JPS63235896A - Air conditioner for nuclear reactor container - Google Patents

Air conditioner for nuclear reactor container

Info

Publication number
JPS63235896A
JPS63235896A JP62070010A JP7001087A JPS63235896A JP S63235896 A JPS63235896 A JP S63235896A JP 62070010 A JP62070010 A JP 62070010A JP 7001087 A JP7001087 A JP 7001087A JP S63235896 A JPS63235896 A JP S63235896A
Authority
JP
Japan
Prior art keywords
air
supply
exhaust
duct
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62070010A
Other languages
Japanese (ja)
Other versions
JPH083547B2 (en
Inventor
米田 吉之
茂樹 唐司
高森 和英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62070010A priority Critical patent/JPH083547B2/en
Publication of JPS63235896A publication Critical patent/JPS63235896A/en
Publication of JPH083547B2 publication Critical patent/JPH083547B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Duct Arrangements (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は原子力発電所の原子炉格納容器の空気調和装置
に係り、特に原子格納容器内の温度分布を均一化するに
好適な空気調和装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an air conditioner for a reactor containment vessel in a nuclear power plant, and in particular an air conditioner suitable for uniformizing temperature distribution within the containment vessel. Regarding.

〔従来の技術〕[Conventional technology]

従来の沸騰水型原子力発電所の原子炉格納容器の空気調
和装置を第11図に示す。1は原子炉の格納容器、2は
原子炉を内蔵する圧力容器、3は圧力容器からの放射線
を遮蔽する生体遮蔽壁、8は送風機、9は冷却器で空気
調和装置の構成機器である。
FIG. 11 shows an air conditioner for a reactor containment vessel in a conventional boiling water nuclear power plant. 1 is a reactor containment vessel, 2 is a pressure vessel containing the nuclear reactor, 3 is a biological shielding wall that shields radiation from the pressure vessel, 8 is a blower, and 9 is a cooler, which are components of the air conditioner.

圧力容器2には給水系、主蒸気系、再循環系等の配管が
接続され、これらの配管及び圧力容器2から放出される
熱により、格納容器1内の雰囲気温度は上昇する。格納
容器1内の雰囲気温度を制御するために、給・排気用ダ
クト5.冷却器9及び送風機8を設けている。第11図
に示す空調系統は2種類に分かれている。その−は原子
炉の格納容器1上部の空気(厳密には窒素であるが、以
下空気と略す)を排気ロアより吸込み、原子炉の格納容
器1下部に設けた冷却器9で冷却後、原子炉の格納容器
1下部の吹出口6より吹出す。この場合、吹出口6は、
生体遮蔽壁3と圧力容器2間、ペデスタル部4.生体遮
蔽壁3と原子炉の格納容器1間にそれぞれ設けている。
Pipes such as a water supply system, a main steam system, and a recirculation system are connected to the pressure vessel 2, and the atmospheric temperature within the containment vessel 1 rises due to the heat released from these piping and the pressure vessel 2. In order to control the atmospheric temperature inside the containment vessel 1, supply/exhaust ducts 5. A cooler 9 and a blower 8 are provided. The air conditioning system shown in FIG. 11 is divided into two types. -The air (strictly speaking, nitrogen, but hereinafter referred to as air) from the upper part of the containment vessel 1 of the reactor is sucked in through the exhaust lower, and after being cooled by the cooler 9 installed at the lower part of the containment vessel 1 of the reactor, the atomic It is blown out from the outlet 6 at the bottom of the containment vessel 1 of the furnace. In this case, the air outlet 6 is
Between the biological shielding wall 3 and the pressure vessel 2, the pedestal part 4. They are provided between the biological shielding wall 3 and the reactor containment vessel 1, respectively.

他の−は、給気口6、排気ロア、冷却器9及び送風機8
を格納容器1上部に設け、格納容器1上部の雰囲気の温
度を制御する。第11図の方式では、冷却器9と送風機
8は、・格納容器1上部に各3台(内1台は予備)。
Other - are air supply port 6, exhaust lower, cooler 9 and blower 8
is provided above the containment vessel 1 to control the temperature of the atmosphere above the containment vessel 1. In the system shown in Fig. 11, there are three coolers 9 and three blowers 8 each (one of which is a spare) above the containment vessel 1.

格納容器1下部に各3台(内1台は予備)設置しており
、それに対応したダクトが配置されている。
Three units (one of which is a spare) are installed at the bottom of the containment vessel 1, and corresponding ducts are arranged.

なお、この種の装置として関連するものに、例えば特開
昭57−14796号、特開昭54−71291号公報
が挙げられる。
Incidentally, related devices of this type include, for example, Japanese Patent Laid-Open No. 14796/1982 and Japanese Patent Laid-Open No. 71291/1983.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、格納容器内の発熱源が高さ方向の中
央部に集中し、このため格納容器下部には温度が低くか
つ雰囲気が停滞する領域が生じゃすく、格納容器内の雰
囲気に温度差が発生する。
In the above conventional technology, the heat generation source inside the containment vessel is concentrated in the central part in the height direction, and as a result, there is a region at the bottom of the containment vessel where the temperature is low and the atmosphere is stagnant. A difference occurs.

格納容器内の雰囲気温度が下り過ぎると、配管表面に結
露を生じ、配管の大気腐食が発生する恐れがある。
If the atmospheric temperature inside the containment vessel drops too much, there is a risk that dew condensation will occur on the piping surface and atmospheric corrosion of the piping will occur.

また、従来技術では、格納容器雰囲気全体の温度を制御
するため、冷却器9.送風−機8の容量の大型化、ダク
ト物量が多くならざるを得ず1合理化の観点についての
配慮がされておらず、コストの点で問題があった。
In addition, in the conventional technology, in order to control the temperature of the entire containment vessel atmosphere, the cooler 9. The capacity of the blower 8 has to be increased, the amount of ducts has to be increased, and no consideration has been given to streamlining the system, resulting in problems in terms of cost.

本発明の目的は、格納容器内の雰囲気温度を均一化し、
かつ冷却器の容量の低減、ダクト物量の低減等空気調和
装置の合理化を達成することにある。
The purpose of the present invention is to equalize the atmospheric temperature inside the containment vessel,
The objective is to rationalize the air conditioner by reducing the capacity of the cooler and the amount of ductwork.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、上下方向に互いに間隔をあけて配置され
た風道であって、上部に配置された風道は下方に開いた
開口を有し、下部に配置された風道は上方に開いた開口
を有する風道と、該風道に接続し、一方の風道に給気用
気体を供給し、他方の風道から排気を吸引する流路と前
記一方の風道から排気を吸引し、前記他方の風道に給気
用気体を供給する流路とを有し、前記両流路を互いに切
換える給排気切換装置と、該給排気切換装置に接続し、
給気を供給し排気を吸引する給排気装置とを備えた原子
炉格納容器の空気調和装置によって解決される。
The above problem is that the air ducts are arranged at intervals in the vertical direction, and the air ducts arranged at the top have openings that open downward, and the wind ducts arranged at the bottom have openings that open upward. an air duct having an opening, a flow path connected to the air duct, supplying air supply to one air duct and sucking exhaust air from the other air duct; , a flow path for supplying air supply gas to the other air passage, and an air supply/exhaust switching device for switching the two flow paths to each other, and connected to the air supply/exhaust switching device;
This problem is solved by an air conditioner for the reactor containment vessel, which is equipped with an air supply and exhaust system that supplies supply air and sucks exhaust gas.

〔作用〕[Effect]

原子炉格納容器内の圧力容器周りの配管等の上下に配置
された風道間で、上部風道の下方に開いた開口から給気
を吐出し、下部風道の上方に開いた開口から排気を吸入
することにより、また給排気切換装置を切換えて下部風
道の上方に開いた開口より給気を吐出し、上部風道の下
方に開いた開口から排気を吸入することにより、また上
記の給排気切換を交互に行うことにより、上下に配置さ
れた風道間の配管等からの熱は給気によって冷却され、
排気によって除去されるので、この熱が周囲の雰囲気に
拡散する範囲が少なくなり、かつ気体が攪拌されるので
上下風道間の温度が均一化する。
Between the air ducts placed above and below the pipes, etc. around the pressure vessel in the reactor containment vessel, supply air is discharged from the opening that opens downward in the upper air duct, and is exhausted from the opening that opens above the lower air duct. By inhaling the air, or by switching the air supply/exhaust switching device to discharge the supply air from the opening opened above the lower air duct and intake the exhaust air from the opening opened below the upper air duct. By switching the air supply and exhaust alternately, the heat from the piping, etc. between the upper and lower air ducts is cooled down by the air supply.
Since it is removed by exhaust, the range in which this heat diffuses into the surrounding atmosphere is reduced, and since the gas is stirred, the temperature between the upper and lower air passages becomes uniform.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図〜第10図を用いて説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 10.

第1図において、10は給・排気兼用ダクト。In Fig. 1, 10 is a duct for both supply and exhaust.

響 11は給・排気切換器を示す。本実施例では2系統の空
気調和装置で構成し、各系統にはそれぞれ冷却器9.送
風機8.給・排切換器11及び給・排気兼用ダクト10
を設けている。給・排気兼用ダクト1oは圧力容器2の
外側にある生体遮蔽壁3の周囲にらせん状に設置されて
いる。
Hibiki 11 indicates a supply/exhaust switching device. In this embodiment, the air conditioner is configured with two systems, and each system has a cooler 9. Blower8. Supply/exhaust switching device 11 and supply/exhaust duct 10
has been established. The supply/exhaust duct 1o is spirally installed around the biological shielding wall 3 on the outside of the pressure vessel 2.

給・排気兼用ダクト10からペデスタル部4゜圧力容器
2と生体遮′ti壁3との間隙部、格納容器1最上部へ
それぞれ分岐したダクトを設けている。
Ducts are provided that branch from the supply/exhaust duct 10 to the pedestal portion 4°, the gap between the pressure vessel 2 and the biological barrier wall 3, and the top of the containment vessel 1, respectively.

給・排気兼用ダクトIOは二つの風道を有し。The supply/exhaust duct IO has two air passages.

運転モードに応じてこれらの風道が給気用、排気用にそ
れぞれ切換ねる。送風機8及び冷却器9と、これらの風
道との切換えは、給・排気切換器11により行う。
Depending on the operating mode, these airways can be switched for air supply or exhaust. Switching between the blower 8 and the cooler 9 and these air passages is performed by a supply/exhaust switching device 11.

第2図は、第1図の部分拡大図である。給・排気兼用ダ
クト10は、生体遮!!!2壁3の周囲にらせん状配置
となっており、第2図で、上下となる給・排気兼用ダク
ト10を拡大して示したものである。第2図において、
下側に示されている給・排気兼用ダクト10の右奥側と
、上側に示されている給・排気兼用ダクト10の左側手
前の部分とは生体遮蔽壁3を一周してつながっている。
FIG. 2 is a partially enlarged view of FIG. 1. The supply/exhaust duct 10 is biologically shielded! ! ! 2 is arranged in a spiral around two walls 3, and FIG. 2 shows an enlarged view of the upper and lower supply/exhaust ducts 10. In Figure 2,
The back right side of the supply/exhaust duct 10 shown at the bottom and the front left side of the supply/exhaust duct 10 shown at the top go around the biological shielding wall 3 and are connected.

給・排気兼用ダクト10は、第2図に示すように上部ダ
クト10uと下部ダクト10Qから成り、両者の中間に
設けた仕切板12は断熱材で構成している。
As shown in FIG. 2, the supply/exhaust duct 10 consists of an upper duct 10u and a lower duct 10Q, and a partition plate 12 provided between the two is made of a heat insulating material.

上部ダクト10u及び下部ダクト10Qにはそれぞれ開
口部を設けており、運転モードに応じて風は各開口部で
給排気する。運転モードを運転モード!と運転モードH
の2種類とする。運転モードIでは上部ダクト10uを
給気専用、下部ダクト10Qを排気専用とする。運転モ
ード■では逆に上部ダクト10uを排気専用、下部ダク
ト10Qを給専用とする。運転モードIでは第2図の実
線の矢印で示すように風は上部ダクト10uから格納容
器1上方に向って吹出し、格納容器1内の風は下部ダク
ト10Qに排気される。すなわち格納容器1下側の給・
排気兼用ダクト」Oの上部ダクト10uから吹出された
片は、格納容器1上側の給・排気兼用ダクト10の下部
ダクト10Qに排気される。運転モード■では、第2図
の点線で示すように、格納容器1上側の給・排気兼用ダ
クト10下部ダクト10Qから吹き出された風は、格納
容器1下側の給・排気兼用ダクト10の上部ダクト10
uに排気される。
The upper duct 10u and the lower duct 10Q are each provided with openings, and air is supplied and exhausted through each opening depending on the operating mode. Driving mode driving mode! and driving mode H
There are two types. In operation mode I, the upper duct 10u is used exclusively for air supply, and the lower duct 10Q is used exclusively for exhaust air. In operation mode ■, conversely, the upper duct 10u is used exclusively for exhaust, and the lower duct 10Q is used exclusively for supply. In operation mode I, the wind is blown upward from the containment vessel 1 from the upper duct 10u as shown by the solid arrow in FIG. 2, and the wind inside the containment vessel 1 is exhausted to the lower duct 10Q. In other words, the supply and
The pieces blown out from the upper duct 10u of the exhaust duct "O" are exhausted to the lower duct 10Q of the supply/exhaust duct 10 above the containment vessel 1. In operation mode ■, as shown by the dotted line in FIG. Duct 10
Exhausted to u.

第3図及び第4図は、給・排気兼用ダクト10と配管1
3発熱部との位置関係を示したものである。第3図は、
給・排気兼用ダクト1oを配管13発熱部の比較的発熱
密度の高い位置、第3図では垂直直管部の上方に設けた
場合を示す。配管13は原子炉の圧力容器2と接続して
おり、高温水のため配管表面は発熱する。配管13の上
・下位置に配置した給・排気ダクト10はらせん状に配
置したダクトの一部の垂直断面を示し、配管13上側の
給・排気兼用ダクト10の上部ダクト10uと、配管1
3下側の給・排気兼用ダクト10の上部ダクト10uは
連続した同一風道である。第3図では、(a)を運転モ
ードIとし。
Figures 3 and 4 show the supply/exhaust duct 10 and the piping 1.
3 shows the positional relationship with the heat generating part. Figure 3 shows
A case is shown in which the supply/exhaust duct 1o is provided at a position where the heat generation density is relatively high in the heat generating portion of the piping 13, and in FIG. 3, it is provided above the vertical straight pipe portion. The pipe 13 is connected to the pressure vessel 2 of the nuclear reactor, and the surface of the pipe generates heat due to the high temperature water. The supply/exhaust ducts 10 arranged above and below the piping 13 show a vertical section of a part of the duct arranged in a spiral shape, and the upper duct 10u of the supply/exhaust duct 10 above the piping 13 and the piping 1
3. The upper duct 10u of the lower supply/exhaust duct 10 is the same continuous air passage. In FIG. 3, (a) is set to operation mode I.

(b)を運転モード■とする。(a)の運転モード■で
は、配管13下側に設けた給・排気兼用ダクト10の上
部ダクト10uから冷風が給気され、配管13表面から
の熱を除去後、温風となり、配管13上側に設けた給・
排気兼用ダクト10の下部ダクトLOuに排気される。
(b) is the driving mode ■. In the operation mode ■ of (a), cold air is supplied from the upper duct 10u of the supply/exhaust duct 10 provided below the pipe 13, and after removing heat from the surface of the pipe 13, it becomes warm air, and The salary set for
The air is exhausted to the lower duct Lou of the exhaust duct 10.

(b)の運転モード■では、配管13上側に設けた給・
排気兼用ダクト10の下部ダクトIOQから冷却が給気
される。この冷風は、運転モード1ではほぼ定常状態と
なった温度分布を乱す効果を有す。このため配管13付
近の高温空間領域が壊され、熱は流れに伴って四方に分
散し、配管付近の温度分布は均一化される。四方に分散
した温風は、配管13下側に設けた給・排気兼用ダクト
10の上部ダクト10uに排気されるか、又は、浮力の
影響により格納容器上上側に上昇する。このように運転
モードI、■を交互に繰返せば、配管工3からの局所的
な発熱は近くに設けた給・排気兼用ダクト10に排出さ
れやすくなり、格納容器1内の雰囲気全体の温度上昇も
減り、局所的な高温領域の発生が少なくなる。
In operation mode ■ of (b), the supply and
Cooling air is supplied from the lower duct IOQ of the exhaust duct 10. This cold air has the effect of disturbing the temperature distribution, which is in an almost steady state in operation mode 1. As a result, the high-temperature spatial region near the pipe 13 is destroyed, heat is dispersed in all directions along with the flow, and the temperature distribution near the pipe is made uniform. The warm air dispersed in all directions is exhausted to the upper duct 10u of the supply/exhaust duct 10 provided below the piping 13, or rises to the upper side of the containment vessel due to the influence of buoyancy. By repeating operation modes I and ■ alternately in this way, the local heat generated from the plumber 3 will be easily discharged to the nearby supply/exhaust duct 10, and the temperature of the entire atmosphere inside the containment vessel 1 will decrease. The increase in temperature is also reduced, and localized high temperature areas are less likely to occur.

第4図は、給・排気兼用ダクト10の配置が。FIG. 4 shows the arrangement of the supply/exhaust duct 10.

第3図に比べて生体遮蔽3から煎れた場合の例を示す。In comparison with FIG. 3, an example is shown in which the liquid is removed from the biological shield 3.

給・排気兼用ダクト10は、第3図に示す給・排気ダク
ト10を45度傾け、断熱材の仕切板12を水平方向に
設け、ダクトを上部ダクト10uと下部ダクト1(lに
分けたものである。
The supply/exhaust duct 10 is constructed by tilting the supply/exhaust duct 10 shown in Fig. 3 by 45 degrees, installing a partition plate 12 made of heat insulating material in the horizontal direction, and dividing the duct into an upper duct 10u and a lower duct 1 (l). It is.

配管13の上側に設けた給・排気兼用ダクト10の下部
ダクト10Qの開口部、及び配管13の下側に設けた給
・排気兼用ダクト10の上部ダクト10uの開口部は、
発熱密度の大きい垂直直管部に向けられている。第4図
でも第3図と同様に運転モードを■から■へ、■から■
へ切換えることにより風の流れを変え、配管13周囲の
温度を均一にする。
The opening of the lower duct 10Q of the supply/exhaust duct 10 provided above the pipe 13 and the opening of the upper duct 10u of the supply/exhaust duct 10 provided below the pipe 13 are as follows:
It is aimed at vertical straight pipe sections with high heat generation density. In Fig. 4, as in Fig. 3, the driving mode is changed from ■ to ■, and from ■ to ■.
By switching to , the flow of air is changed and the temperature around the pipe 13 is made uniform.

第5図は、運転モード毎のダクト内の風の流れを示した
ものである。11は給・排気切換器を示し、弁の動作に
より風路を変えるものである。運転モード■では冷却器
9で冷却された風は、送風機8により給・排気切換器1
1を介して給・排気兼用ダクト10の上部ダクト10u
に導かれ、その開口部より格納容器内に吹き出される。
FIG. 5 shows the flow of air in the duct for each operation mode. Reference numeral 11 indicates a supply/exhaust switching device, which changes the air path by operating a valve. In operation mode ■, the air cooled by the cooler 9 is transferred to the supply/exhaust switching device 1 by the blower 8.
1 to the upper duct 10u of the supply/exhaust duct 10
and is blown out from the opening into the containment vessel.

一方、格納容器内で暖められた風は、給・排気兼用ダク
ト10の下部ダクト1oQより排気され、給・排気切換
器11を経て冷却器9に導かれる。運転モード■では、
給・排気切換器11が第5図(b)のように動作するこ
とにより、送風機8からの風は給・排気兼用ダクト10
の上部ダクト1(lに導かれ、その開口部より格納容器
1内に吹き出される。給・排気兼用ダクトの上部ダクト
10uは排気として使われ、この排気された風は、上部
ダクト10uにより、給・排気切換器11を介して冷却
器9に導かれる。このようにして、給・排気切換器11
により、給・排気兼用ダクト10の上部ダクト10u及
び下部ダクト1oQにおける給・排気の使い分けをする
On the other hand, the air warmed within the containment vessel is exhausted from the lower duct 1oQ of the supply/exhaust duct 10 and guided to the cooler 9 via the supply/exhaust switching device 11. In driving mode ■,
By operating the supply/exhaust switching device 11 as shown in FIG. 5(b), the air from the blower 8 is transferred to the supply/exhaust duct 10.
The air is guided into the upper duct 1 (l) and blown into the containment vessel 1 from its opening. The upper duct 10u, which is a duct for both supply and exhaust, is used for exhaust air, and the exhausted air is It is guided to the cooler 9 via the supply/exhaust switching device 11. In this way, the supply/exhaust switching device 11
Accordingly, the upper duct 10u and the lower duct 1oQ of the supply/exhaust duct 10 are used for supply and exhaust.

第6図は、給・排気兼用ダクト10からの分岐ダクトの
例を示したものである。給・排気兼用ダクト10から分
岐したダグ88部は、第1図で示したペデスタル部4.
生体遮蔽壁3と圧力容器2の間隙部、格納容器1最上部
等へと導かれる。すなわち給・排気兼用ダクト10の上
部ダクト10u及び下部ダクト10flからそれぞれ分
岐ダクトを設けることにより、前述の空間での給・排気
が達成される。また、給・排気位置が交互に変わること
により、前述の空間部での雰囲気の攪拌ができ、温度分
布の均一化が計れる。
FIG. 6 shows an example of a branch duct from the supply/exhaust duct 10. The duct 88 branched from the supply/exhaust duct 10 is connected to the pedestal section 4 shown in FIG.
It is guided to the gap between the biological shielding wall 3 and the pressure vessel 2, the top of the containment vessel 1, etc. That is, by providing branch ducts from the upper duct 10u and lower duct 10fl of the supply/exhaust duct 10, supply/exhaust can be achieved in the space described above. Furthermore, by alternately changing the supply and exhaust positions, the atmosphere in the space described above can be stirred, and the temperature distribution can be made uniform.

第7図は、給気専用及び排気専用の分岐ダクトの例を示
す。第6図では分岐ダクトは給・排気兼用として示した
が、ここでは給気専用及び排気専用の分岐ダクトの例を
示す。格納容器内では場所によっては給気専用ダクト又
は排気専用ダクトを設けた方が温度分布均一の点から有
利な場合がある。とくに温風が集中しやすい格納容器1
最上部では、排気専用ダクトを設けた方が効果的である
FIG. 7 shows an example of a branch duct dedicated to air supply and exhaust air. In FIG. 6, the branch duct is shown as being used for both air supply and exhaust, but here an example of a branch duct used exclusively for supply and exhaust is shown. Depending on the location within the containment vessel, it may be advantageous to provide a duct exclusively for supplying air or a duct exclusively for exhausting air in terms of uniform temperature distribution. Containment vessel 1, where hot air is particularly likely to concentrate
It is more effective to provide a dedicated exhaust duct at the top.

第7図では、給気専用分岐部に給気用効止弁14b。In FIG. 7, an air supply shutoff valve 14b is provided in the air supply-only branch.

排気専用分岐部に排気用逆止弁14eを設けることによ
り上記目的を容易に達成できる。給気用効止弁14b、
排気用逆止弁14eは支点部に板を取付けたものであり
、風圧が動作したとき支点部が回転し、板が動作する簡
単な構造のものであり、一般によく使用されるものであ
る。
The above object can be easily achieved by providing the exhaust check valve 14e in the exhaust exclusive branch. Air supply stop valve 14b,
The exhaust check valve 14e has a plate attached to a fulcrum, and has a simple structure in which the fulcrum rotates and the plate operates when wind pressure is applied, and is commonly used.

第8図は従来例と本実施例による格納容器の高さ方向に
おける無次元温度分布の比較を示したものである。本実
施例の温度分布の変動は、給・排気兼用ダクトの設置位
置の影響によるものである。
FIG. 8 shows a comparison of the dimensionless temperature distribution in the height direction of the containment vessel according to the conventional example and the present example. The variation in temperature distribution in this example is due to the influence of the installation position of the supply/exhaust duct.

第9図は、第8図の格納容器の高さ方向の温度分布を制
御するためのブロックを示した図である。
FIG. 9 is a diagram showing blocks for controlling the temperature distribution in the height direction of the containment vessel shown in FIG. 8.

17d1〜dn、ul〜unは二つの入力信号の差が正
のときのみ出力を出すコンパレータ、19は一定時間間
隔毎にパルス信号を発生するパルス発振器、21はTフ
リップフロップを示す。給・排気切換器駆動装置22は
、例えば、モータと減速機の組合せを使用し、このモー
タはフリップフロップの出力Qが「1」のとき正転し、
フリップフロップ21の出力可が「1」のとき反転動作
するものとする。給・排気切換器111,112は、例
えば第5図に示した弁を示し、四方向の風道内の風の流
れを切換えるものであり、給・排気切換器駆動装置22
のモータの正・反転に応じて動作するものとする。例え
ば、給・排気切換器111゜112の正転動作は、第5
図の運転モード■からHに移るときの動作を仮定し、反
転動作は、運転モード■からIに移る動作とする。格納
容器1内に設けた温度検出器151,15z・・・・・
・15nのうち1個以上の温度指示値が下限温度設定器
16dの指示値を超えた場合、その温度検出器15に対
応するコンパレータ17の出力がオンとなり、OR回路
18の出力がオンになり、パルス発振器19からのパル
ス信号とのAND回路20によりフリップフロップ21
が動作し、出力QがrOJから「1」に変わる。これに
より給・排気切換器駆動装置22のモータは正転し、減
速機を介して給・排気切換器11z 、112は第5図
に示すように運転モードIの状態からHの状態に切換わ
る。
17d1 to dn and ul to un are comparators that output an output only when the difference between two input signals is positive; 19 is a pulse oscillator that generates a pulse signal at regular time intervals; and 21 is a T flip-flop. The supply/exhaust switch drive device 22 uses, for example, a combination of a motor and a speed reducer, and this motor rotates in the normal direction when the output Q of the flip-flop is "1".
It is assumed that an inverting operation is performed when the output enable of the flip-flop 21 is "1". The supply/exhaust switching devices 111 and 112 are, for example, the valves shown in FIG.
It shall operate according to the forward or reverse direction of the motor. For example, the normal rotation operation of the supply/exhaust switching device 111° 112 is
Assuming the operation when moving from the operating mode ■ to H in the figure, the reversal operation is assumed to be the operation moving from the operating mode ■ to I. Temperature detectors 151, 15z provided inside the containment vessel 1...
- When one or more temperature indication values among 15n exceed the indication value of the lower limit temperature setting device 16d, the output of the comparator 17 corresponding to that temperature detector 15 is turned on, and the output of the OR circuit 18 is turned on. , a flip-flop 21 by an AND circuit 20 with a pulse signal from a pulse oscillator 19.
operates, and the output Q changes from rOJ to "1". As a result, the motor of the supply/exhaust switching device drive device 22 rotates in the normal direction, and the supply/exhaust switching devices 11z and 112 are switched from the operating mode I state to the H state via the reduction gear, as shown in FIG. .

OR回路18の出力がオンのまま、すなわち格納容器1
内の温度が上限設定値と下限設定値の間を外れた場合、
引続きパルス発振器19から発するパルス信号とのAN
D回路20によりフリップフロップ21の入力にパルス
信号が入力し、フリップフロップ21の出力Qが「1」
からrOJに、出力−〇−がrOJから「1」に変わる
。これにより給排気切換器駆動装置22のモータは反転
し、減速機を介して給・排気切換器111,112は第
5図の運転モードHの状態から■の状態に戻る。
The output of the OR circuit 18 remains on, that is, the containment vessel 1
If the internal temperature falls outside the range between the upper and lower set values,
AN with the pulse signal subsequently generated from the pulse oscillator 19
A pulse signal is input to the input of the flip-flop 21 by the D circuit 20, and the output Q of the flip-flop 21 becomes "1".
From rOJ to rOJ, the output -〇- changes from rOJ to "1". As a result, the motor of the supply/exhaust switching device drive device 22 is reversed, and the supply/exhaust switching devices 111, 112 return from the state of operation mode H in FIG. 5 to the state of (2) via the reduction gear.

第9図における温度検出器151.15z・・・・・・
15、は熱電対、下限温度設定器16d及び上限温度設
定器16uはポテンショメータを用いる。
Temperature detector 151.15z in Fig. 9...
15 uses a thermocouple, and the lower limit temperature setter 16d and upper limit temperature setter 16u use potentiometers.

コンパレータ17.OR回路18.AND回路20、T
フリップフロップ21.パルス発振器19は市販品を用
いる。給・排気切換器駆動装置22はモータと減速機の
組合せであり、給・排気切換器111+ 112は第5
図に示すような弁を用いる。
Comparator 17. OR circuit 18. AND circuit 20, T
Flip-flop 21. As the pulse oscillator 19, a commercially available product is used. The supply/exhaust switching device drive device 22 is a combination of a motor and a speed reducer, and the supply/exhaust switching devices 111+112 are the fifth
Use a valve as shown in the figure.

第10図は冷却器9.送風機8及び給・排気切換器11
を格納容器1の外側に配置し、かつ第1図で示した二つ
の空気調和装置をつないだ例を示す。連結弁23を設け
ることにより冷却器91゜送風機81.給・排気切換器
111が万一動作不能となっても、第1図で示した別系
統の冷却器92、送風機82.給・排気切換器112で
バックアップ可能となる。
Figure 10 shows the cooler 9. Blower 8 and supply/exhaust switching device 11
An example is shown in which the air conditioner is placed outside the containment vessel 1 and the two air conditioners shown in FIG. 1 are connected. By providing the connecting valve 23, the cooler 91° and the blower 81. Even if the supply/exhaust switching device 111 becomes inoperable, the cooler 92, blower 82, etc. shown in FIG. Backup is possible with the supply/exhaust switching device 112.

第12図にワンステップ先行発明の実施例を示す。24
は給気口ノズルであり、給・排気兼用ダクト10の上部
ダクト10u及び下部ダグl−111設けたものである
。給気口ノズル24は近傍の雰囲気温度により先端の開
口面積を変え、雰囲気への風速の大きさを変えるものと
する。雰囲気温度が高い場合には給気口ノズル24の先
端の開口面積は大きくなり、この給気口ノズル24先端
からの風量が増し、雰囲気温度が低い場合には逆に風量
が減る。このようにすれば全体に小さな冷却風量でより
効果的に雰囲気温度の均一化が計れる。
FIG. 12 shows an embodiment of the one-step prior invention. 24
is an air supply nozzle, which is provided in the upper duct 10u and the lower duct l-111 of the supply/exhaust duct 10. The air supply port nozzle 24 changes the opening area at the tip depending on the ambient temperature in the vicinity, and changes the magnitude of the wind speed into the atmosphere. When the ambient temperature is high, the opening area of the tip of the air supply nozzle 24 increases, and the air volume from the tip of the air supply nozzle 24 increases, whereas when the ambient temperature is low, the air volume decreases. In this way, the atmospheric temperature can be more effectively uniformized with a small overall cooling air volume.

本実施例によれば、空調ダクトをらせん状に配置し、か
つ給・排気ダクトを兼用しているので空調ダクトの物量
を少なくすることができる。また配管等の発熱部の上下
空間に給・排気兼用の空調ダクトを配置し、容土・下空
間の空調ダクト間の風の流れを周期的に上側から下側、
下側から上側へと切換えることにより風の流れを変え、
雰囲気の温度空間領域を攪拌する効果があるので雰囲気
の温度分布の均一化が計れる。さらに発熱源の近傍に配
管を設けることにより、温度の周囲への拡散を最小限に
できるので吹出口温度の設定を従来より高くでき、冷却
器の容量を低減できる。
According to this embodiment, since the air conditioning duct is arranged in a spiral shape and also serves as a supply/exhaust duct, the amount of air conditioning ducts can be reduced. In addition, air conditioning ducts for both supply and exhaust are placed in the space above and below heat-generating parts such as piping, and the flow of air between the air conditioning ducts in the soil and the space below is periodically controlled from the top to the bottom.
Change the flow of air by switching from the bottom to the top,
Since it has the effect of stirring the temperature spatial region of the atmosphere, it is possible to make the temperature distribution of the atmosphere uniform. Furthermore, by providing the piping near the heat generation source, the diffusion of temperature to the surroundings can be minimized, so the outlet temperature can be set higher than before, and the capacity of the cooler can be reduced.

〔発明の効果〕 上下に配された風道の開口間で、一方の開口より気体を
吐出し、他方の開口で該吐出された気体を吸入し、切換
装置により前記他方の開口より気体を吐出し、前記一方
の開口より該吐出された気体を吸入するよう切換え、ま
た該切換を繰返すことにより、上下に配された風道間の
熱は該風道間より外にあまり拡散せず吸入側の風道より
除去され、また上下の風道間の気体は攪拌されるので該
風道間の温度が均一化となる。また上下風道間の熱の拡
散が少ないことにより、風道の吹出口温度を従来の装置
より高くしても上下風道間の温度は従来の装置と同じに
することができるので空気調和装置の冷却器の容量の低
減ができる。
[Effect of the invention] Between the openings of the air passage arranged above and below, gas is discharged from one opening, the discharged gas is inhaled through the other opening, and the gas is discharged from the other opening by the switching device. Then, by switching the one opening to inhale the discharged gas, and repeating this switching, the heat between the upper and lower air ducts is not diffused much outside of the air ducts, and is transferred to the suction side. Since the gas between the upper and lower air passages is stirred, the temperature between the upper and lower air passages becomes uniform. In addition, because there is less heat diffusion between the upper and lower air ducts, even if the air outlet temperature of the air duct is higher than that of conventional equipment, the temperature between the upper and lower air ducts can be kept the same as with conventional equipment. The capacity of the cooler can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原子炉格納容器内での実施例を示す縦
断面図、第2図〜第4図は第1図の部分拡大図、第5図
〜第7図は風道内の気体の流れを示す風道断面図、第8
図は格納容器内の高さ方向の温度分布を示す図、第9図
は格納容器内温度制御ブロック図、第10図は風道内の
気体の流れを示す風道断面図、第11図は原子炉格納容
器内での従来例を示す縦断面図、第12図はワンステッ
プ先行発明例を示した風道斜視図である。 1・・・格納容器、5・・・ダクト、8・・・送風機、
9・・・冷却器、11・・・給・排気切換器。
Fig. 1 is a vertical cross-sectional view showing an embodiment of the present invention in a reactor containment vessel, Figs. 2 to 4 are partially enlarged views of Fig. 1, and Figs. 5 to 7 show gas in the air duct. Wind duct cross-sectional diagram showing the flow of air, No. 8
The figure shows the temperature distribution in the height direction inside the containment vessel, Figure 9 is a temperature control block diagram inside the containment vessel, Figure 10 is a cross-sectional view of the air passage showing the flow of gas in the air passage, and Figure 11 is the atomic FIG. 12 is a vertical cross-sectional view showing a conventional example inside a reactor containment vessel, and FIG. 12 is a perspective view of a wind passage showing an example of the one-step prior invention. 1... Containment vessel, 5... Duct, 8... Blower,
9... Cooler, 11... Supply/exhaust switching device.

Claims (1)

【特許請求の範囲】 1、上下方向に互いに間隔をあけて配置された風道であ
つて、上部に配置された風道は下方に開いた開口を有し
、下部に配置された風道は上方に開いた開口を有する風
道と;該風道に接続し、一方の風道に給気用気体を供給
し、他方の風道から排気を吸引する流路と前記一方の風
道から排気を吸引し、前記他方の風道に給気用気体を供
給する流路とを有し、前記両流路を互いに切換える給排
気切換装置と;該給排気切換装置に接続し、給気を供給
し排気を吸引する給排気装置と;を備えたことを特徴と
する原子炉格納容器の空気調和装置。 2、前記風道が該風道を仕切板で上下に仕切つて上部風
道部と下部風道部に分け、該上部風道部には上方に開い
た開口を設け、該下部風道部には下方に開いた開口を設
けた二重風道であることを特徴とする特許請求の範囲第
1項記載の装置。 3、前記給排気切換装置が前記両流路を所定の周期で切
換える制御装置を有することを特徴とする特許請求の範
囲第1項または第2項記載の装置。 4、前記風道が圧力容器周囲の配管群部にらせん状に配
置された風道であることを特徴とする特許請求の範囲第
1項から第3項までのいずれかの項に記載の装置。
[Claims] 1. Air ducts arranged at intervals in the vertical direction, wherein the air ducts arranged at the upper part have an opening opening downward, and the air ducts arranged at the lower part have an opening that opens downward. an air duct having an opening that opens upward; a flow path connected to the air duct, supplying air supply to one air duct and sucking exhaust air from the other air duct; and exhaust from the one air duct; an air supply/exhaust switching device which has a channel for sucking gas and supplying air supply to the other air passage, and switching the two channels to each other; connected to the supply/exhaust switching device to supply air supply; 1. An air conditioner for a nuclear reactor containment vessel, comprising: a supply/exhaust device for sucking in exhaust gas; 2. The air passage is divided into an upper air passage part and a lower air passage part by dividing the air passage into upper and lower parts with a partition plate, and the upper air passage part is provided with an opening that opens upward, and the lower air passage part is provided with an opening that opens upward. 2. The device according to claim 1, wherein the air duct is a double air duct with a downwardly opening opening. 3. The device according to claim 1 or 2, wherein the supply/exhaust switching device has a control device that switches both the flow paths at a predetermined period. 4. The device according to any one of claims 1 to 3, wherein the air passage is a wind passage arranged in a spiral shape in a piping group around the pressure vessel. .
JP62070010A 1987-03-24 1987-03-24 Air conditioner for PCV Expired - Lifetime JPH083547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62070010A JPH083547B2 (en) 1987-03-24 1987-03-24 Air conditioner for PCV

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62070010A JPH083547B2 (en) 1987-03-24 1987-03-24 Air conditioner for PCV

Publications (2)

Publication Number Publication Date
JPS63235896A true JPS63235896A (en) 1988-09-30
JPH083547B2 JPH083547B2 (en) 1996-01-17

Family

ID=13419202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62070010A Expired - Lifetime JPH083547B2 (en) 1987-03-24 1987-03-24 Air conditioner for PCV

Country Status (1)

Country Link
JP (1) JPH083547B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101874657B1 (en) 2011-02-07 2018-07-04 이데미쓰 고산 가부시키가이샤 Biscarbazole derivative and organic electroluminescent element using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471291A (en) * 1977-11-16 1979-06-07 Hitachi Plant Eng & Constr Co Ltd Air conditioner in reactor container
JPS5957719U (en) * 1982-10-12 1984-04-14 三菱重工業株式会社 air conditioner
JPS6053886A (en) * 1983-09-02 1985-03-27 株式会社日立製作所 Dry well cooling system of boiling-water type nuclear electric power generating facility
JPS60178240A (en) * 1984-02-23 1985-09-12 Matsushita Electric Ind Co Ltd Blast direction change-over device for duct
JPS60185140U (en) * 1984-05-18 1985-12-07 松下精工株式会社 double layer pipe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471291A (en) * 1977-11-16 1979-06-07 Hitachi Plant Eng & Constr Co Ltd Air conditioner in reactor container
JPS5957719U (en) * 1982-10-12 1984-04-14 三菱重工業株式会社 air conditioner
JPS6053886A (en) * 1983-09-02 1985-03-27 株式会社日立製作所 Dry well cooling system of boiling-water type nuclear electric power generating facility
JPS60178240A (en) * 1984-02-23 1985-09-12 Matsushita Electric Ind Co Ltd Blast direction change-over device for duct
JPS60185140U (en) * 1984-05-18 1985-12-07 松下精工株式会社 double layer pipe

Also Published As

Publication number Publication date
JPH083547B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
US2808237A (en) Wall mounted air circulating heat exchangers
JP5291201B2 (en) Method and sensor configuration for adjusting cooling air in equipment cabinet
US3855371A (en) Humidifying apparatus for warm air ducts and the like
IE920336A1 (en) Filter/ventilator apparatus for use in clean rooms
US2648327A (en) Infant incubator equipment
JPH08178349A (en) Total heat-exchanger integrated type air-conditioner
JPH04227431A (en) Air-supply blowing device
JPS63235896A (en) Air conditioner for nuclear reactor container
US3534810A (en) Computer environment conditioning apparatus
CN217849935U (en) Multi-loop air flow reconstruction heat pipe refrigeration all-in-one machine
US4735258A (en) Cooling air treatment device for transmitter valves
JP4406471B2 (en) Clean room cooling system
JP3516507B2 (en) Clean room system
JPH09257690A (en) Wide-range environmental testing apparatus
JPH0471198B2 (en)
ES8407233A1 (en) Installation comprising a pressurized water nuclear reactor with a cooling system especially suitable for the primary circuit.
JPH02293554A (en) Clean room system
US3324677A (en) Air conditioning apparatus
US3392657A (en) Air inlet device
JPH0114282B2 (en)
JP3963660B2 (en) Clean room air conditioning system
US3263673A (en) Furnace humidifier
WO2023281390A1 (en) Aeraulic device and radiant ceiling thermal system with internal air mixing
JP2000356379A (en) Clean room facility
JP2506699B2 (en) Air trap valve for liquids