JPS63235864A - High restraint pressure shearinig soil tank - Google Patents

High restraint pressure shearinig soil tank

Info

Publication number
JPS63235864A
JPS63235864A JP6804987A JP6804987A JPS63235864A JP S63235864 A JPS63235864 A JP S63235864A JP 6804987 A JP6804987 A JP 6804987A JP 6804987 A JP6804987 A JP 6804987A JP S63235864 A JPS63235864 A JP S63235864A
Authority
JP
Japan
Prior art keywords
tank
pressure
soil
vibration
shearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6804987A
Other languages
Japanese (ja)
Inventor
Koichi Hashimoto
宏一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP6804987A priority Critical patent/JPS63235864A/en
Publication of JPS63235864A publication Critical patent/JPS63235864A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable response analysis with a higher certainty, by a method wherein a shearing soil tank which is soft and elastic like rubber and with a greater mechanical strength is arranged in an air pressure tank with the lower end thereof fixed and vibration is applied thereto obtain a physical value closer to an actual value. CONSTITUTION:A shearing soil tank 2 which is soft and elastic like rubber and with a greater mechanical strength is arranged in an air pressure tank 1 with the lower end thereof fixed. A soil sample taken is put into the shearing soil tank 2 and made ready to dry and compact. A sensor such as accelerometer, strain gauge, soil pressure meter and interval hydraulic gauge is buried into the sample and then, pressure is applied to the pressure tank 1 corresponding to rock pressure at a sampling depth of the sample making a pressure adjust ment with a pressure reducing valve 1j. When a horizontal base 4 or a low acceleration hard to gain with the vibration base 4 is applied, vibration is pro vided from outside the pressure tank 1 with a free vibration jig 3 provided on the shearing oil tank 2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は拘束圧下における土質試料の剪断弾性定数など
を求めるための拘束圧剪断土槽に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a confining pressure shearing soil tank for determining the shear elastic constant of a soil sample under confining pressure.

(従来技術とその問題点) 過密化した都市や工業地帯における用地難の解決や有効
利用のため、変電所などの電気所を地下例えば40m程
度の深さに設けることが提案されている。また最近にお
ける建物その他の地下構造部分の大型化による過密化な
どにより、送電用地中ケーブルを40m前後の地下に布
設しようとする考えが提案されている。
(Prior Art and its Problems) In order to solve land problems and make effective use of land in crowded cities and industrial areas, it has been proposed to install electrical stations such as substations underground, for example, at a depth of about 40 meters. Furthermore, due to the recent increase in the size of buildings and other underground structures resulting in overcrowding, the idea of laying underground power transmission cables approximately 40 meters underground has been proposed.

ところでこの場合公共性の高い変電所やケーブルなどが
地震の影響を受けて損傷をうけて停電などの事故を生じ
ないようにすることが特に必要とされる。従って設計に
当たっては大気圧下における特性ではな(、構造物の設
置深度の拘束圧を受けた状態どの応答解析に用いる主要
物性値例えば剪断弾性係数や減衰定数などを正確に把握
する必要がある。
By the way, in this case, it is especially necessary to prevent accidents such as power outages due to damage to highly public substations and cables due to the effects of earthquakes. Therefore, when designing, it is necessary to accurately grasp the main physical properties such as the shear modulus of elasticity and the damping constant, which are used for response analysis, not only the characteristics under atmospheric pressure (but also the conditions under confining pressure at the depth at which the structure is installed).

しかし従来このような特性を求めるために用いられてい
る例えば3軸試験機は、試験に用いられる土質試料の大
きさが第1図に示すAのように直径3,5〜5 am、
高さが7〜10 cm程度の大きさに限定され、しかも
載荷荷重Bをかけて行なうものであって慣性を与えるこ
とができない。なおCは液圧タンクである。従って実際
値に近い角度に優れた動的物性値を得られに(い難点が
ある。これに加えて地下構造物の耐震性の把握のために
は、採取した土質試料内に構造物の模型を埋めこんで振
動を加える動的試験の実施が、上記物性値の把握と共に
必要である。しかし従来においては上面を開放した土槽
で行なう試験法を採用しているため、拘束圧を得ようす
ると、必要とすると深度分の深さをもつ土槽が必要であ
り、40m以上の深度の場合その実施は極めて困難であ
る。しかもこの方法では拘束圧は上載厚さによる分のみ
であって実際に近い試験を行なうことができない。
However, for example, the triaxial testing machine conventionally used to determine such characteristics has a diameter of 3.5 to 5 am, as shown in A shown in Figure 1, of the soil sample used for the test.
The height is limited to about 7 to 10 cm, and since the load B is applied, inertia cannot be imparted. Note that C is a hydraulic tank. Therefore, it is difficult to obtain excellent dynamic property values at angles close to the actual values.In addition, in order to understand the earthquake resistance of underground structures, it is necessary to create a model of the structure within the collected soil sample. It is necessary to carry out a dynamic test in which the material is buried and subjected to vibration, as well as to understand the above physical property values.However, conventionally, the test method is conducted in an earthen tank with the top open, so it is difficult to obtain the confining pressure. Then, if necessary, an earthen tank with a depth equal to the depth is required, which is extremely difficult to implement at a depth of 40 m or more.Furthermore, with this method, the confining pressure is only the amount due to the overlaying thickness, and it is not practical. It is not possible to perform a test similar to

(発明の目的) 本発明は、充分な大きさの試料に直接慣性力を作用させ
て、その共振振動数から剪断弾性係数などを求めうるよ
うにして、より実際に近い物性値を得て確度の高い応答
解析が可能になるようにすると共に、深度分の深さをも
つ土槽を使用して拘束圧を得ることなく小型な装置を用
いて実験を行いうる拘束圧剪断土槽の提供を目的とする
ものである。
(Objective of the Invention) The present invention makes it possible to directly apply an inertial force to a sample of sufficient size and determine the shear modulus of elasticity from its resonance frequency, thereby obtaining physical property values that are closer to actual values and increasing accuracy. The present invention aims to provide a confining pressure shearing soil tank that enables high-response analysis, and allows experiments to be conducted using a small device without using a soil tank with a depth equivalent to the confining pressure. This is the purpose.

(問題点を解決するための本発明の手段)本発明の特徴
とするところはゴムのように柔軟であって弾性を有し、
しかも機械的強度の大きい収容土槽(剪断土槽)を空気
圧力タンク内に下端を固定して設ける。そして振動台に
より圧力タンクに水平方向の振動を与えるか、或いは振
動台で得られにくいような低加速度を与える場合には、
剪断土槽に設けた治具により圧力タンク外から振動を与
えるようにして、より近い動的物性値を得られるように
したものである。次に本発明を実施例により説明する。
(Means of the present invention for solving the problems) The present invention is characterized by being flexible and elastic like rubber,
Moreover, a storage soil tank (sheared soil tank) with high mechanical strength is provided with its lower end fixed inside the air pressure tank. When applying horizontal vibration to the pressure tank using a vibration table or applying low acceleration that is difficult to obtain with a vibration table,
Vibrations were applied from outside the pressure tank using a jig installed in the sheared soil tank, allowing closer dynamic physical property values to be obtained. Next, the present invention will be explained by examples.

(実施例の構成) 第2図(al (bl (C1は本発明の一実施例を示
す側面図、平面図および断面図、第3図(a) fbl
 (C1は剪断土槽の側面図、平面図および要部拡大図
、第4図は自由振動治具の断面図である。第2図におい
て、(11は断面が円形の鋼製圧タンクであって、これ
はタンク本体(1a)と、これにねしく1b)によって
着脱自在かつ密閉状態が得られるように取付けられる上
蓋(1c)、およびタンク本体(1a)の底部に固定さ
れた取付板(1d)とからなる。またタンク本体(1a
)はその側周面に内部観察用の複数筒の透明窓(1e)
と、空気の圧入口(1f)、計測器のリード線引出口(
Ig)と、後記する自由振動治具の引出口(1h)およ
び吊金具(11)を備え、上!(IC)は減圧パルプ(
1j)と圧力計(1k)などを備える。
(Structure of the embodiment) Figure 2 (al (bl) (C1 is a side view, plan view and cross-sectional view showing one embodiment of the present invention, Figure 3 (a) fbl
(C1 is a side view, plan view, and enlarged view of essential parts of the sheared soil tank, and Figure 4 is a sectional view of the free vibration jig. In Figure 2, (11 is a steel pressure tank with a circular cross section. This consists of a tank body (1a), a top cover (1c) attached to the tank body (1a) in a manner that allows it to be detached and sealed, and a mounting plate (1a) fixed to the bottom of the tank body (1a). 1d).Also, the tank body (1a
) has multiple transparent windows (1e) on its side surface for internal observation.
, air pressure inlet (1f), measuring instrument lead wire outlet (
Ig), a free vibration jig outlet (1h) and a hanging fitting (11) to be described later, and the top! (IC) is vacuum pulp (
1j) and a pressure gauge (1k).

(2)は断面が円形の剪断土槽であって、例えばゴムな
どのように弾性と柔軟性を有すると共に、機械的強度の
強い材料で作られる。そして第3図(alのようにベー
ス板(2a)上に固定され、更にこのベース板(2a)
は圧力タンク(1)と同軸的にタンクfl)の底部にね
じ(2b)により固定される。またゴム製剪断土槽(2
)の外周面には、第3図のように軽くしかも強度をもた
せるため第3図(C1のように断面コの字状としたアル
ミ製の形状保持リング(2c)が、ねじ(2d)により
間隔をおいて固定されて円形断面が崩れるのを防止して
いる。また最上部の形状保持リング(2c)の左右対称
位置には調整板(2e)が設けられ、これらをベース板
(2a)に植立された複数本の支持柱(2f)により支
持して、ゴム製剪断土槽(2)が試料作製時下力に縮む
のを防止しており、これは試験時にはずされる。また更
に調整板(2e)の一方には、第4図のようにユニバー
サルジヨイント(3a)を中間に備えた接続用ロンド(
3d)と押引用リング(3c)を有する振動ロンド(3
d)からなる自由振動治具(3)が接続される。またこ
の治具(3)はその押引要リング(3c)が圧力タンク
(1)外に位置するように、圧力タンク(11の治具引
出口(1h)に気密に固定された第4図のベアリングケ
ース(3e)とスライドベアリング(3f)などにより
タンク(1)の壁を気密に貫通して引出される。(4)
は加振用振動台(第2図[C)参照)であって、試験時
この上に圧力タンク(11が取付板(1d)を用いて取
付けられる。
(2) is a sheared soil tank with a circular cross section, and is made of a material that is elastic and flexible, such as rubber, and has high mechanical strength. Then, as shown in Fig. 3 (al), it is fixed on the base plate (2a), and further this base plate (2a)
is fixed coaxially with the pressure tank (1) to the bottom of the tank fl) by a screw (2b). In addition, a rubber shear soil tank (2
) is attached with an aluminum shape-retaining ring (2c) with a U-shaped cross section as shown in Fig. 3 (C1), which is attached with a screw (2d), to make it light and strong as shown in Fig. 3. They are fixed at intervals to prevent the circular cross section from collapsing.Adjustment plates (2e) are provided at symmetrical positions of the uppermost shape retaining ring (2c), and these are attached to the base plate (2a). The rubber shearing soil tank (2) is supported by a plurality of support columns (2f) erected to prevent it from shrinking due to downward force during sample preparation, and this is removed during testing. Furthermore, on one side of the adjustment plate (2e), there is a connecting iron (3a) with a universal joint (3a) in the middle, as shown in Figure 4.
3d) and a vibration ring (3c) with a pushing ring (3c).
d) is connected to the free vibration jig (3). In addition, this jig (3) is airtightly fixed to the jig outlet (1h) of the pressure tank (11) so that its push/pull ring (3c) is located outside the pressure tank (1). The bearing case (3e) and slide bearing (3f) pass through the wall of the tank (1) in an airtight manner and are pulled out.(4)
is an excitation vibration table (see Fig. 2 [C)], on which a pressure tank (11) is attached using a mounting plate (1d) during testing.

(実施例の作用) ねじ(lb)をはずして上1(lc)を取り除き、剪断
土槽(2)内に採取した土質試料を入れる。この場合目
的に応じて試料に乾燥、湿潤、飽和などの条件を作り、
更に締め固めの条件に応じてゆる詰、密詰めなどを行な
う。また試料を入れる際実験の目的に応じて加速度計、
歪み計、土圧計1間隔水圧計などのセンサを試料中に埋
め込み、各計測器のリード線を圧力タンク(1)の引出
口(1g)により気密に外部に引き出して計器に接続す
る。また試料作成が終わったとき支持柱(2r)ははず
される。そして上M(lc)をねじ(1b)により気密
にタンク本体(la)に固定したのち、圧入口(1f)
から図示しないコンプレッサにより圧縮空気を送り込み
。減圧バルブ(1j)により圧力調節を行なう。そして
圧力計(1k)が試料の採取深度の地圧、例えば深度が
10mの砂地盤とした場合、拘束圧σ=ρ・Z(ρ:密
度。
(Operation of the Example) Remove the screw (lb), remove the top 1 (lc), and place the collected soil sample in the sheared soil tank (2). In this case, conditions such as dry, wet, or saturated conditions are created for the sample depending on the purpose.
Furthermore, depending on the compaction conditions, loose packing or dense packing is performed. Also, when inserting the sample, depending on the purpose of the experiment, an accelerometer,
Sensors such as strain gauges, earth pressure gauges, and water pressure gauges are embedded in the sample, and the lead wires of each measuring instrument are airtightly pulled out to the outside through the outlet (1g) of the pressure tank (1) and connected to the instruments. Further, when the sample preparation is completed, the support column (2r) is removed. Then, after fixing the upper M (lc) airtightly to the tank body (la) with the screw (1b),
Compressed air is sent in from the compressor (not shown). The pressure is adjusted by a pressure reducing valve (1j). If the pressure gauge (1k) is the ground pressure at the sampling depth of the sample, for example, sandy ground at a depth of 10 m, then the confining pressure σ = ρ・Z (ρ: density.

Z:深さ)から1.8kg/cJの空気圧を示すように
する。
Z: depth) to indicate an air pressure of 1.8 kg/cJ.

そして振動台(4)では得られない微小歪み(10−’
程度)が必要な場合には、圧力タンク(1)外に引出さ
れた自由振動発生用治具(3)により剪断土槽(2)に
水平方向の振動を加えて、地盤直下から伝わって来る剪
断波による地震に相当する振動を与える。
And micro-distortion (10-'
degree), a free vibration generating jig (3) pulled out from the pressure tank (1) applies horizontal vibration to the shearing soil tank (2), which is transmitted from directly below the ground. Provides vibrations equivalent to earthquakes caused by shear waves.

なお振動台(4)による加振の場合加振加速度は小さい
力例えば10ガル(10/980G)程度から加えて行
く。また加速度を一定にして振動数を1〜20Hz間を
0.2511z程度の間隔で変化させて、それぞれの振
動数での試料の加速度応答値を計測する。
In the case of vibration using the vibration table (4), the vibration acceleration is applied from a small force, for example, about 10 gal (10/980G). Further, while keeping the acceleration constant, the vibration frequency is varied from 1 to 20 Hz at intervals of about 0.2511 Hz, and the acceleration response value of the sample at each frequency is measured.

そしてこれを第5図(alに示す共振曲線図としてまと
めて最大値の点から共振振動数「。と応答値αを求め、
これから剪断弾性係数G=ρ(4HL) 2(H:土槽
(2)の高さ)を求め、また剪断歪みγ=1/H(J:
fo時の変位)を求める。そしてこれらから地震時時の
応答解析に必要な物性値を得る第5図fb)のG−r曲
線と減衰定数(hlを求める。
This is summarized as a resonance curve diagram shown in Figure 5 (al), and the resonance frequency ``.'' and response value α are determined from the maximum value point.
From this, the shear modulus of elasticity G = ρ (4HL) 2 (H: height of the soil tank (2)) is determined, and the shear strain γ = 1/H (J:
(displacement at fo) is determined. Then, from these, the G-r curve and damping constant (hl) of FIG.

また剪断土槽(2)中の試料内に構造物模型を埋め込ん
で地震源による模型の状況を知る。
In addition, a structural model is embedded in the sample in the sheared soil tank (2) to understand the condition of the model due to the earthquake source.

(発明の効果) 本発明は以上のように試料に直接慣性力を加えてその共
振振動数から剪断弾性係数などを算出するため、従来の
動的3軸試験機による場合に比べて、地盤の応答解析に
用いる材料物性としては、より実際に近い状態となり、
確度の高い応答解析が可能となる。また従来の模型実験
では上方が開放した土槽で行っているため、前記したよ
うに深度に相当する深さの土槽が必要であるが、本発明
では深さ分の拘束圧は空気圧で得るため小型な土槽で済
み装置が小型となる。
(Effects of the Invention) As described above, the present invention applies inertial force directly to the sample and calculates the shear modulus of elasticity from the resonant frequency. The material properties used for response analysis are closer to the actual state,
Highly accurate response analysis becomes possible. In addition, conventional model experiments are conducted in earthen tanks with the top open, so as mentioned above, a soil tank with a depth corresponding to the depth is required, but in the present invention, the confining pressure for the depth is obtained by air pressure. Therefore, only a small soil tank is required, making the device compact.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は3軸試験機の概略図、第2 (al (bl 
(c)は本発明の一実施例を示す側面図、平面図および
断面図、第3図(al (bl ((!lは収容土槽の
側面図、平面図および要部拡大図、第4図は自由振動治
具の断面図、第5図(al (b)は共振振動数図及び
G−r曲線である。 (1)・・・圧力タンク、 (1a)・・・タンク本体
、(1b)・・・取付ねし、 (IC)・・・上蓋、 
(1d)・・・取付板、 (1e)・・・観測窓、 (
if)・・・空気圧入口、(1g)・・・リード線引出
口、 (1h)・・・自由振動治具引出口、 (li)
・・・吊具、 (1j)・・・排気パルプ、(1k)・
・・圧力計、 (2)・・・剪断土槽、 (2a)・・
・ベース板、 (2b)・・・取付ねし、 (2C)・
・・形状保持リング、 (2d)・・・取付ねし、 (
2e)・・・調整板、(2f)・・・支持柱、 (3)
・・・自由振動治具、(3a)・・・ユニバーサルジヨ
イント、(3b)・・・ロンド、 (3c)・・・押引
用リング、 (3d)・・・振動ロンド、 (3e)・
・・ベアリングケース、 (3f)・・・スライドベア
リング、 (4)・・・振動台。
Figure 1 is a schematic diagram of the triaxial testing machine, Figure 2 (al (bl
(c) is a side view, a plan view, and a sectional view showing one embodiment of the present invention; FIG. The figure is a cross-sectional view of the free vibration jig, and Figure 5 (al (b) is the resonance frequency diagram and G-r curve. (1)...pressure tank, (1a)...tank body, ( 1b)...Mounting screw, (IC)...Top lid,
(1d)...Mounting plate, (1e)...Observation window, (
if)...Air pressure inlet, (1g)...Lead wire outlet, (1h)...Free vibration jig outlet, (li)
... Hanging tool, (1j) ... Exhaust pulp, (1k)
...Pressure gauge, (2)...Shearing soil tank, (2a)...
・Base plate, (2b)...Mounting screw, (2C)・
...Shape retaining ring, (2d)...Mounting screw, (
2e)...adjustment plate, (2f)...support column, (3)
... Free vibration jig, (3a) ... Universal joint, (3b) ... Rondo, (3c) ... Pushing ring, (3d) ... Vibration Rondo, (3e)
...bearing case, (3f)...slide bearing, (4)...vibration table.

Claims (1)

【特許請求の範囲】[Claims] 柔軟性と弾性を有する剪断土槽を、送入加圧空気により
試料採取深度の拘束圧を形成する着脱自在の上蓋を有す
る圧力カウンタ内に固定すると共に、前記剪断土槽の上
端の一方には前記圧力カウンタ壁を気密に貫通して一端
が外部に引出された自由振動発生用治具を備え、上記自
由振動発生用治具または振動台により圧力タンクに水平
方向の振動を与えて試験することを特徴とする高拘束圧
剪断土槽。
A sheared soil tank having flexibility and elasticity is fixed in a pressure counter having a removable top lid that forms a confining pressure at the sampling depth by injected pressurized air, and one of the upper ends of the sheared soil tank has a A test is carried out by providing a free vibration generation jig that airtightly penetrates the pressure counter wall and having one end pulled out to the outside, and applying horizontal vibration to the pressure tank using the free vibration generation jig or a vibration table. A high confining pressure shear soil tank featuring:
JP6804987A 1987-03-24 1987-03-24 High restraint pressure shearinig soil tank Pending JPS63235864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6804987A JPS63235864A (en) 1987-03-24 1987-03-24 High restraint pressure shearinig soil tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6804987A JPS63235864A (en) 1987-03-24 1987-03-24 High restraint pressure shearinig soil tank

Publications (1)

Publication Number Publication Date
JPS63235864A true JPS63235864A (en) 1988-09-30

Family

ID=13362540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6804987A Pending JPS63235864A (en) 1987-03-24 1987-03-24 High restraint pressure shearinig soil tank

Country Status (1)

Country Link
JP (1) JPS63235864A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147428A (en) * 2005-11-28 2007-06-14 National Institute Of Advanced Industrial & Technology Membrane for triaxial test

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147428A (en) * 2005-11-28 2007-06-14 National Institute Of Advanced Industrial & Technology Membrane for triaxial test
JP4677607B2 (en) * 2005-11-28 2011-04-27 独立行政法人産業技術総合研究所 Triaxial test membrane

Similar Documents

Publication Publication Date Title
Holeyman Keynote lecture: Technology of pile dynamic testing
Youd Compaction of sands by repeated shear straining
Sasaki et al. Mechanism of permanent displacement of ground caused by seismic liquefaction
CN106836317B (en) A kind of pile sinking model test apparatus for considering soil plug effect and its application
Ueng Shaking table tests for studies of soil liquefaction and soil-pile interaction
Bycroft The effect of soil-structure interaction on seismometer readings
Scott et al. Full-scale dynamic lateral pile tests
JPS63235864A (en) High restraint pressure shearinig soil tank
Meymand et al. Large scale shaking table tests of seismic soil-pile interaction in soft clay
CN207881832U (en) A kind of measurement device of the ground designated depth horizontal direction impedance,motional based on pulse excitation difference response analysis
CN105971024B (en) A kind of test method of model pile foundation dynamic response
JPS6336131A (en) Method and instrument for measuring s wave speed using large-sized three-axial cell
Miranda et al. Centrifuge tests on tunnel-building interaction in liquefiable soil
Moore Calculated and observed vibration amplitudes
CN109470439A (en) The experimental method of HDPE bellows dynamic response under a kind of simulation earthquake load
Iovino et al. Aspects of seismic soil-pile-structure interaction in soft clay by centrifuge testing
Ohara et al. Experimental study on reliquefaction potential of saturated sand deposit
Li Effect of fabric anisotropy on the dynamic mechanical behavior of granular materials
JPS5917379B2 (en) Ko consolidation test method and consolidation ring used therein
Karl et al. Measurement of material damping with bender elements in triaxial cell
Durante et al. Experimental measurements of geotechnical system in 1-g tests
CN115522524A (en) Vibration subsidence in-situ dynamic test bed for foundation soil and test method thereof
Avishur et al. Hydraulic gradient models for study of seismic response of piles
Thompson et al. Well Conductor Design Considerations for Gravity-Base Structures
Lo et al. A field method for the determination of rock-mass modulus