JPS632347B2 - - Google Patents

Info

Publication number
JPS632347B2
JPS632347B2 JP55131237A JP13123780A JPS632347B2 JP S632347 B2 JPS632347 B2 JP S632347B2 JP 55131237 A JP55131237 A JP 55131237A JP 13123780 A JP13123780 A JP 13123780A JP S632347 B2 JPS632347 B2 JP S632347B2
Authority
JP
Japan
Prior art keywords
filament
current
voltage
collector
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55131237A
Other languages
Japanese (ja)
Other versions
JPS5756749A (en
Inventor
Kazuhiro Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP55131237A priority Critical patent/JPS5756749A/en
Publication of JPS5756749A publication Critical patent/JPS5756749A/en
Publication of JPS632347B2 publication Critical patent/JPS632347B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

【発明の詳細な説明】 この発明は、気中の微量のナトリウム漏洩を検
出する微量イオン検出器に関し、特にイオン検出
の防げになる暗電流を除去するようにしたもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a trace ion detector for detecting trace amounts of sodium leakage in the air, and is particularly designed to eliminate dark current that would prevent ion detection.

従来、微量ナトリウムの漏洩検出は、第1図に
示したようなイオン化検出器が最良のものとされ
ている。図において、1は例えば窒素ガス中など
のナトリウムをイオン化する為のフイラメント、
2は生成したイオンを捕集するコレクタ電極、3
は被検体ガスをイオン化検出部に流通させる筐
体、4はフイラメント1及びコレクタ電極2を筐
体3に対し絶縁保持する絶縁ブツシング、5はフ
イラメント電源、6は生成イオンをコレクタ電極
2にむけて付勢するコレクタ電源、7はコレクタ
電流を電圧に変換する抵抗体、8は電圧の増巾器
である。
Conventionally, an ionization detector as shown in FIG. 1 has been considered the best method for detecting leakage of trace amounts of sodium. In the figure, 1 is a filament for ionizing sodium in nitrogen gas, for example;
2 is a collector electrode that collects generated ions, 3
4 is an insulating bushing that insulates the filament 1 and collector electrode 2 from the casing 3, 5 is a filament power source, and 6 is a housing for directing generated ions to the collector electrode 2. A collector power supply for energizing, 7 a resistor for converting collector current into voltage, and 8 a voltage amplifier.

次にその動作を説明する。被検体ガス(窒素ガ
スなど)に微量のナトリウムが含まれると、約
1000℃に加熱されたフイラメント部を通過する時
に、熱解離によりイオン化する。ナトリウムの場
合は、イオン化エネルギーが5.16evと低く非常に
イオン化し易く、+イオンとなる。これを、コレ
クタ電源6により付勢してコレクタ電極2に捕集
し、直流の電流信号として検出するものである。
Next, its operation will be explained. If the sample gas (nitrogen gas, etc.) contains a trace amount of sodium, approx.
When passing through a filament heated to 1000°C, it is ionized by thermal dissociation. In the case of sodium, the ionization energy is as low as 5.16ev, making it extremely easy to ionize and become a + ion. This is energized by the collector power supply 6, collected on the collector electrode 2, and detected as a DC current signal.

この場合、上記の如く、フイラメント1は約
1000℃に熱し、コレクタ電極2には200V〜500V
の直流電圧が印加されるが、第2図の如く、絶縁
ブツシング4を介して流れる暗電流領域Rは約
10nA、一方漏洩ナトリウムのイオン量は
10-10gr/c.c.の濃度時に漏洩検出電流Sは数nAで
あり、この程度が検出限界である(第2図)。又、
暗電流は絶縁物の温度、汚れ程度、水分の付着な
どで大いに変り得るため、当初性能の維持がむつ
かしく、誤信号を生じ易い。
In this case, as mentioned above, filament 1 is approximately
Heat to 1000℃ and apply 200V to 500V to collector electrode 2.
However, as shown in Fig. 2, the dark current region R flowing through the insulating bushing 4 is approximately
10nA, while the amount of leaked sodium ions is
At a concentration of 10 -10 gr/cc, the leakage detection current S is several nA, and this level is the detection limit (Figure 2). or,
Since dark current can vary greatly depending on the temperature of the insulator, degree of contamination, adhesion of moisture, etc., it is difficult to maintain initial performance and erroneous signals are likely to occur.

以上のようにこの種の検出器は、定常時にコレ
クタ電圧を印加して、そこに現れる電流増加でナ
トリウムの漏洩を検出するもので、もともと定常
的に流れる暗電流と有意の差を生じる必要があ
る。暗電流の大部分は第1図の破線で示すように
絶縁物を介して流れるリーク電流で、従来の測定
装置ではこのリーク電流を減衰する手段がとられ
ていない。
As mentioned above, this type of detector applies a collector voltage during steady state, and detects sodium leakage based on the increase in current that appears. Originally, it is necessary to produce a significant difference from the dark current that flows steadily. be. Most of the dark current is a leakage current flowing through an insulator, as shown by the broken line in FIG. 1, and conventional measuring devices do not take any means to attenuate this leakage current.

本発明は、コレクタ電源を交流電源として電気
回路でリーク電流信号を除去する方法を提供す
る。
The present invention provides a method for removing leakage current signals in an electric circuit using an AC power source as a collector power source.

以下、本発明を図に示す一実施例について詳細
に説明する。即ち、第3図は本発明の一実施例の
構成を示す。
Hereinafter, one embodiment of the present invention shown in the drawings will be described in detail. That is, FIG. 3 shows the configuration of one embodiment of the present invention.

従来の装置との違いは、従来、コレクタ電源6
が直流であつたことに対し、本発明では交流電源
を使用する。コレクタ電源6を交流電源とした本
発明の場合、暗電流Roも信号電流Soも第4図a
に示すように交流電流となる。暗電流Roは絶縁
物の絶縁抵抗を介して流れるので正負極性依存は
なく、正信号、負信号の大きさは同じである。従
つて後続回路(図示せず)の信号処理により、正
負を打ち消して、暗電流信号Rを著しく小さく出
来る。(第4図b)絶縁物の温度、汚れ、水分付
着等により絶縁抵抗変化しても正負同大の信号を
生じるので、これらの影響を受ける程度も極めて
小さくなる。
The difference from the conventional device is that the collector power supply 6
The present invention uses an alternating current power source, whereas the present invention uses a direct current power source. In the case of the present invention in which the collector power supply 6 is an AC power supply, both the dark current Ro and the signal current So are as shown in Fig. 4a.
It becomes an alternating current as shown in . Since the dark current Ro flows through the insulation resistance of the insulator, there is no dependence on positive or negative polarity, and the magnitude of the positive signal and negative signal are the same. Therefore, by signal processing in a subsequent circuit (not shown), the positive and negative signals can be canceled and the dark current signal R can be significantly reduced. (FIG. 4b) Even if the insulation resistance changes due to temperature, dirt, moisture adhesion, etc. of the insulator, signals of the same magnitude as positive and negative are generated, so the extent of these influences is extremely small.

一方、検出信号Soはナトリウムの正イオンに
よりもたらされるのでフイラメント1に正電圧、
コレクタ電極2が負電圧となつた場合のみ出力が
得られる。又、ナトリウムイオンはフイラメント
1が負電圧の場合は、フイラメント1の表面から
離れられずフイラメント1が正電圧になつた時
に、一せいにコレクタ電極2へむけて発射され、
漏洩検出信号Sがほぼ2倍となる利点もある。検
出限界は大巾に引き下げられ、10-12gr/c.c.程度
の検出が十分可能である。
On the other hand, since the detection signal So is caused by positive sodium ions, a positive voltage is applied to filament 1.
An output is obtained only when the collector electrode 2 becomes a negative voltage. In addition, when the filament 1 has a negative voltage, sodium ions cannot leave the surface of the filament 1, and when the filament 1 becomes a positive voltage, they are ejected all at once toward the collector electrode 2.
There is also the advantage that the leakage detection signal S is almost doubled. The detection limit has been significantly lowered, and detection of about 10 -12 gr/cc is now fully possible.

尚、検出対象物質はナトリウムに限らず、熱解
離できる物質であれば本装置による検出が可能で
ある。本発明による検出器は、例えば高速増殖炉
用SIDに適用される。
Note that the substance to be detected is not limited to sodium, but any substance that can be thermally dissociated can be detected by this apparatus. The detector according to the present invention is applied to, for example, a SID for a fast breeder reactor.

以上のように本発明によれば、イオン化用のフ
イラメント電極とイオン捕集用のコレクター電極
間に交番電圧を印加するようにしたので、リーク
電流信号を除去することが出来、S/N比の改善
された、耐汚損性の強い微量イオン検出器を得る
事が出来る。
As described above, according to the present invention, since an alternating voltage is applied between the filament electrode for ionization and the collector electrode for ion collection, it is possible to remove the leakage current signal and improve the S/N ratio. An improved trace ion detector with strong stain resistance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の装置の構成図、第2図はその動
作説明図、第3図は本発明の一実施例の構成図、
第4図a,bは本発明の装置の動作説明図であ
る。 図中、1……イオン化用の電極(フイラメン
ト)、2……イオン捕集用の電極、3……筐体、
4……絶縁ブツシング、5,6……電源、7……
検出抵抗、8……増巾器。尚、図中同一符号は
夫々同一又は相当部分を示す。
FIG. 1 is a configuration diagram of a conventional device, FIG. 2 is an explanatory diagram of its operation, and FIG. 3 is a configuration diagram of an embodiment of the present invention.
FIGS. 4a and 4b are explanatory diagrams of the operation of the apparatus of the present invention. In the figure, 1... Electrode for ionization (filament), 2... Electrode for collecting ions, 3... Housing,
4... Insulating bushing, 5, 6... Power supply, 7...
Detection resistor, 8...amplifier. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 筐体内に間隔を介して絶縁支持されたイオン
化用のフイラメント電極及びイオン捕集用のコレ
クター電極と上記両電極間に電圧を印加する電源
と、上記イオン捕集用の電極に捕集されたイオン
を検出する検出手段とを有するものに於て、上記
電源により両電極間に印加される電圧を交番電圧
とした事を特徴とする微量イオン検出器。
1. A filament electrode for ionization and a collector electrode for collecting ions, which are insulated and supported within the housing with a space between them, a power supply that applies a voltage between the two electrodes, and 1. A trace ion detector comprising a detection means for detecting ions, characterized in that the voltage applied between the two electrodes by the power source is an alternating voltage.
JP55131237A 1980-09-20 1980-09-20 Detector of very small quantity of ion Granted JPS5756749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55131237A JPS5756749A (en) 1980-09-20 1980-09-20 Detector of very small quantity of ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55131237A JPS5756749A (en) 1980-09-20 1980-09-20 Detector of very small quantity of ion

Publications (2)

Publication Number Publication Date
JPS5756749A JPS5756749A (en) 1982-04-05
JPS632347B2 true JPS632347B2 (en) 1988-01-18

Family

ID=15053206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55131237A Granted JPS5756749A (en) 1980-09-20 1980-09-20 Detector of very small quantity of ion

Country Status (1)

Country Link
JP (1) JPS5756749A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0478737U (en) * 1990-11-19 1992-07-09

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5448549B2 (en) * 2009-04-24 2014-03-19 地方独立行政法人東京都立産業技術研究センター Photoionization detector and photoionization detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0478737U (en) * 1990-11-19 1992-07-09

Also Published As

Publication number Publication date
JPS5756749A (en) 1982-04-05

Similar Documents

Publication Publication Date Title
US4373375A (en) Hydrogen sensor
JPS54104584A (en) Gas insulated electric device and method of inspecting partial discharge thereof
JP2000504111A (en) Corona discharge ion source for analytical instruments
CA1083219A (en) Reliable dynamoelectric machine condition monitor
GB2000299B (en) Detecting metabolic activity
JPS632347B2 (en)
JPS6140077B2 (en)
SU911301A1 (en) Electron capture detector for gas chromatography
JP4014058B2 (en) Gas sensor
JPS57108264A (en) Operating method for electrostatic adsorbing device
GB1520749A (en) Measuring partial pressure of sodium vapour
JP4141098B2 (en) Gas sensor
CN110514698B (en) Gas sensing device and gas detection equipment
JPS582617B2 (en) sodium ionization detector
JP2935362B1 (en) Radiation measurement device
RU2065159C1 (en) Method of determination of concentration of gas
SU608089A1 (en) Ionization gas analyzer
SU546073A1 (en) Method for determining plasma thermoelectromotive force
SU1177779A1 (en) Method of determining quality of non-conducting coatings on electric-conducting base
JP2000180409A (en) Method for beaking leak current in gas sensor
JPH0321067B2 (en)
SU75354A1 (en) The method of measuring the speed and direction of the air flow and the instrument for implementing the method
JPS6038647A (en) Moisture detecting sensor
JPS5621748A (en) Contact detector
SU1700455A1 (en) Probe meter of current of charged particles