JPS63235520A - Production of ultrafine aromatic polyamide fiber - Google Patents

Production of ultrafine aromatic polyamide fiber

Info

Publication number
JPS63235520A
JPS63235520A JP62067575A JP6757587A JPS63235520A JP S63235520 A JPS63235520 A JP S63235520A JP 62067575 A JP62067575 A JP 62067575A JP 6757587 A JP6757587 A JP 6757587A JP S63235520 A JPS63235520 A JP S63235520A
Authority
JP
Japan
Prior art keywords
aromatic polyamide
ultrafine
fibers
solvent
solubility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62067575A
Other languages
Japanese (ja)
Inventor
Toshio Kamisaka
上坂 外志夫
Hironobu Nakamura
裕信 中村
Tomohiro Fukai
深井 知裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP62067575A priority Critical patent/JPS63235520A/en
Publication of JPS63235520A publication Critical patent/JPS63235520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain the titled fiber outstanding in molecular chain packing characteristics, useful as a resin reinforcer, etc., by dispersing a solvent (e.g. conc. sulfuric acid) solution of aromatic polyamide in a coagulating solvent with each specific solubility parameter and solubility to water to separate the fiber out. CONSTITUTION:The objective ultrafine fiber can be obtained by dispersing (A) a solution consisting of (i) 0.05-3.0wt.% of an aromatic polyamide [e.g., poly(p-phenylene terephthalamide)] and (ii) 99.95-97.0wt.% of at least one kind of solvent selected from >=97wt.% conc. sulfuric acid, chlorosulfuric acid, fluorosulfuric acid, etc. in (B) a coagulating agent with a solubility parameter (deltac) of 11.0-17.0 and solubility to water (s) of >=5wt% (at 20 deg.C) (e.g., dimethylformamide) to separate aromatic polyamide fiber out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 大発明は芳香族ポリアミド超微細繊維の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing aromatic polyamide ultrafine fibers.

〔従来の技術〕[Conventional technology]

高分子成形体の機械的強度を向上させるために、ガラス
繊維、カーボンII&維等の繊維で補強することが一般
に行なわれているが、繊維で補強するにはある程度長い
繊維を、30重量%程度多量に添加する必要があるため
、成形性が悪く、得られた成形体は表面状態が悪く、強
度に異方性があり、又フィルムや繊維に成形することが
できないという欠点があった。
In order to improve the mechanical strength of polymer molded bodies, it is common practice to reinforce them with fibers such as glass fibers and carbon II fibers. Since it is necessary to add a large amount, moldability is poor, and the obtained molded product has a poor surface condition, has anisotropy in strength, and has the disadvantage that it cannot be molded into a film or fiber.

上記欠点を解消するために、芳香族ポリアミドの微細繊
維を使用することが提案されている。
In order to overcome the above-mentioned drawbacks, it has been proposed to use aromatic polyamide fine fibers.

(たとえば特開昭57−61040号公報、特開昭58
−53953号公報) しかしながら、上記微細繊維はJ、Polymer 5
cience。
(For example, JP-A-57-61040, JP-A-58
-53953) However, the above-mentioned fine fibers are J, Polymer 5
science.

Polymer Physics Edition、 
vol、 17,115(1979)に記載の如く、芳
香族ポリアミドの剪断配向させた溶液を超音波照射下の
水やアセトンに供給し、凝固析出させて調製されている
ので、芳香族ポリアミドの分子鎖が規則正しく配列〔以
下ノーツキング性という。X線回折した際に(200)
のピークの半値中が小さいものほど規則正しく配列して
いる。〕されておらず、補強効果が小さく、得られた成
形体の機械強度(弾性率、破断ひすみ)が小さいという
欠点があった。
Polymer Physics Edition,
Vol. 17, 115 (1979), it is prepared by supplying a shear-oriented solution of aromatic polyamide to water or acetone under ultrasonic irradiation and coagulating and precipitating it. The chains are arranged regularly [hereinafter referred to as notesking property]. When X-ray diffracted (200)
The smaller the half-value of the peaks, the more regularly they are arranged. ], the reinforcing effect was small, and the mechanical strength (modulus of elasticity, strain at break) of the obtained molded product was small.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は上記欠点に鑑み、樹脂と混合してフィル
ムや繊維にも成形でき、表面状態がよく、弾性率及び破
断ひずみが大きく、かつ機械強度に異方性がない成形体
を得ることのできる芳香族ポリアミド超微細繊維の製造
方法を提供することにある。
In view of the above drawbacks, the object of the present invention is to obtain a molded product that can be mixed with a resin and molded into a film or fiber, has a good surface condition, has a large elastic modulus and breaking strain, and has no anisotropy in mechanical strength. An object of the present invention is to provide a method for producing aromatic polyamide ultrafine fibers that can be used.

〔問題点を解決するための手段〕[Means for solving problems]

本発明で使用する芳香族ポリアミドとはその分子骨格が
芳香族からなるポリアミドであり、芳香族ジアミンと芳
香族ジカルボン酸ハライドの重縮合物、たとえば、0−
フェニレン7タルアミド、m−7二二レン7タルアミド
、p −7二二レンフクルアミF、o−フェニレンイソ
7タルアミド、m−フェニレンイソ7タルアミド、p 
−フェニレンイノツクルアミド、O−フェニレンテレ7
タルアミド、m−フェニレンテレ7タルアミド、p−フ
ェニレンテレ7タルアミド、1.5−す7タレン7タル
アミド、1.5−す7タレンテレ7タルアミド、4 、
4’−ジ7工二しンテレフタルアミF、p−フェニレン
−4゜4′−ジフェニルジカルボンアミド、1.4−ナ
ツタレンツタルアミド等の芳香族アミド、該芳香族アミ
ドのベンゼン棟に結合した水素の一部をハロゲンで置換
した化合物、及び該芳香族アミドのベンゼン棟の一部を
ピペラジン、2,5−ジメチルピペラジン、2,5−ジ
エチルピペラジンなどのピペラジンで置換した化合物の
単独重合体や、共重合体並びに芳香族アミノカルボン酸
およびその誘導体の自己組合物であるポリ(p−ベンズ
アミド)などがあげられる。上記芳香族ポリアミドの中
でアミド結合鎖が同軸的又は平行的に結合しているp−
配向芳香族ボリアミドが耐熱性1機械的強度がすぐhて
いるので好ましく、特にポリ(p−フェニレンテレ7タ
ルアミド)が好ましい。
The aromatic polyamide used in the present invention is a polyamide whose molecular skeleton is aromatic, and is a polycondensate of aromatic diamine and aromatic dicarboxylic acid halide, such as 0-
Phenylene 7-talamide, m-7 22lene 7-talamide, p-7 22lene-7-talamide, o-phenylene iso-7-talamide, m-phenylene iso-7-talamide, p
-phenylene inotsukuramide, O-phenylene tele 7
talamide, m-phenylene tele 7 talamide, p-phenylene tele 7 talamide, 1.5-s 7 talen 7 talamide, 1.5-s 7 talente 7 talamide, 4,
Aromatic amides such as 4'-di7-di-terephthalamide F, p-phenylene-4゜4'-diphenyldicarbonamide, 1,4-natuthalenthalamide, etc., which are bonded to the benzene wing of the aromatic amide. Homopolymers of compounds in which part of the hydrogen is replaced with halogen, and compounds in which part of the benzene wing of the aromatic amide is replaced with piperazine such as piperazine, 2,5-dimethylpiperazine, 2,5-diethylpiperazine, etc. , copolymers, and poly(p-benzamide), which is a self-assembly of aromatic aminocarboxylic acids and derivatives thereof. In the above aromatic polyamide, the amide bond chains are coaxially or parallelly bonded.
Oriented aromatic polyamides are preferred because they have excellent heat resistance and mechanical strength, and poly(p-phenylene tele-7 talamide) is particularly preferred.

又、芳香族ポリアミドの分子量は小さくなると機械的強
度が小さくなるので1000以上が好ましく、より好ま
しくは10000以上である。
Further, the molecular weight of the aromatic polyamide is preferably 1,000 or more, more preferably 10,000 or more, since mechanical strength decreases as the molecular weight decreases.

本発明においては上記芳香族ポリアミドは溶剤に溶解さ
れるが、芳香族ポリアミドが均一に溶解され、かつ凝固
溶媒に均一に分散されないと得られる繊維が太くなるの
で、溶剤としては97wt%以上の11%硫酸、クロル
硫酸及びフルオロ硫酸よりなる群から選ばれた一種もし
くは二種以上の溶剤が使用される。
In the present invention, the aromatic polyamide is dissolved in a solvent, but if the aromatic polyamide is not uniformly dissolved and uniformly dispersed in the coagulation solvent, the resulting fibers will become thick. One or more solvents selected from the group consisting of % sulfuric acid, chlorosulfuric acid, and fluorosulfuric acid are used.

又、その溶液は上記芳香族ポリアミド0.05〜3.0
1!jlt%ト99.95〜97.0Jljt%から形
成される。
In addition, the solution contains the above aromatic polyamide 0.05 to 3.0
1! It is formed from 99.95 to 97.0 Jljt%.

本発明においては上記溶液を凝固溶媒中に分散させて芳
香族ポリアミド繊維を析出させるのであるが、凝固溶媒
の溶解性パラメーター(δ、)は大きすぎたり、小さす
ぎると析出した繊維が太くなったり、分子鎖のバッキン
グ性が悪くなるので%ILON17.0であり、又、水
に対する溶解度(8)は小さくなると芳香族ポリアミド
が析出しにくくなるので5wt%(20℃)以上である
In the present invention, the above solution is dispersed in a coagulation solvent to precipitate aromatic polyamide fibers, but if the solubility parameter (δ,) of the coagulation solvent is too large or too small, the precipitated fibers may become thick. %ILON is 17.0 because the backing property of the molecular chain deteriorates, and the solubility (8) in water is 5 wt% or more (20°C) because it becomes difficult for the aromatic polyamide to precipitate as it decreases.

上記溶解性ノ曳りメークー(j・)及び水に対する溶解
度(s) (’ 20℃)を満足する凝固溶媒として奢
裏、たとえば、メタノール(δ・= 14.5、g =
 co )、エタノール(δI=110.5=co )
、n−プロ/曵ノール(Je=1!0.5=co)、n
−ブタノ−”(la=IL3、s=7.7)、ジメチル
スルホキシド(δ*=119、S=ω)、ジメチルホル
ムアミド(δ、=1211s=の)、エチレングリコー
ル(J、=16.3、S=の)、プロピレングリブール
(δ・=14.8、s=の)等があげられる。
As a coagulating solvent that satisfies the above-mentioned solubility factor (j.
co ), ethanol (δI=110.5=co )
, n-Pro/Nor (Je=1!0.5=co), n
-butano-” (la=IL3, s=7.7), dimethyl sulfoxide (δ*=119, S=ω), dimethylformamide (δ,=1211s=), ethylene glycol (J,=16.3, ), propylene glybur (δ·=14.8, s=), and the like.

凝固溶媒の景は上記溶液に対し、大過剰に使用されるの
が好ましく、又分散させる際には凝固溶媒を撹拌するの
が好ましい。
The coagulation solvent is preferably used in large excess with respect to the above solution, and it is preferable to stir the coagulation solvent during dispersion.

本発明の製造方法で得られた超微細繊維とナイロン、塩
化ビニル樹脂、ABS樹脂等の樹脂をブレンドするには
任意の方法が採用されてよく、たとえばドライブレンド
法、溶融ブレンド決、横力旨は溶解するが繊維は溶解し
ない溶剤に樹脂と繊維を溶解分数した溶液をキャスティ
ングする方法、上記溶液を凝固溶媒に供給して凝固させ
る方法等があげられる。
Any method may be used to blend the ultrafine fibers obtained by the production method of the present invention with resins such as nylon, vinyl chloride resin, ABS resin, etc., such as dry blending, melt blending, side force blending, etc. Examples include a method of casting a solution in which a fraction of the resin and fibers are dissolved in a solvent that dissolves the resin and fibers but not the fibers, and a method of supplying the solution to a coagulating solvent and coagulating it.

又、得られたブレンドから繊維、フィルム、シート等成
形体を得るには従来公知の任意の方法が採用されればよ
く、たとえばプレス成形、射出成形、ロール成形、押出
成形、紡糸成形等の成形方法があげられる。
In addition, any conventionally known method may be used to obtain molded products such as fibers, films, and sheets from the resulting blend, such as press molding, injection molding, roll molding, extrusion molding, and spinning molding. I can give you a method.

〔発明の効果〕〔Effect of the invention〕

未発明の芳香族ポリアミド超微細繊維の製造方法の構成
は上述の通りであるから、直径が700μm以下であっ
て分子鎖のノ曵ツキン性がすぐれた芳香族ポリアミドの
超微細繊維を容易に製造することができる。
Since the configuration of the uninvented method for producing ultrafine aromatic polyamide fibers is as described above, it is possible to easily produce ultrafine aromatic polyamide fibers with a diameter of 700 μm or less and excellent molecular chain stretchability. can do.

又得られた芳香族ポリアミド超微細繊維と樹脂をブレン
ドした組成物は繊維、フィルム、シート等の成形体に容
易に成形でき、得られた成形体は表面状態が良く、弾性
率及び破断ひずみが大きく、機械強度に異方性がなし:
In addition, the resulting blend of aromatic polyamide ultrafine fibers and resin can be easily molded into molded products such as fibers, films, and sheets, and the resulting molded products have good surface conditions and low elastic modulus and breaking strain. Large size, no anisotropy in mechanical strength:
.

特tこナイロン等の耐熱性樹脂を使用した成形体は耐熱
性がすぐれているので自動車、航空機、エレクトロニク
ス、工業材料等の分野で有用である。
In particular, molded articles made of heat-resistant resins such as nylon have excellent heat resistance and are therefore useful in fields such as automobiles, aircraft, electronics, and industrial materials.

〔実施例〕〔Example〕

次に未発明の実施例を説明する。 Next, an uninvented embodiment will be described.

実施例1〜4、比較例3.4 ポリ(p−7二二レンテレ7タルアミド)(粘度平均分
子j14万)をLO重歓%溶解した濃硫酸(98wt%
)f!g液を激しく撹拌している第1表に示した大過剰
の凝固溶媒に供給して凝固析出させた。析出物を充分に
水洗した後乾燥して超微細繊維を得た。超微細繊維の直
径を走査型電子顕微鏡で測定し結果を第1表に示した。
Examples 1 to 4, Comparative Example 3.4 Concentrated sulfuric acid (98 wt%) in which poly(p-7 22 lentele 7 talamide) (viscosity average molecular j 140,000) was dissolved in LO weight%
)f! Solution g was supplied to a large excess of the coagulating solvent shown in Table 1 under vigorous stirring to coagulate and precipitate. The precipitate was thoroughly washed with water and then dried to obtain ultrafine fibers. The diameter of the ultrafine fibers was measured using a scanning electron microscope and the results are shown in Table 1.

又、超微細繊維を圧縮成形して厚さ約0.5 wtのシ
ートを得、得られたシートをX線回折法により測定し、
(200)面からの回折ピークの半値中の値を第1!!
に示した。又、凝固溶媒としてジメチルホルムアミドを
使用した場合(実施例2)及び水を使用した場合(比較
例3)のX線回折図を第1図及び第2図に示した。
In addition, ultrafine fibers were compression molded to obtain a sheet with a thickness of about 0.5 wt, and the obtained sheet was measured by X-ray diffraction method.
The value of the half value of the diffraction peak from the (200) plane is the first! !
It was shown to. Moreover, the X-ray diffraction patterns when dimethylformamide was used as a coagulation solvent (Example 2) and when water was used (Comparative Example 3) are shown in FIGS. 1 and 2.

非晶質ナイロン(三菱化成社製、商品名グリシジルアミ
ドTR55)をジメチルホルムアミドに溶解し、ナイロ
ンの3重量%ジメチルホルムアミド溶液を得た。得られ
た溶液tこ、上記超微細繊維をナイロンとの合計量の5
重量%になるように添加分散した後激しく撹拌している
大過剰の水に供給して凝固析出させた。
Amorphous nylon (manufactured by Mitsubishi Kasei Corporation, trade name: Glycidylamide TR55) was dissolved in dimethylformamide to obtain a 3% by weight solution of nylon in dimethylformamide. The resulting solution was mixed with 50% of the total amount of ultrafine fibers and nylon.
After the mixture was added and dispersed to a concentration of % by weight, it was supplied to a large excess of water under vigorous stirring to coagulate and precipitate.

析出物を充分に水洗した後120℃の真空乾燥機rこ供
給し、24時間乾燥してポリアミド組成物を得た。
After thoroughly washing the precipitate with water, it was fed into a vacuum dryer at 120°C and dried for 24 hours to obtain a polyamide composition.

得られたポリアミド組成物を220℃、150kq/c
dの条件でプレス成形し、厚さ500μmのシートを得
た。
The obtained polyamide composition was heated at 220°C and 150 kq/c.
Press molding was performed under the conditions of d to obtain a sheet with a thickness of 500 μm.

得られたシートをJISK7113(ダンペル2号、引
張速度5 、 /戴、25℃)に従って引張試験を行い
結果を第1表に示した。
The obtained sheet was subjected to a tensile test according to JIS K7113 (Danpel No. 2, tensile speed 5, /dai, 25°C), and the results are shown in Table 1.

比較例1 非晶質ナイロン(三菱化成社製、商品名グリシジルアミ
ドTR55)を220℃、150 kg/−の条件でプ
レス成形し、得られた厚さ500μmのシートを実施例
1で行ったと同様にして引張試験を行い結果を第1表に
示した。
Comparative Example 1 Amorphous nylon (manufactured by Mitsubishi Kasei Corporation, trade name: Glycidylamide TR55) was press-molded at 220°C and 150 kg/-, and the obtained sheet with a thickness of 500 μm was formed in the same manner as in Example 1. A tensile test was conducted using the following methods, and the results are shown in Table 1.

比較例2 ボ!J(p−フェニレンテレフタルアミド)(粘度平均
分子量4万)を4.0重量%溶解した濃硫酸(98wt
%)溶液を激しく撹拌している大過剰のジメチルホルム
アミドに供給して凝固析出させた。析出物を充分に乾燥
して超微細繊維を得た。得られた超微細繊維を使用して
実施例1で行ったと同様にして繊維の直径と(200)
面からの回折ピークの半値中を測定し結果を第1表に示
した。又、実施例1で行ったと同様にしてポリアミド組
成物を得、次にシートを得、引張試験を行い結果を第1
表に示した。
Comparative example 2 Bo! Concentrated sulfuric acid (98 wt.
%) The solution was fed to a large excess of dimethylformamide under vigorous stirring to cause coagulation and precipitation. The precipitate was sufficiently dried to obtain ultrafine fibers. Using the obtained ultrafine fibers, the fiber diameter and (200) were determined in the same manner as in Example 1.
The half-maximum value of the diffraction peak from the surface was measured and the results are shown in Table 1. Further, a polyamide composition was obtained in the same manner as in Example 1, a sheet was obtained, and a tensile test was performed, and the results were reported in the first example.
Shown in the table.

比較例5 ボ!1(p−フェニレンテレフタルアミド(粘度平均分
子量4万)を10重量%溶解した濃硫酸(98wt%)
溶液を、超音波を照射している大過剰の水に供給して凝
固析出させた。析出物を充分に乾燥して超微細繊維を得
た。得られた超微細繊維を使用して実施例1で行ったと
同様にして繊維の直径と(200)面からの回折ピーク
の半値中を測定し結果を第12%に示した。又、実施例
1で行ったと同様にしてポリアミド組成物を得、次にシ
ートを得、引張試験を行い結果を第1表に示した。
Comparative Example 5 Bo! 1 (concentrated sulfuric acid (98 wt%) in which 10 wt% of p-phenylene terephthalamide (viscosity average molecular weight 40,000) was dissolved
The solution was supplied to a large excess of water that was being irradiated with ultrasonic waves to coagulate and precipitate. The precipitate was sufficiently dried to obtain ultrafine fibers. Using the obtained ultrafine fibers, the diameter of the fibers and the mid-half value of the diffraction peak from the (200) plane were measured in the same manner as in Example 1, and the results are shown at 12%. Further, a polyamide composition was obtained in the same manner as in Example 1, and then a sheet was obtained and a tensile test was performed, and the results are shown in Table 1.

(以下余白)(Margin below)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例2で得られた超微細繊維のX線回折図で
あり、第2図は比較例3で得られた超微細繊維のX線回
折図である。
FIG. 1 is an X-ray diffraction diagram of the ultrafine fiber obtained in Example 2, and FIG. 2 is an X-ray diffraction diagram of the ultrafine fiber obtained in Comparative Example 3.

Claims (2)

【特許請求の範囲】[Claims] 1.芳香族ポリアミド0.05〜3.0重量%と97w
t%以上の濃硫酸、クロル硫酸及びフルオロ硫酸よりな
る群から選ばれた一種もしくは二種以上の溶剤99.9
5〜97.0重量%よりなる溶液を溶解性パラメーター
(δ_0)が11.0〜17.0で水に対する溶解度(
s)が5wt%(20℃)以上である凝固溶媒中に分散
させて芳香族ポリアミド繊維を析出させることを特徴と
する芳香族ポリアミド超微細繊維の製造方法。
1. Aromatic polyamide 0.05-3.0% by weight and 97w
t% or more of one or more solvents selected from the group consisting of concentrated sulfuric acid, chlorosulfuric acid, and fluorosulfuric acid99.9
A solution consisting of 5 to 97.0% by weight has a solubility parameter (δ_0) of 11.0 to 17.0 and a solubility in water (
A method for producing ultrafine aromatic polyamide fibers, characterized in that aromatic polyamide ultrafine fibers are precipitated by dispersing them in a coagulation solvent in which s) is 5 wt% or more (at 20° C.).
2.芳香族ポリアミドがポリ(p−フエニレンテレフタ
ルアミド)である特許請求の範囲第1項記載の芳香族ポ
リアミド超微細繊維の製造方法。
2. The method for producing aromatic polyamide ultrafine fibers according to claim 1, wherein the aromatic polyamide is poly(p-phenylene terephthalamide).
JP62067575A 1987-03-20 1987-03-20 Production of ultrafine aromatic polyamide fiber Pending JPS63235520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62067575A JPS63235520A (en) 1987-03-20 1987-03-20 Production of ultrafine aromatic polyamide fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62067575A JPS63235520A (en) 1987-03-20 1987-03-20 Production of ultrafine aromatic polyamide fiber

Publications (1)

Publication Number Publication Date
JPS63235520A true JPS63235520A (en) 1988-09-30

Family

ID=13348876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62067575A Pending JPS63235520A (en) 1987-03-20 1987-03-20 Production of ultrafine aromatic polyamide fiber

Country Status (1)

Country Link
JP (1) JPS63235520A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022513764A (en) * 2019-10-02 2022-02-09 コリア リサーチ インスティテュート オブ ケミカル テクノロジー Polymer composite material containing aramid nanofibers and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111120A (en) * 1977-03-07 1978-09-28 Asahi Chem Ind Co Ltd Production of pulp-like particle
JPS5724210A (en) * 1980-07-21 1982-02-08 Ishikawatoki Tekkosho Kk Forming die for roof tile
JPS5853953A (en) * 1981-09-28 1983-03-30 Motoo Takayanagi Hydrocarbon polymer composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111120A (en) * 1977-03-07 1978-09-28 Asahi Chem Ind Co Ltd Production of pulp-like particle
JPS5724210A (en) * 1980-07-21 1982-02-08 Ishikawatoki Tekkosho Kk Forming die for roof tile
JPS5853953A (en) * 1981-09-28 1983-03-30 Motoo Takayanagi Hydrocarbon polymer composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022513764A (en) * 2019-10-02 2022-02-09 コリア リサーチ インスティテュート オブ ケミカル テクノロジー Polymer composite material containing aramid nanofibers and its manufacturing method

Similar Documents

Publication Publication Date Title
US5230956A (en) Polyamide-imide sized fibers
JPS62283155A (en) Production of polyarylene sulfide composition and article produced
Mallakpour et al. Effect of amino acid-functionalization on the interfacial adhesion and behavior of multi-walled carbon nanotubes/poly (amide-imide) nanocomposites containing thiazole side unit
JP7385625B2 (en) Composite particles and resin compositions
JP7444669B2 (en) Composite particles containing fine cellulose fibers and resin compositions containing composite particles
JPS63168455A (en) Strong high melt flow polyamide
DE68918001T2 (en) Polyamide resin molding compound.
JPH0635541B2 (en) Carbon black filled nylon modified to improve toughness
KR101637632B1 (en) nylon composite And Method of nylon composite
JP2019199540A (en) Manufacturing method of cellulose-containing resin composition
JPS63235520A (en) Production of ultrafine aromatic polyamide fiber
JP2020029488A (en) High-toughness polyamide-cellulose resin composition
JP2770328B2 (en) Manufacturing method of nylon resin composite
JPS5853953A (en) Hydrocarbon polymer composition
DE69206670T2 (en) Mixtures of polybenzimidazoles and aromatic polyamides, aromatic polyamide hydrazides or aromatic polyamides containing heterocyclic bonds
EP0518062B1 (en) Polymer alloys prepared in-situ, and composites containing microfibers
JP3317368B2 (en) Thermoplastic polyester composition, production method thereof and molded article thereof
EP0591731B1 (en) Flowable polyamide mouldings
JP2022159126A (en) Resin composition and method for producing the same
US4808473A (en) Polyamide-imide aromatic sulfone polymer films
JPS63199262A (en) Polyamide composition
JPS6368664A (en) Polyamide composition
JPS63199260A (en) Phenoxy resin composition
Calandrelli et al. Structural and thermal investigations on aromatic polyoxadiazole/polyamide 6 blends
US3720641A (en) Process for producing an improved wholly aromatic polyamide molding resin