JPS63235742A - Cylindrical type hollow rotary drive shaft - Google Patents

Cylindrical type hollow rotary drive shaft

Info

Publication number
JPS63235742A
JPS63235742A JP6894187A JP6894187A JPS63235742A JP S63235742 A JPS63235742 A JP S63235742A JP 6894187 A JP6894187 A JP 6894187A JP 6894187 A JP6894187 A JP 6894187A JP S63235742 A JPS63235742 A JP S63235742A
Authority
JP
Japan
Prior art keywords
vibration
drive shaft
hollow
hollow section
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6894187A
Other languages
Japanese (ja)
Inventor
Toshihiko Sato
俊彦 佐藤
Koji Mototani
本谷 康治
Hideo Asano
浅野 日出夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP6894187A priority Critical patent/JPS63235742A/en
Priority to DE19883807184 priority patent/DE3807184A1/en
Priority to GB08805379A priority patent/GB2202029A/en
Publication of JPS63235742A publication Critical patent/JPS63235742A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles

Abstract

PURPOSE:To restrain occurrence of vibration and noise by specifying the monomer primary bending angular frequency of the hollow section of a cylindrical hollow rotary drive shaft, by setting the ratio between the wall thickness and the outer diameter of the hollow section to a value less than a predetermined value, and by fitting a resilient material vibration restraining body, closely onto the outer periphery of the hollow section. CONSTITUTION:In a cylindrical hollow rotary drive shaft made of metal, having solid parts in its both end sections by means of which the shaft is supported, the monomer primary natural bending angular frequency of the hollow section thereof is set to a value more than 500Hz while the ratio between the wall thickness and the outer diameter of the hollow section is set to a value less than 0.06, and a resilient material vibration restraining body is fitted closely onto the outer periphery of the hollow section. With this arrangement, the vibration restraining body may effectively absorbs bending vibration energy having a high level. In particular, when the thickness of a pipe is decreased, the amplitude of vibration is increased so that the vibration restraining body is subjected to large deformation, thereby it is possible to effectively damp vibration due to the history of resiliency of the vibration restraining body.

Description

【発明の詳細な説明】 LL上上皿1皿1 1発明は、両端に中実部を右し、該中実部にて支持され
る全屈性円筒形中空回転駆動軸に関するものである。
DETAILED DESCRIPTION OF THE INVENTION LL Upper Plate 1 Dish 1 The invention relates to a fully flexible cylindrical hollow rotary drive shaft having solid parts at both ends and supported by the solid parts.

、J″′   の1 前輪駆動車の駆動軸は、中実体として形成されるのが一
般的であるが、近年では車体重量の低減化、あるいは動
力伝達損失を企図した中空体のものも使用されている。
, J″′-1 The drive shaft of a front-wheel drive vehicle is generally formed as a solid body, but in recent years hollow bodies have also been used to reduce vehicle weight or reduce power transmission loss. ing.

駆動軸は、駆e源から出力されたトルクを駆動幅に伝達
する機能を有する。
The drive shaft has a function of transmitting the torque output from the drive source to the drive width.

駆動軸にはねじり振動9曲げ振動、膜面振動が生じ、こ
れが乗員に不快感を起させる重体振動、騒音の原因にな
っている。この振動は、200〜500心の振動数領域
に曲げ一次モードの極大振幅を有しており(第10図曲
線へ宿照)、この範囲の振動を、■ベクトル解析によっ
て駆動軸の最適形状を選択する、■制振′Pi音材料を
用いて車室内への(辰動、騒音の進入を防ぐ等の手法で
低減化することは困難である。従来、この範囲の振動に
対しては、■ダイナミック・ダンパを付す、■駆動軸を
部分31jシ、弾性材料(弾性に富む材料を意味する)
で形成された制振体を介して両者を結合する等の手法が
採用されている。
Torsional vibrations, bending vibrations, and membrane surface vibrations occur in the drive shaft, and these are the causes of heavy body vibrations and noise that cause discomfort to passengers. This vibration has the maximum amplitude of the first-order bending mode in the frequency range of 200 to 500 cores (see the curve in Figure 10). ■It is difficult to reduce vibrations in this range using methods such as preventing vibrations and noise from entering the vehicle interior using vibration damping materials. ■A dynamic damper is attached, ■The drive shaft is made of an elastic material (meaning a material with high elasticity).
Techniques such as coupling the two through a damping body formed of

ところが、ダイナミック・ダンパを用いた場合、目的周
波数の撮動を低減化し得るものの、該周波数よりも低い
周波数範囲および高い周波数範囲の振幅(ffi動レベ
ル)が増大する不具合があり(第10図曲IQB参照)
、分割型駆動軸では、弾性材料製制振体を介して(・ル
ク伝jヱが行われるため、動力灯火が生ずる不具合があ
る。
However, when using a dynamic damper, although it is possible to reduce the imaging of the target frequency, there is a problem that the amplitude (ffi dynamic level) of the frequency range lower and higher than the target frequency increases (see Figure 10). (See IQB)
In the case of a split type drive shaft, there is a problem in that a power light is generated because the transmission is carried out through a vibration damping body made of an elastic material.

一方、推進@(プロペラシャツ1〜)の中空部分に弾性
材料製割振体を圧入して、振動、l!!音を低減化する
という技術思想が提案されている(例、特公昭49−2
0644号公報、実開昭5G−87647号公報)。
On the other hand, an oscillating body made of an elastic material is press-fitted into the hollow part of the propulsion @ (propeller shirt 1 ~), and vibration, l! ! Technological ideas to reduce sound have been proposed (e.g., Special Publication No. 49-2
No. 0644, Japanese Utility Model Application Publication No. 5G-87647).

しかしながら、この思想は弾性履歴現象を利用して推進
1hの振動エネルギーを制振体の内部摩擦により熱に変
換するという基本的発想程度に留まり、単体同右角振動
数(または固有値)の低い推進軸における膜面共振の振
動レベルを低下させることが主たる狙いになっていた。
However, this idea remains at the basic level of using the elastic hysteresis phenomenon to convert the vibration energy of one hour of propulsion into heat by the internal friction of the vibration suppressor, and the propulsion shaft has a low right angular frequency (or eigenvalue) as a single unit. The main aim was to reduce the vibration level of membrane surface resonance.

そのため、−次曲げ共振の振動レーベルを効果的に低減
化するまでには到らなかった。
Therefore, it has not been possible to effectively reduce the vibration label of -order bending resonance.

【、    ゛ fるための−よ 本発明は、斯かる技術的昔日の下に01案されたもので
あり、その目的とする処は、中空回転駆動軸において特
に問題となる一次曲げ共振につき、中空部分と圧入され
る弾性材料製割振体との関係を解析することにより、振
動レベルを効果的に低減化する点にある。
The present invention was devised in the light of such technical past, and its purpose is to solve the problem of primary bending resonance, which is a particular problem in hollow rotary drive shafts. The purpose is to effectively reduce the vibration level by analyzing the relationship between the hollow part and the press-fitted elastic material allocating body.

この目的は、両端に中実部を有し、該中実部にて支持さ
れる金属製円筒形中空回転駆動軸につき、中空部分の単
体−次曲げ固有角振動数が50011z以上、中空部分
の肉厚(シ)と外径(D)の比(t/D)を0.06以
下になし、該中空部分の外周に弾性材料製制振体を密嵌
させることによって達成される。
The purpose of this is to provide a metal cylindrical hollow rotary drive shaft that has a solid part at both ends and is supported by the solid part. This is achieved by setting the ratio (t/D) of wall thickness (X) to outer diameter (D) to 0.06 or less, and tightly fitting a vibration damper made of an elastic material around the outer periphery of the hollow portion.

両端°力(閉じた管体および両端が開放された管体の自
由両端状態での振動特性は、それぞれ第1図。
Figure 1 shows the vibration characteristics of a closed tube body and a tube body with both ends open in a state where both ends are free.

第2図に示される通りである。As shown in FIG.

本発明は、従来効果的に対処し得なかった一次曲げ共振
(第1図、第2図参照)の低減化を企図したものである
。振動数が大きく、振動エネルギー・レベルの高い領域
で制振体に振動を吸収させるのは効果的であり、本発明
の駆動軸では、中空部分の単体−次曲げ固有角振動数(
固有値)を大きく設定することとした。
The present invention is intended to reduce primary bending resonance (see FIGS. 1 and 2), which could not be effectively dealt with conventionally. It is effective to have a damper absorb vibrations in areas where the vibration frequency is large and the vibration energy level is high.
We decided to set a large value (eigenvalue).

円管の両端が自由な状態にある場合の曲げ固有角振動数
を単体曲げ固有角振動数と称しており、−次曲げ共振の
単体値は、次式で示される円管の曲げ固有角振動数(f
)において、λ= 4.730と置けば良い。
The bending natural angular frequency when both ends of the circular pipe are free is called the simple bending natural angular frequency, and the single value of the −th order bending resonance is the bending natural angular vibration of the circular pipe given by the following formula. Number (f
), it is sufficient to set λ=4.730.

(ただし、λは境界条件によって相fiする振動数係数
、pは管長、Eはヤング率、I G、を断面二次モーメ
ン1〜、八は管断面積、ρは密庇である)(t)式によ
れば、円管の単体曲げ固有角振動数([)を増大させる
ためには、管長(A)、管断面積(A)を小さくすれば
良い。円管の内径または外径が同゛−であれば、肉厚を
小さくすることによって管断面積(^)を小さくするこ
とができる。
(However, λ is the frequency coefficient that is compatible with the boundary conditions, p is the pipe length, E is Young's modulus, I G is the cross-sectional moment of inertia 1~, 8 is the pipe cross-sectional area, and ρ is the dense eave) (t According to the equation ), in order to increase the single bending natural angular frequency ([) of a circular pipe, the pipe length (A) and pipe cross-sectional area (A) should be made smaller. If the inner diameter or outer diameter of the circular pipe is the same, the cross-sectional area (^) of the pipe can be reduced by reducing the wall thickness.

斯かる条件に従ってその単体曲げ固有角振動数を大きく
なした円管内に制振体を圧入するか、あるいは円告の外
周に筒状制振体を密嵌させるならば、高いレベルの曲げ
振動エネルギーが制振体に効果的に吸収され、特に管肉
厚を小さくした場合には、振幅が増大して制振体が大き
な曲げ変形を受け、該制振体の弾性履歴現象により振動
が効果的に減衰されることになる。
If a vibration damper is press-fitted into a circular pipe whose single bending natural angular frequency is increased according to these conditions, or if a cylindrical vibration damper is tightly fitted around the outer circumference of the circular pipe, a high level of bending vibration energy will be generated. is effectively absorbed by the damping body, and especially when the pipe wall thickness is made small, the amplitude increases and the damping body undergoes large bending deformation, and the vibration becomes effective due to the elastic history phenomenon of the damping body. It will be attenuated to

ここで、円管内に制振体(中実制振体と称する)を圧入
する場合に比して、円管の外周に筒状制振体(中空制振
体と称する)を密1釈させる方が制振効果が大ぎいこと
に留意すべきである。すなわち、中実制振体と中空制振
体の断面積が等しい場合、後者の断面二次モーメンh(
I)は前者のそれに比して大きく、また曲げ振動に伴う
変形(tlln’Mの方が大きいため、後者には大きな
振動エネル1!−が吸収される(試験例4参照)。この
事は、中実制振体に比して体積の小さな中空制振体を用
いて同等の制振効果を期待できることを意味している。
Here, compared to the case where a vibration damper (referred to as a solid vibration damper) is press-fitted into a circular pipe, a cylindrical vibration damper (referred to as a hollow vibration damper) is tightly fitted around the outer periphery of a circular pipe. It should be noted that the damping effect is greater when the In other words, when the cross-sectional areas of the solid damper and the hollow damper are equal, the second moment of inertia h(
I) is larger than that of the former, and since the deformation (tlln'M) accompanying bending vibration is larger, the latter absorbs a large vibration energy of 1!- (see Test Example 4). This means that the same damping effect can be expected using a hollow damper with a smaller volume than a solid damper.

また、中空制振体は、両端に中実部を有する円管に熱処
理、塗装を施した後に、円管に対してこれを外嵌させ得
るため、加熱によるその劣化を防ぐことができ、制振効
果が保証される。
In addition, the hollow vibration damper can be fitted onto the outside of the circular tube after being heat-treated and painted, which has solid parts at both ends, so that deterioration due to heating can be prevented and control The vibration effect is guaranteed.

晟旌土ユ ■長さが異なる複数本の鋼製中空軸(外径50mmφ、
肉厚2.0m)を用意し、各中空軸内に長さ50咽、外
径50履φの中実円筒状アクリルゴム部片(かたさ50
°)を圧入した。
■Multiple steel hollow shafts with different lengths (outer diameter 50mmφ,
A solid cylindrical acrylic rubber piece (hardness: 50 mm) with a length of 50 mm and an outer diameter of 50 mm is prepared inside each hollow shaft.
°) was press-fitted.

■単体一次曲げ固有角振動数の相違する各ゴム部片入り
中空軸につき、−次曲げ1辰動の振動低減効果を調べた
。この試験は、中空軸1の一端部をハンマーで叩ぎ、他
端部で振動レベルを検出する方法で実施した。その結果
をグラフとして第3図に示す。ただし、アクリルゴム部
片を圧入しない中空軸の振動レベルを基準とし、これを
零−dBとした。
■The vibration reduction effect of -order bending first rotation was investigated for hollow shafts containing rubber pieces that have different natural angular frequencies of single-order bending. This test was conducted by hitting one end of the hollow shaft 1 with a hammer and detecting the vibration level at the other end. The results are shown in FIG. 3 as a graph. However, the vibration level of the hollow shaft in which the acrylic rubber piece was not press-fitted was used as a reference, and this was defined as 0-dB.

〈試験結果の評価〉 単体−次曲げ固有角振動数が増大すると、振動レベルが
低下することが判る。第3図によれば、単体固有角振動
数が30011’z程度では振動低減効果はほとんど得
られないが、はぼ50011z以上になると振動低減効
果を期待できる。
<Evaluation of test results> It can be seen that as the natural angular frequency of single-order bending increases, the vibration level decreases. According to FIG. 3, when the single natural angular frequency is about 30011'z, hardly any vibration reduction effect can be obtained, but when the natural angular frequency is about 50011z or more, a vibration reduction effect can be expected.

人晟旦ユ ■外径が異なる複数本の鋼製中空@(長さ250M、内
径4ammφ)を用意し、各中空軸内に長さ100mm
、外径sommφの中実円筒状アクリルゴム部片(かた
さ50°)を圧入した。
■Prepare multiple steel hollows with different outer diameters (length 250M, inner diameter 4amφ), and insert a length of 100mm inside each hollow shaft.
, a solid cylindrical acrylic rubber piece (hardness 50°) with an outer diameter sommφ was press-fitted.

■肉厚(t>と外径(D>の比(t/D)の相jtする
各ゴム部片入り中空軸につき、試験例1と同様にして一
次曲げ共振の振動低減効果を調べた。
(2) The vibration reduction effect of primary bending resonance was investigated in the same manner as in Test Example 1 for each hollow shaft containing a rubber piece having a ratio (t/D) of the wall thickness (t> and the outer diameter (D>).

その結果をグラフとして第4図に示す。The results are shown in FIG. 4 as a graph.

く試験結果の計IIIti > 比(t/D)が小さくなると、振動レベルが低下するこ
とが判る。第4図によれば、比(t / D >がほぼ
0.06以下で振8J低減効果が大きくなる。
It can be seen that as the ratio (t/D) of the test results becomes smaller, the vibration level decreases. According to FIG. 4, the effect of reducing vibration by 8J becomes large when the ratio (t/D> is approximately 0.06 or less).

W旌■ユ ■両端に質量部材2,2(質0部月)を具ゴムする中空
部分の長さ250mm、外径50mmφ、肉厚2.Om
、比(t /D ) −0,04,単体−次曲げ固有角
振動数(f) =107111zなる鋼製中空軸1を用
意したく第5図)。
W 旌■Y■ The hollow part that holds mass members 2, 2 (quality 0 parts) at both ends is 250 mm long, outer diameter 50 mmφ, and wall thickness 2. Om
, ratio (t/D) -0.04, single-order bending natural angular frequency (f) = 107111z (Fig. 5).

■長さの異なる複数個の中実円筒状アクリルゴム部片(
かたざ50°、外径50m++φ)を用意した。
■Multiple solid cylindrical acrylic rubber pieces of different lengths (
A diameter of 50° and an outer diameter of 50 m++φ was prepared.

・■アクリルゴム部片を中空@1内に圧入し、アクリル
ゴム部片の長さが振動低減効果に与える影響について調
べた。試験要領は試験例1と同様である。その結果をグ
ラフとして第6図に示ず。図中、■は共振−次モード(
−次曲げ共振)の振動低減レベル、■は共振二次モード
(二次曲げ共振)の振動低減レベル、■は共振三次モー
ド(二次膜面共振)の振動低減レベルをぞれぞれ示して
いる。
・■An acrylic rubber piece was press-fitted into the hollow @1, and the influence of the length of the acrylic rubber piece on the vibration reduction effect was investigated. The test procedure is the same as Test Example 1. The results are not shown as a graph in FIG. In the figure, ■ is the resonance-order mode (
■ indicates the vibration reduction level of the second-order resonance mode (secondary bending resonance), and ■ indicates the vibration reduction level of the third-order resonance mode (secondary film surface resonance). There is.

く試験結果の評価〉 ■アクリルゴム部片を圧入することによる振動低減効果
は、三次モードの共振(二次膜面共振)に対して最も大
きい。
Evaluation of test results> ■The vibration reduction effect of press-fitting the acrylic rubber piece is greatest for third-order mode resonance (secondary membrane surface resonance).

■アクリルゴム部片の長さが大きくなるほど振動低減効
果が大である。
■The longer the length of the acrylic rubber piece, the greater the vibration reduction effect.

■曲げ共振について言えば、二次曲げ共振に比して一次
曲げ共振の振動低減効果が大きい。
■As for bending resonance, the vibration reduction effect of primary bending resonance is greater than that of secondary bending resonance.

■なお、中休一次曲げ固有角振動数(f)=300H7
以下の中空軸に対して種々の長さのゴム部片を圧入して
も、−次曲げ共振の振動低減効果を期待できないことに
留意すべきである(第3図参照)。
■In addition, the natural angular frequency of the primary bending (f) = 300H7
It should be noted that even if rubber pieces of various lengths are press-fitted into the hollow shaft described below, it is not possible to expect a vibration reduction effect of the -order bending resonance (see Fig. 3).

L1五1 ■中空体5の両端に中実軸部4,4を有する五本の鋼製
駆動軸3(外径50#φ、肉厚2.0mm)を用意した
く第7図)。
L151 ■ Five steel drive shafts 3 (outer diameter 50 #φ, wall thickness 2.0 mm) having solid shaft portions 4, 4 at both ends of the hollow body 5 are prepared (Fig. 7).

■各層動軸3の中空体5内に、それぞれアクリルゴム部
片6(外径50mφ、長さ70tnm、体積1.37 
X10” m、3 、かたさ50” ) 、/’クリル
ゴム部片7.7(外径50mφ、長さ35.m、かたさ
5o°)を圧入した。圧入位置は、各駆動+I’ib 
3毎に異なっているが、全圧入ゴム長は全て70#であ
る(第8図)。
■ Acrylic rubber pieces 6 (outer diameter 50 mφ, length 70 tnm, volume 1.37
x 10" m, 3, hardness 50"), /' A piece of krill rubber 7.7 (outer diameter 50 mφ, length 35.m, hardness 5°) was press-fitted. The press-fitting position is each drive+I'ib
Although it differs for each model, the total press-fit rubber length is all 70# (Figure 8).

■同じく駆動軸3の中空体5中央部に、円筒形中空アク
リルゴム部片8(内径48mmφ、外径64mmφ、長
さ50mm、休VA1.48 X105 mm! 、か
たさ50°)を外嵌させた(第8図)。
■Similarly, a cylindrical hollow acrylic rubber piece 8 (inner diameter 48 mmφ, outer diameter 64 mmφ, length 50 mm, closed VA 1.48 x 105 mm!, hardness 50°) was fitted onto the center of the hollow body 5 of the drive shaft 3. (Figure 8).

〈試験結果の評価〉 ■第8図に併記した様に、−次曲げ共振の振動低減レベ
ルは、(a)、(b)、(c)、(d)のうち、中空体
5の中央部にゴム部片を圧入した(a)の場合が最も大
きく、中空体5の両端に分割してゴム部片7.7を圧入
した(d)の場合が最も小さい。これは、中央部が一次
曲げ共振の最大振幅位置であって、この位置に圧入され
たゴム部片6は最も大きな曲げ変形を受けて振動エネル
ギーを吸収するからである。ただし、長さ方向の一方側
が薄肉で他方側が厚肉の中空体では、薄肉部と厚肉部の
境界よりも若干薄肉側に偏位した箇所が最大振幅位置で
あり、同郡にゴム部片を圧入すべきである。
<Evaluation of test results> ■As shown in Fig. 8, the vibration reduction level of the -order bending resonance is determined in the central part of the hollow body 5 among (a), (b), (c), and (d). The case (a) in which the rubber pieces 7.7 are press-fitted into the hollow body 5 is the largest, and the case (d) in which the hollow body 5 is divided into both ends and the rubber pieces 7.7 are press-fitted is the smallest. This is because the central portion is the maximum amplitude position of the primary bending resonance, and the rubber piece 6 press-fitted at this position undergoes the largest bending deformation and absorbs vibration energy. However, in the case of a hollow body with a thin wall on one side and a thick wall on the other side in the length direction, the maximum amplitude position is at a point slightly deviated toward the thin wall side from the boundary between the thin wall section and the thick wall section, and there is a rubber section in the same area. should be press-fitted.

■また、中空体5の中央部にゴム部片を圧入した場合(
a ) 、11.4dBの振動低減効果が17られるの
に対し、中空体5.の中央部にほぼ同体積のゴム部片8
を外嵌させた場合(e)には、15.7dBの振動低減
効果が−得られ、外嵌の方が効果大であることが判る。
■Also, when a rubber piece is press-fitted into the center of the hollow body 5 (
a), the vibration reduction effect of 11.4 dB is 17, whereas the hollow body 5. A rubber piece 8 of approximately the same volume is placed in the center of the
When (e) is fitted externally, a vibration reduction effect of 15.7 dB is obtained, indicating that external fitting is more effective.

式2皿上 駆動軸3(第7図)を用い、その中空体5内にそれぞれ
長さの異なるアクリルゴム部片(外径50Hnφ、かた
さ50°)、ブブルゴム部片(外径50mφ、かたさ5
0°)、天然ゴム部片(外径50JIIIφ。
Formula 2 Using a plate-top drive shaft 3 (Fig. 7), inside the hollow body 5, acrylic rubber pieces of different lengths (outer diameter 50 mφ, hardness 50°) and bubble rubber pieces (outer diameter 50 mφ, hardness 5
0°), natural rubber piece (outer diameter 50JIIIφ).

かたさ50°)を圧入して、ゴlい種毎に圧入量が一次
曲げ共振の振動低減効果に及ぼす影響を調べた。
The effect of the amount of press-fit on the vibration reduction effect of primary bending resonance was investigated for each type of stiffness.

ぞの結果をグラフとして第9図に示J。The results are shown in Figure 9 as a graph.

〈試験結果の評価〉 減衰係数の大きなゴム種を用いるのが効果的であり、ア
クリルゴム部片を用いるのが振動低減に最も効果がある
<Evaluation of test results> It is effective to use a rubber type with a large damping coefficient, and the use of acrylic rubber pieces is most effective in reducing vibration.

筑1■1 その中空体5の中央部にアクリルゴム部片が圧入され°
た駆動軸3(中空体5の外径42.2護φ、中空体5の
長さ190M、仝艮420m) (第7図)を前輪駆動
軸として実車に組込み、該駆!IIII軸3の駆!JI
a側端部をハンマーで叩き、逆側の端部で振動レベルを
測定した。その結果をグラフとして第10図に示す(曲
線C)。
Chiku 1■1 An acrylic rubber piece is press-fitted into the center of the hollow body 5.
The drive shaft 3 (outer diameter of the hollow body 5: 42.2 mm, length of the hollow body 5: 190 m, total length: 420 m) (Fig. 7) is assembled into an actual vehicle as a front wheel drive shaft, and the drive shaft 3 is assembled into the actual vehicle as a front wheel drive shaft. III Axis 3 no Kaku! J.I.
The a-side end was hit with a hammer, and the vibration level was measured at the opposite end. The results are shown in FIG. 10 as a graph (curve C).

また、比較のために振動低減対策を施していない従来形
状の駆動軸の振動レベル(曲線Δ)、およびダイナミッ
ク・ダンパーを付した従来形状の駆動軸の振動レベル(
曲線B)も第10図に併記した。
For comparison, we also show the vibration level of a conventionally shaped drive shaft without any vibration reduction measures (curve Δ), and the vibration level of a conventionally shaped drive shaft with a dynamic damper (curve Δ).
Curve B) is also shown in FIG.

く試験結果の評価〉 ■振動低減対策を施していない従来の駆動軸では、20
0〜50011zの周波数領域に曲nへの極大点Δ、(
−次曲げ共娠点:約40011z )があるのに対し、
ダイナミック・ダンパーを付した従来の駆動軸では、極
大点が低周波数側および高周波数側へ別れて移行しくA
→B)1曲線Bの極大点Bs。
Evaluation of test results〉 ■With conventional drive shafts without vibration reduction measures, 20
The maximum point Δ, (
-Next bending point: approx. 40011z), whereas
In a conventional drive shaft equipped with a dynamic damper, the maximum point does not shift separately to the low frequency side and the high frequency side.
→B) 1 Maximum point Bs of curve B.

B2がそれぞれ約2001tz 、約500七位置にあ
る。
B2 are located at about 2001tz and about 5007 positions, respectively.

■駆動@3の特性曲線Cは振動低減対策を施していない
従来の駆動軸における極大点A1が高周波数側へ移行し
た形態であって、その極大点ClG174411z 4
fLrjにあり、極大点C1の8圧レベルはΔ1のそれ
に比して低くなっている。
■Characteristic curve C of Drive@3 is a form in which the maximum point A1 of a conventional drive shaft without vibration reduction measures has shifted to the high frequency side, and the maximum point ClG174411z 4
fLrj, and the 8 pressure level at the maximum point C1 is lower than that at Δ1.

■200・〜500H2の範囲では、曲線Bに比して一
線Cが下位にあり、この範囲においてゴム部片が圧入さ
れた駆動軸3の音圧レベルが低いことが判る。
(2) In the range of 200.about.500H2, the line C is lower than the curve B, and it can be seen that the sound pressure level of the drive shaft 3 into which the rubber piece is press-fitted is low in this range.

W鼠J[ その中空体5部にブヂルゴムを圧入した駆動軸3(第7
図)を前輪駆動軸として実車に組込み、走行中の車室内
音圧レベル(200〜500H2の撮勅音のみを取出す
フィルターを用い、前席中央部位置にて測定)を調べた
。その結果をグラフとして第11図に示す(横軸はエン
ジン回転数(rlPH) 、縦軸は音圧レベルである)
。曲8!2Cがゴム部片を圧入した駆動軸3の特性曲線
であり、曲FIBが駆動軸3にダイナミック・ダンパを
付した従来例に係る特性曲線である。
W Mouse J [ Drive shaft 3 (7th
(Figure) was installed in an actual vehicle as a front wheel drive shaft, and the sound pressure level inside the vehicle (measured at the center of the front seat using a filter that extracts only the sound of 200 to 500 H2) was investigated while the vehicle was running. The results are shown as a graph in Figure 11 (the horizontal axis is the engine rotation speed (rlPH) and the vertical axis is the sound pressure level).
. Song 8!2C is a characteristic curve of the drive shaft 3 into which a rubber piece is press-fitted, and song FIB is a characteristic curve of a conventional example in which a dynamic damper is attached to the drive shaft 3.

く試験結果の評価〉 第11図より、ゴム部片が圧入された前輪駆動軸を用い
るならば、ダイナミック・ダンパを付した従来例に係る
前輪駆動軸に比して、3.000〜5.50ORPMの
範囲で、2〜3dBの振動低減効果が得られることが判
る。
Evaluation of test results> From Fig. 11, if a front wheel drive shaft into which a rubber piece is press-fitted is used, compared to a conventional front wheel drive shaft equipped with a dynamic damper, it is 3.000 to 5.00% lower. It can be seen that a vibration reduction effect of 2 to 3 dB can be obtained in the range of 50 ORPM.

1匹匁浬 以上の説明から明らかな様に、両端に中実部を有し、該
中実部にて支持される金属製円筒形中空回転駆動軸であ
って、中空部分の単体−次曲げ固有角振動数が500H
z以上、中空部分の肉厚(t)と外径(D)の比(t/
D)が0.06以下であり、該中空部分の外周に弾性材
料製制振体が密嵌されていることを特徴とする一次曲げ
共振が低減化された円筒形中空回転駆!IJ+@が提案
された。
As is clear from the above description, it is a metal cylindrical hollow rotary drive shaft that has a solid part at both ends and is supported by the solid part, and the hollow part is bent in a single unit. Natural angular frequency is 500H
z or more, the ratio of the wall thickness (t) of the hollow part to the outer diameter (D) (t/
D) is 0.06 or less, and a cylindrical hollow rotary drive with reduced primary bending resonance, characterized in that a vibration damper made of an elastic material is tightly fitted around the outer periphery of the hollow part! IJ+@ was proposed.

この円筒形中空回転駆動軸では、単体−次曲げ固有角振
動数を500tlz以上になすとともに、比(t/D)
を0.06以下になして制振体の装着効果を高め、かつ
中空部分に、弾性材11制振休を圧入するよりも更に効
果の大きい弾性材料製筒状制振体を外嵌させたため、−
次曲げ共振が効果的に低減化され、振動9g音の発生が
抑制される。
This cylindrical hollow rotary drive shaft has a single-order bending natural angular frequency of 500 tlz or more, and the ratio (t/D)
0.06 or less to enhance the mounting effect of the vibration damping body, and a cylindrical vibration damping body made of an elastic material, which is even more effective than press-fitting the elastic material 11 vibration damping material, is externally fitted into the hollow part. ,−
Next bending resonance is effectively reduced and generation of vibration 9g sound is suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は両端がmじた管体の自由両端状態での振動特性
を示すグラフ、第2図は両端が開放された管体の自由両
端状態での振動特性を示すグラフ、第3図は前記駆動軸
にゴム部片を圧入した場合の固有角振動数と@動低減効
果との関係を示すグラフ、第4図は前記駆動軸にゴム部
片を圧入した場合の管肉厚/外径比(t/D)と振動低
減効果との関係を示すグラフ、第5図は両端が閏じた試
験用鋼製円筒状中空回転駆動軸の斜視図、第6図は前記
駆動軸にゴム部片を圧入した場合の圧入ゴム部片長と振
動低減効果との関係を示すグラフ、第7図は本発明の一
実施例に係る[1円筒状中空回転駆動軸の要部欠截正面
図、第8図は該駆動軸の中空部分にゴム部片を圧入した
場合の圧入位置と振動低減効果との関係を示す模式図、
第9図は該駆動軸の中空部分に三種類の異種ゴム部片を
圧入した場合の圧入艮と振動低減効果との関係を示すグ
ラフ、第10図は該駆動軸の中空部分にゴムを圧入した
駆動軸の振動特性および振動対策を施さない駆動軸、ダ
イナミックダンパを付した駆動軸の振動特性を示す図、
第11図は該駆動軸にダイナミック・ダンパを付した場
合と中空部分にゴムを圧入した場合につき、実車に組込
んで振動特性試験を行なった結果を示すグラフである。 1・・・中空軸、2・・・質m部片、3・・・駆動軸、
4・・・中実軸部、5・・・中空体、6・・・アクリル
ゴム部片、7・・・アクリルゴム部片、8・・・中空ア
クリルゴム部片。
Figure 1 is a graph showing the vibration characteristics of a tube with both ends open, with both ends free, Figure 2 is a graph showing the vibration characteristics of a tube with both ends open, with both ends open. A graph showing the relationship between the natural angular frequency and the dynamic reduction effect when a rubber piece is press-fitted onto the drive shaft. Figure 4 shows the pipe wall thickness/outer diameter when a rubber piece is press-fitted onto the drive shaft. A graph showing the relationship between the ratio (t/D) and the vibration reduction effect. Fig. 5 is a perspective view of a test steel cylindrical hollow rotary drive shaft with two ends cut out. Fig. 6 shows a rubber part on the drive shaft. FIG. 7 is a graph showing the relationship between the length of a press-fitted rubber piece and the vibration reduction effect when a piece is press-fitted, and FIG. FIG. 8 is a schematic diagram showing the relationship between the press-fitting position and the vibration reduction effect when a rubber piece is press-fitted into the hollow part of the drive shaft,
Fig. 9 is a graph showing the relationship between press-fitting and vibration reduction effect when three different types of rubber pieces are press-fitted into the hollow part of the drive shaft, and Fig. 10 is a graph showing the relationship between press-fitting and vibration reduction effect when rubber pieces are press-fitted into the hollow part of the drive shaft. A diagram showing the vibration characteristics of a drive shaft with a dynamic damper, a drive shaft without vibration countermeasures, and a drive shaft with a dynamic damper.
FIG. 11 is a graph showing the results of a vibration characteristic test when a dynamic damper was attached to the drive shaft and when rubber was press-fitted into the hollow part, which were assembled into an actual vehicle. 1...Hollow shaft, 2...Massive piece, 3...Drive shaft,
4... Solid shaft portion, 5... Hollow body, 6... Acrylic rubber piece, 7... Acrylic rubber piece, 8... Hollow acrylic rubber piece.

Claims (1)

【特許請求の範囲】 両端に中実部を有し、該中実部にて支持される金属製円
筒形中空回転駆動軸において、 中空部分の単体一次曲げ固有角振動数が500Hz以上
、中空部分の肉厚(t)と外径(D)の比(t/D)が
0.06以下であり、該中空部分の外周に弾性材料製制
振体が密嵌されていることを特徴とする一次曲げ共振が
低減化された円筒形中空回転駆動軸。
[Scope of Claims] A metal cylindrical hollow rotating drive shaft having solid parts at both ends and supported by the solid parts, wherein the hollow part has a single primary bending natural angular frequency of 500 Hz or more, and the hollow part has a solid part at both ends. The ratio of the wall thickness (t) to the outer diameter (D) (t/D) is 0.06 or less, and a vibration damper made of an elastic material is tightly fitted around the outer periphery of the hollow portion. Cylindrical hollow rotary drive shaft with reduced primary bending resonance.
JP6894187A 1987-03-06 1987-03-25 Cylindrical type hollow rotary drive shaft Pending JPS63235742A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6894187A JPS63235742A (en) 1987-03-25 1987-03-25 Cylindrical type hollow rotary drive shaft
DE19883807184 DE3807184A1 (en) 1987-03-06 1988-03-04 CYLINDRICAL ROTARY DRIVE HOLLOW SHAFT
GB08805379A GB2202029A (en) 1987-03-06 1988-03-07 Hollow cylindrical rotary drive shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6894187A JPS63235742A (en) 1987-03-25 1987-03-25 Cylindrical type hollow rotary drive shaft

Publications (1)

Publication Number Publication Date
JPS63235742A true JPS63235742A (en) 1988-09-30

Family

ID=13388196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6894187A Pending JPS63235742A (en) 1987-03-06 1987-03-25 Cylindrical type hollow rotary drive shaft

Country Status (1)

Country Link
JP (1) JPS63235742A (en)

Similar Documents

Publication Publication Date Title
KR101786314B1 (en) Dynamic damper assembly
US20070204453A1 (en) Method for attenuating driveline vibrations
JP5068666B2 (en) Inertial flywheel for internal combustion engines
US7083523B2 (en) Damper for a vehicle torque transferring assembly
CN102893054A (en) Dynamic damper
JPH0747979B2 (en) Dynamic damper
JPS61215830A (en) Flywheel equipped with dynamic damper
JP3116639B2 (en) Flywheel
JP6773803B2 (en) Dynamic damper
GB2202029A (en) Hollow cylindrical rotary drive shaft
JP2003232406A (en) Multi-degree-of-freedom dynamic damper
JPS63235742A (en) Cylindrical type hollow rotary drive shaft
US3126760A (en) Dynamic damper
JP2002340095A (en) Damper mechanism
JPS63219934A (en) Cylindrical hollow rotary driving shaft
JP2014231848A (en) Dynamic damper
KR20160115363A (en) A dynamic damper for drive shafts
KR100448786B1 (en) variable inertia type torsional vibration damper
JPH05196053A (en) Joint element
KR100375534B1 (en) Dynamic damper
JPH11351247A (en) Vibration damping structure of propeller shaft
JP3076718B2 (en) Dynamic damper
JPH0531311Y2 (en)
JPH0529564Y2 (en)
JPH028117Y2 (en)