film thickness, and before forming the second thin film, the first thin film has at least the thickness of the first thin film. 1. A method for producing a photovoltaic device, which comprises maintaining the photovoltaic device in a vacuum or in an atmosphere of an inert gas, a gaseous silicon compound, or hydrogen, which does not contain impurities that determine the conductivity type.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57216614A JPS59106163A (en) | 1982-12-09 | 1982-12-09 | Manufacture of photovoltaic element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57216614A JPS59106163A (en) | 1982-12-09 | 1982-12-09 | Manufacture of photovoltaic element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59106163A JPS59106163A (en) | 1984-06-19 |
JPS6323671B2 true JPS6323671B2 (en) | 1988-05-17 |
Family
ID=16691183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57216614A Granted JPS59106163A (en) | 1982-12-09 | 1982-12-09 | Manufacture of photovoltaic element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59106163A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5222471A (en) * | 1975-08-13 | 1977-02-19 | Hitachi Ltd | Field radiation type electron gun |
-
1982
- 1982-12-09 JP JP57216614A patent/JPS59106163A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5222471A (en) * | 1975-08-13 | 1977-02-19 | Hitachi Ltd | Field radiation type electron gun |
Also Published As
Publication number | Publication date |
---|---|
JPS59106163A (en) | 1984-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4615298A (en) | Method of making non-crystalline semiconductor layer | |
US4438723A (en) | Multiple chamber deposition and isolation system and method | |
US4398343A (en) | Method of making semi-amorphous semiconductor device | |
EP0061923B1 (en) | Semiconductor device having a polycrystalline thin film | |
JPS6122622A (en) | Method and device for producing photovoltaic power panel | |
KR20110069008A (en) | Hetero solar cell and method for producing hetero solar cells | |
EP0069580A2 (en) | Method of producing thin films of silicon | |
US4520380A (en) | Amorphous semiconductors equivalent to crystalline semiconductors | |
CN102197497A (en) | Semiconductor device manufacturing method, semiconductor device and semiconductor device manufacturing installation | |
JPS63233564A (en) | Manufacture of junction transistor | |
US4446168A (en) | Method of forming amorphous silicon | |
JPH0512850B2 (en) | ||
US4710786A (en) | Wide band gap semiconductor alloy material | |
GB2077996A (en) | Method of manufacturing solar cells | |
US4677738A (en) | Method of making a photovoltaic panel | |
JP2911694B2 (en) | Semiconductor substrate and method of manufacturing the same | |
JPS6323671B2 (en) | ||
JPS6316914B2 (en) | ||
JPS6132416A (en) | Manufacture of semiconductor device | |
JPH0821546B2 (en) | Thin film manufacturing method | |
JPH0345555B2 (en) | ||
JPS58161381A (en) | Manufacture of semiconductor device | |
JPH01278782A (en) | Manufacture of photovoltaic element | |
JPS58132983A (en) | Preparation of solar battery | |
JPH02177371A (en) | Manufacture of amorphous solar cell |