JPS63235412A - Method for forming hardened layer - Google Patents

Method for forming hardened layer

Info

Publication number
JPS63235412A
JPS63235412A JP6584887A JP6584887A JPS63235412A JP S63235412 A JPS63235412 A JP S63235412A JP 6584887 A JP6584887 A JP 6584887A JP 6584887 A JP6584887 A JP 6584887A JP S63235412 A JPS63235412 A JP S63235412A
Authority
JP
Japan
Prior art keywords
hardened layer
hard layer
base material
alloy powder
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6584887A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Morishita
強 森下
Noriyuki Sakai
紀幸 坂井
Toru Ogasawara
徹 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP6584887A priority Critical patent/JPS63235412A/en
Publication of JPS63235412A publication Critical patent/JPS63235412A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To make a step difference as less as possible even in the case of partially arranging hardened layer and to prevent the development of crack in the hardened layer by heating after sticking the specific Fe-W alloy powder sheet on surface of a C contained ferrous material and forming the hardened layer of Fe-W-C ternary system eutectic. CONSTITUTION:On the surface of the ferrous material containing >=3wt.% C, powder alloy composing of 10-25% W and 2% inevitable components and the balanced iron, is mixed with resin binder and stuck as the alloy powder sheet having 0.2-1.5mm thickness. Next, this is heated at 1,090-1,200 deg.C to diffuse C in the above ferrous material into the above sheet side and the Fe-Mo- C ternary system eutectic is crystallized, to form the hardened layer having <=5% shrinkage percentage, >=40% surface area ratio of carbide and >=10% porosity. By this method, at the time of crystallizing the liquid phase by restraining the shrinkage percentage to low, the crack is not developed on the hardened layer and even in the case of partially forming the hardened layer, the step difference can be made as less as possible.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、硬質層の形成方法に関し、特に3重量%以
上のCを含有する鉄系!;S材に硬質層を形成する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for forming a hard layer, particularly an iron-based hard layer containing 3% by weight or more of C! ; relates to a method of forming a hard layer on S material.

(従来の技術) 鉄系部材、例えばカムシャフトのノーズ部の硬化法とし
ては、基材が鋳鉄の場合、鋳型に冷し金をセットして急
冷することによりチル化したり、あるいはビーム熱など
によって局部加熱して再溶融チル化する方法が公知であ
る。
(Prior art) When the base material is cast iron, methods for hardening iron-based parts, such as the nose of a camshaft, include chilling by setting a chiller in a mold and rapidly cooling it, or by heating it with beam heat. A method of remelting and chilling by locally heating is known.

しかし、館者の方法では、コスト的に安価ではあるが、
得られる硬質層の硬さがHRC50〜57で、しかもチ
ル組織が比較的粗いため、接触面圧が高くなるとピッチ
ングが発生するので、限界面圧が80 kOf / w
j程度しか得られなかった。
However, although the museum's method is inexpensive,
The hardness of the resulting hard layer is HRC50-57, and the chill structure is relatively rough, so pitching occurs when the contact surface pressure increases, so the critical surface pressure is 80 kOf/w.
I could only get about J.

また、後者の方法では、カムピース毎に加熱溶融させな
ければならないのでコスト高になるという欠点があった
In addition, the latter method has the disadvantage of increasing costs because each cam piece must be heated and melted.

ざらに、基材が鋼製の場合には、高周波焼入。Generally, if the base material is made of steel, induction hardening is applied.

フレーム焼入などで硬質層を形成する方法もあるが、こ
の方法による硬質層では限界面圧が60ka「/11以
下であった。
There is also a method of forming a hard layer by flame quenching, etc., but the critical surface pressure of the hard layer formed by this method was 60 ka'/11 or less.

一方、本発明者らは、かかる鉄系基材の表面に硬質層を
形成する方法として、特開昭60−181202号公報
などに開示されているシート法を提案している。
On the other hand, the present inventors have proposed a sheet method disclosed in JP-A-60-181202 and the like as a method for forming a hard layer on the surface of such an iron-based base material.

この公報に示されている方法では、Fe −Metat
−C(tl:こt’MetalはP、B、Wのうち少な
くとも1種)系三元結晶合金粉末とアクリル系粘着性結
合材とを混合してシート化し、これを鉄系基材に密着し
た状態で焼結さゼることで、高血圧に耐え得る耐摩耗性
の硬質層が得られるが、この方法には以下に説明する問
題があった。
In the method shown in this publication, Fe-Metat
-C (tl: Metal is at least one of P, B, and W) based ternary crystal alloy powder and acrylic adhesive binder are mixed and formed into a sheet, which is adhered to an iron base material. By sintering in this state, a wear-resistant hard layer that can withstand high blood pressure can be obtained, but this method has the following problems.

(発明が解決しようとする問題点) すなわち、上記公報の硬質層の形成方法では、合金粉末
をシート化する際に、その密度を3.5〜6.0り/c
1i′とし、加熱焼結時の密度を理論密度の90%以上
に高めなければ要求される耐摩耗性が確保できないので
、液相を晶出させた時の収縮率が7〜20%と高くなっ
ていた。
(Problems to be Solved by the Invention) That is, in the method for forming a hard layer disclosed in the above publication, when forming an alloy powder into a sheet, the density is set to 3.5 to 6.0 l/c.
1i', and the required wear resistance cannot be secured unless the density during heating and sintering is increased to 90% or more of the theoretical density, so the shrinkage rate when the liquid phase is crystallized is as high as 7 to 20%. It had become.

収縮率がこのように高くなると、例えばカムピースの全
周に硬質層を設けようとすると、どこかの部分で硬質層
の割れが生じ易くなる。
When the shrinkage rate increases in this way, for example, if an attempt is made to provide a hard layer around the entire periphery of the cam piece, cracks in the hard layer are likely to occur in some part.

硬質層の割れを回避するためには、これを全周に設けず
に、必要な部分にのみ形成することも考えられるが、こ
の方法では基材との間に大きな段差が生じて後加工が面
倒になる。
In order to avoid cracks in the hard layer, it may be possible to form it only in the necessary areas without providing it all around the circumference, but this method creates a large step between the hard layer and the base material, making post-processing difficult. It becomes troublesome.

この発明は以上の如き従来の問題点に鑑みてなされたも
のであって、その目的とするところは、液相晶出時の収
縮率を低く抑えることで硬質層に割れが発生せず、しか
も部分的に硬質層を設ける場合にも段差が可及的に小さ
くできる硬質層の形成方法を提供することにある。
This invention was made in view of the above-mentioned conventional problems, and its purpose is to suppress the shrinkage rate during liquid phase crystallization to a low level so that cracks do not occur in the hard layer. It is an object of the present invention to provide a method for forming a hard layer that can minimize the step difference even when the hard layer is partially provided.

(問題点を解決するための手段) 上記目的を達成するために、この発明は、化学組成が1
0〜25重最%のWと、2重量%以下の不可避成分と、
残Feとからなる粉末合金に、樹脂バインダを混合して
厚さ0.2〜1.5111111の合金粉末シートとし
、これを3重口%以上のCを有する鉄系基材の表面に貼
着し、しかる後、これを1090〜1200℃の温度で
加熱し、前記鉄系基材のCを前記合金粉末シート側に拡
散さゼることによりFe −W−Cからなる三元共晶を
晶出させ、収縮率が5%以下、炭化物の表面積比が40
%以上、気孔率10%以下の硬質層を形成することを特
徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides that the chemical composition is 1.
W with a maximum weight of 0 to 25%, and unavoidable components of 2% or less by weight,
A resin binder is mixed with a powder alloy consisting of residual Fe to form an alloy powder sheet with a thickness of 0.2 to 1.5111111, and this is attached to the surface of an iron-based base material having a C content of 3% or more. Then, this is heated at a temperature of 1090 to 1200°C to diffuse the C of the iron-based base material to the alloy powder sheet side, thereby crystallizing a ternary eutectic consisting of Fe-W-C. The shrinkage rate is 5% or less, and the surface area ratio of carbide is 40.
% or more and a porosity of 10% or less is formed.

上記構成要件について詳述する。The above configuration requirements will be explained in detail.

く化学組織が10〜25重量%のW〉 Wは基材側から拡散してくるCと結合してFe−W−C
の三元共晶となり液相を晶出させるが、これが10.0
重量%未満では、液相間が少なくなって気孔率が10%
を超え、硬さが著しく低下し、接合力も不十分になる。
W with a chemical structure of 10 to 25% by weight> W combines with C diffusing from the base material side to form Fe-W-C
This becomes a ternary eutectic and crystallizes a liquid phase, which is 10.0
If it is less than % by weight, the space between liquid phases decreases and the porosity decreases to 10%.
, the hardness decreases significantly and the bonding force becomes insufficient.

また、Wが25重間%を超えると、液相の流動性が過大
となるとともに、液相間も多くなり過ぎて、基材より流
れ落ちる。
Moreover, when W exceeds 25% by weight, the fluidity of the liquid phase becomes excessive, and the number of liquid phases becomes too large, causing the liquid to flow down from the base material.

〈厚さ0.2〜1.5mmの合金粉末シート〉合金粉末
シートの厚みが0.211111未満の場合には、形成
される硬質層が博くなりすぎて、仕上げのための加工代
がなくなり、平滑な囮動面を得ることが困難になる。
<Alloy powder sheet with a thickness of 0.2 to 1.5 mm> If the thickness of the alloy powder sheet is less than 0.211111, the hard layer formed will be too wide and there will be no machining allowance for finishing. , it becomes difficult to obtain a smooth decoy surface.

また、合金粉末シートの厚みが1,5!IINを超える
と、基材からのCの拡散に長時間必要となり、しかも収
縮率が5%を越えることになる。
Also, the thickness of the alloy powder sheet is 1.5! If IIN is exceeded, a long time will be required for diffusion of C from the base material, and the shrinkage rate will exceed 5%.

〈3重量%以上のCを有する鉄系基材〉貼着された合金
粉末シート側へCが拡散し、Wとともに共晶組成になっ
て融液を晶出させることにより液相焼結が生じ、基材へ
の接合、炭化物が生成される。
<Iron-based base material having 3% by weight or more of C> C diffuses toward the attached alloy powder sheet side, forms a eutectic composition with W, and crystallizes the melt, resulting in liquid phase sintering. , bonding to the substrate, carbide is generated.

Cの母が3重量%未満では、拡散するCの足が過少とな
り、上記現象が起り難くなる。
If the amount of C is less than 3% by weight, the amount of C that diffuses will be too small, making it difficult for the above phenomenon to occur.

く加熱温度1090〜1200℃〉 基材からのCの拡散によりFe−W−Cの三元共晶組成
になった時に、液相を晶出させるためには、加熱温度は
この組成の共晶温度以上でなければならない。
Heating temperature: 1090-1200°C> When a ternary eutectic composition of Fe-W-C is formed due to the diffusion of C from the base material, the heating temperature must be set to the eutectic composition of this composition in order to crystallize the liquid phase. Must be above temperature.

このための最低温度が1090℃である。The minimum temperature for this is 1090°C.

一方、加熱温度が1200℃を超えると、鉄系基材の結
晶粒が粗大化して強度が著しく低下する。
On the other hand, when the heating temperature exceeds 1200° C., the crystal grains of the iron-based base material become coarse and the strength is significantly reduced.

く収縮率が5%以下〉 収縮率が5%を超えると、収縮時に硬質層に割れが生じ
たり、後加工での加工代が多くなる。
Shrinkage rate is 5% or less> If the shrinkage rate exceeds 5%, cracks may occur in the hard layer during shrinkage, and processing costs in post-processing will increase.

〈炭化物の表面積比が40%以上〉 形成される硬質層の物性として、接触面圧80廟「/−
以上で、耐磨耗性、耐ピッチング性を確保するためには
、非金属部分である炭化物の表面積が多い方が有利とな
り、その下限が40%である。
<Surface area ratio of carbide is 40% or more> The physical properties of the hard layer formed include a contact surface pressure of 80%/-
As described above, in order to ensure wear resistance and pitting resistance, it is advantageous to have a large surface area of carbide, which is a non-metallic part, and the lower limit thereof is 40%.

〈気孔率10%以下〉 形成される硬質層の気孔率が10%を超えると耐摩耗性
が著しく低下する。
<Porosity 10% or less> If the porosity of the hard layer to be formed exceeds 10%, the wear resistance will be significantly reduced.

(実施例) 以下、この発明の好適な実施例について詐術に説明する
(Embodiments) Hereinafter, preferred embodiments of the present invention will be described in detail.

なお、以下の実施例で示す化学組成の比率はすべて(r
ω%である。
Note that all chemical composition ratios shown in the following examples are (r
It is ω%.

*実施例1 FCD65 (化学組成=3.5%C,2,8%s+ 
、0.3%Mn、0.11%P10.02%S、0.8
%Cu 、0.04%Mg、残Fe )を12X 12
X30mn+に切断して鉄系基材として用意した。
*Example 1 FCD65 (chemical composition = 3.5%C, 2.8%s+
, 0.3%Mn, 0.11%P10.02%S, 0.8
%Cu, 0.04%Mg, balance Fe) 12X 12
It was cut into a size of x30mm+ and prepared as an iron-based base material.

粉末合金は化学組成が10,0%W、0.4%$1、残
Feのものを準備し、粒径が74朗以下のものを選別し
、これに樹脂バインダとして31偕%のアクリル樹脂と
トルエンとを添加して混練し、Q、5mm厚みの合金粉
末シートを作製した。
A powder alloy with a chemical composition of 10.0% W, 0.4% $1, and residual Fe was prepared, and those with a particle size of 74% or less were selected, and 31% acrylic resin was added as a resin binder. and toluene were added and kneaded to produce an alloy powder sheet with a thickness of 5 mm.

そして、得られた合金粉末シートを上記基材の12X3
0mmの面に、アクリル樹脂粘着剤を用い、  て同じ
面積にカットして接着した。
Then, the obtained alloy powder sheet was used as a 12×3 sheet of the above base material.
The same area was cut and adhered to the 0 mm surface using an acrylic resin adhesive.

しかる後、合金粉末シートを接着した基材を、H2ガス
の雰囲気中で300℃、60分間の予備加熱を行なって
トルエンを揮散させて脱脂した後、同雰囲気中で、11
30℃の温度で20分間保持する加熱処理を行ない、基
材中のCを合金粉末シート側に拡散させて、基材の表面
に硬質図を形成した。
Thereafter, the base material to which the alloy powder sheet was adhered was preheated at 300°C for 60 minutes in an H2 gas atmosphere to volatilize the toluene and degrease it, and then heated in the same atmosphere for 11 hours.
A heat treatment was performed at a temperature of 30° C. for 20 minutes to diffuse C in the base material toward the alloy powder sheet side, thereby forming a hard pattern on the surface of the base material.

得られた硬質層は、硬さHV820.気孔率8%、収縮
率4.8%であった。
The hard layer obtained had a hardness of HV820. The porosity was 8% and the shrinkage rate was 4.8%.

*実施例2 鉄系基材は上記実施例1と同じ材質1寸法のものを用い
た。
*Example 2 The iron base material used was the same material and one dimension as in Example 1 above.

粉末合金は化学組成が18%W、0.6%3i、残Fe
のものを準備し、粒径が74μ以下のものを選別し、こ
れに樹脂バインダとして3重」%のアクリル樹脂と1〜
ルエンとを添加して混練し、0゜81Il厚みの合金粉
末シートを作製した。
The chemical composition of the powder alloy is 18% W, 0.6% 3i, and the balance is Fe.
Prepare the particles, select those with a particle size of 74μ or less, and add 1 to 3% acrylic resin as a resin binder to this.
Luene was added and kneaded to prepare an alloy powder sheet with a thickness of 0°81 Il.

そして、(qられた合金粉末シートを上記基材の12X
3011111の而に、アクリル樹脂粘着剤を用いて同
じ面積にカットして接着した。
Then, (q) the alloy powder sheet is 12X of the above base material.
3011111, were cut into the same area and adhered using an acrylic resin adhesive.

しかる侵、合金粉末シートを接着した基材を、H2ガス
の雰囲気中で300℃、60分間の予備加熱を行なって
トルエンを揮散させて脱脂した後、真空度2 X 10
 ’−rorr中で、1100℃の温度で20分間保持
する加熱処理を行ない、基材中のCを合金粉末シート側
に拡散させて、基材の表面に硬質層を形成した。
After that, the base material to which the alloy powder sheet was adhered was preheated at 300°C for 60 minutes in an H2 gas atmosphere to volatilize toluene and degrease, and then heated to a vacuum degree of 2 x 10.
A heat treatment was performed at a temperature of 1100° C. for 20 minutes in a '-rorr to diffuse C in the base material to the alloy powder sheet side and form a hard layer on the surface of the base material.

得られたfj!!質層は、硬さHv905、気孔率6゜
2%、収縮率4.3%であった。
Obtained fj! ! The quality layer had a hardness Hv of 905, a porosity of 6.2%, and a shrinkage rate of 4.3%.

*実施例3 鉄系基材は上記実施例1と同じ材質1寸法のものを用い
た。
*Example 3 The iron base material used was the same material and one dimension as in Example 1 above.

粉末合金は化学組成が25,0%W、0.8%Si1残
Faのものを準備し、粒径が74IIJI以下のものを
選別し、これに樹脂バインダとして3重問%のアクリル
樹脂とトルエンとを添加して混練し、1.Q1ml厚み
の合金粉末シートを作製した。
A powder alloy with a chemical composition of 25.0% W, 0.8% Si1 and residual Fa is prepared, and those with a particle size of 74IIJI or less are selected, and a 3% acrylic resin and toluene are added as a resin binder. Add and knead 1. An alloy powder sheet having a thickness of Q1 ml was produced.

そして、得られた合金粉末シートを上記基材の12X3
0emの面に、アクリル樹脂粘着剤を用いて同じ面積に
カットして接着した。
Then, the obtained alloy powder sheet was used as a 12×3 sheet of the above base material.
The same area was cut and adhered to the 0em surface using an acrylic resin adhesive.

しかる後、合金粉末シートを接着した基材を、H2ガス
の雰囲気中で300℃、60分間の予備加熱を行なって
トルエンを揮散させて脱脂した後、真空度5X 10’
 Torr中で、1120℃の温度で30分間保持する
加熱処理を行ない、基材中のCを合金粉末シート側に拡
散させて、基材の表面に硬質層を形成した。
Thereafter, the base material to which the alloy powder sheet was adhered was preheated at 300°C for 60 minutes in an H2 gas atmosphere to volatilize toluene and degrease, and then heated at a vacuum degree of 5X 10'.
Heat treatment was performed in Torr at a temperature of 1120° C. for 30 minutes to diffuse C in the base material to the alloy powder sheet side and form a hard layer on the surface of the base material.

得られた硬質層は、硬さ)−IV 960. 気孔率6
゜3%、収縮率4.9%であった。
The hard layer obtained has a hardness of -IV 960. Porosity 6
The shrinkage rate was 4.9%.

以下に示す第1表は、上記実施例1〜3で得られた各硬
質層の摩耗試験の結果を示している。
Table 1 shown below shows the results of the abrasion test for each hard layer obtained in Examples 1 to 3 above.

摩耗試験は、硬質層が形成された基材を第1図に示すよ
うに9×5IIIIに1.?ll断じ、硬質層の側に5
゜5Rの曲面を設けたテストピースtを作製し、テスト
ピース【をホルダーhに保持させて円板状の相手基材A
に曲面を当接することで行なった(第2図参照)。
In the abrasion test, the base material on which the hard layer was formed was divided into 9 x 5 III and 1. ? ll definitely, 5 on the hard layer side
A test piece t with a curved surface of 5R is prepared, and the test piece [is held in a holder h and a disc-shaped mating base material A
This was done by bringing a curved surface into contact with the (see Figure 2).

試験条件はホルダーhに1.8k(lの押圧力Pを加え
ながら、無潤滑の状態で相手材へを19.811I/S
eGで10分間回転させ、テストピースtの硬質層の摩
耗高さを計測した。
The test conditions were to apply a pressing force P of 1.8 k (l) to the holder h, and to apply a pressure of 19.811 I/S to the mating material without lubrication.
The test piece t was rotated for 10 minutes using eG, and the wear height of the hard layer of the test piece t was measured.

なお、相手材ΔはJIS  Fe12のチル化円板を使
用した。
Note that a JIS Fe12 chilled disk was used as the mating material Δ.

[第1表] 上記第1表の結果から明らかなように、本発明で得られ
る硬質層はいずれも摩耗預が極めて少ない。
[Table 1] As is clear from the results in Table 1 above, all of the hard layers obtained by the present invention have extremely little wear deposits.

なお、第3図は上記実施例2で得られた硬質層の400
倍顕微鏡写真であり、同写真中の白色部分がCとWとの
炭化物で、同黒色部分がソルドイトである。
In addition, FIG. 3 shows the hard layer obtained in Example 2 above.
This is a magnification microscopic photograph, and the white part in the photograph is a carbide of C and W, and the black part is sordoit.

この写真から本発明の方法によれば、鉄系基材から合金
粉末シート側にCが拡散してWと炭化物を生成すること
が確認できる。
From this photograph, it can be confirmed that, according to the method of the present invention, C diffuses from the iron-based base material to the alloy powder sheet side to generate W and carbide.

(発明の効果) 以上、実施例で詳細に説明したように、本発明に係る硬
質層の成形方法によれば、Wと結合して液相を晶出させ
るCを合金粉末シート側に存在させないので、その分だ
けシートの厚みを薄くできるとともに、焼結時にはCが
基材側から拡散してくるのでシート側の体積がその分だ
け増加し、収縮率が小さくなる。
(Effects of the Invention) As described above in detail in the Examples, according to the method for forming a hard layer according to the present invention, C, which combines with W to crystallize a liquid phase, is not present on the alloy powder sheet side. Therefore, the thickness of the sheet can be reduced by that amount, and since C diffuses from the base material side during sintering, the volume on the sheet side increases by that amount, and the shrinkage rate is reduced.

従って、部分的に硬質層を形成する場合であっても段差
を可及的に小さくできるとともに、硬質層の割れも生じ
ない。
Therefore, even when the hard layer is partially formed, the difference in level can be made as small as possible, and cracks in the hard layer do not occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は摩耗試験用テストピースの平面図、第2図は同
試験の説明図、第3図は本発明の実施で得られた硬質層
の組織を示す顕微鏡写真である。 特許出願人         マツダ 株式会社代 理
 人         弁理士 −色健輔同     
      弁理士 松本雅利第1図 第3図 手続有1正書(方式) 昭和62年6月9日 特許庁長官 黒 1)明 雄 殿 1、事件の表示 昭和62年特許願第65848号 2、発明の名称 硬質層の形成方法 3、補正をする者 事件との関係  特許出願人 住 所 広島県安芸郡府中町新地3番1号名 称 (3
13)マ ツ ダ 株式会社代表取締役 山 本 健 
− 4、代理人 住 所 東京都港区新tl!i2 T目12番7号5、
補正命令の日付 6、補正の対象 明#I書の「図面の簡mfj−説明Jの潤7、補正の内
容 明細書の第13頁第1行目に「硬質層の組織」とあるを
「硬質層の金属組織」と訂正する。
FIG. 1 is a plan view of a test piece for an abrasion test, FIG. 2 is an explanatory diagram of the test, and FIG. 3 is a microscopic photograph showing the structure of a hard layer obtained by implementing the present invention. Patent applicant Mazda Co., Ltd. Agent Patent attorney - Kensuke Shiro
Patent attorney Masatoshi Matsumoto Figure 1 Figure 3 Procedures available 1 Official document (method) June 9, 1985 Commissioner of the Patent Office Kuro 1) Akio Yu 1, Indication of the case 1988 Patent Application No. 65848 2, Invention Name of Formation Method of Hard Layer 3, Relationship with the Amendment Case Patent Applicant Address 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima Name (3)
13) Ken Yamamoto, Representative Director of Mazda Corporation
- 4. Agent address: New TL, Minato-ku, Tokyo! i2 T number 12 number 7 number 5,
Date 6 of the amendment order, ``Simplified drawing mfj - Explanation J of the amendment subject book #I, 7, page 13, first line of the statement of contents of the amendment, ``Hard layer structure'' was changed to ``Hard layer structure.''"Metal structure of the hard layer" is corrected.

Claims (1)

【特許請求の範囲】[Claims] 化学組成が10〜25重量%のWと、2重量%以下の不
可避成分と、残Feとからなる粉末合金に、樹脂バイン
ダを混合して厚さ0.2〜1.5mmの合金粉末シート
とし、これを3重量%以上のCを有する鉄系基材の表面
に貼着し、しかる後、これを1090〜1200℃の温
度で加熱し、前記鉄系基材のCを前記合金粉末シート側
に拡散させることによりFe−W−Cからなる三元共晶
を晶出させ、収縮率が5%以下、炭化物の表面積比が4
0%以上、気孔率10%以下の硬質層を形成することを
特徴とする硬質層の形成方法。
A powder alloy with a chemical composition of 10 to 25% by weight of W, 2% or less of unavoidable components, and residual Fe is mixed with a resin binder to form an alloy powder sheet with a thickness of 0.2 to 1.5 mm. This is pasted on the surface of an iron-based base material having 3% by weight or more of C, and then heated at a temperature of 1090 to 1200°C, so that the C of the iron-based base material is attached to the alloy powder sheet side. A ternary eutectic consisting of Fe-W-C is crystallized by diffusing the Fe-W-C, and the shrinkage rate is 5% or less and the surface area ratio of carbide is 4.
A method for forming a hard layer, comprising forming a hard layer with a porosity of 0% or more and 10% or less.
JP6584887A 1987-03-23 1987-03-23 Method for forming hardened layer Pending JPS63235412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6584887A JPS63235412A (en) 1987-03-23 1987-03-23 Method for forming hardened layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6584887A JPS63235412A (en) 1987-03-23 1987-03-23 Method for forming hardened layer

Publications (1)

Publication Number Publication Date
JPS63235412A true JPS63235412A (en) 1988-09-30

Family

ID=13298842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6584887A Pending JPS63235412A (en) 1987-03-23 1987-03-23 Method for forming hardened layer

Country Status (1)

Country Link
JP (1) JPS63235412A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112458457A (en) * 2020-11-26 2021-03-09 上海交通大学 Iron-based alloy powder and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112458457A (en) * 2020-11-26 2021-03-09 上海交通大学 Iron-based alloy powder and application thereof

Similar Documents

Publication Publication Date Title
JPH055892B2 (en)
US4731253A (en) Wear resistant coating and process
JPS58152982A (en) High rigidity valve sheet ring made of sintered alloy in double layer
US20040028548A1 (en) Iron-base alloy containing chromium-tungsten carbide and a method of producing it
AU2001258982A1 (en) Iron-base alloy containing chromium-tungsten carbide and a method of producing it
JPH0249361B2 (en)
JP6466268B2 (en) Sliding member
JPS6267182A (en) Remelting and alloying method for metallic surface
JPS63235412A (en) Method for forming hardened layer
EP0400683B1 (en) Powdered metal spray coating material, process for producing the same and the use thereof
JPS63235413A (en) Method for forming hardened layer
JPS63235411A (en) Method for forming hardened layer
JPS5923847A (en) Composite cylinder liner
US4678633A (en) Process for forming a sintered layer on a substrate of iron-based material
US20030098090A1 (en) Surface coatings
JPS59100263A (en) Plasma-sprayed piston ring
JPS6029420A (en) Manufacture of composite cylinder liner having high strength and toughness
JPH036218B2 (en)
US5194339A (en) Discontinuous casting mold
JP2592628B2 (en) Method of forming thermal spray coating with excellent build-up resistance
JPH0147277B2 (en)
Wang et al. Microstructure of laser-surface-alloyed cast iron with Cr Al Y alloy
JPH02295664A (en) Manufacture of aluminum alloy-made sliding member
JPH0480988B2 (en)
JPS5848601B2 (en) Metal surface treatment method