JPS63234122A - Thermistor - Google Patents

Thermistor

Info

Publication number
JPS63234122A
JPS63234122A JP6564287A JP6564287A JPS63234122A JP S63234122 A JPS63234122 A JP S63234122A JP 6564287 A JP6564287 A JP 6564287A JP 6564287 A JP6564287 A JP 6564287A JP S63234122 A JPS63234122 A JP S63234122A
Authority
JP
Japan
Prior art keywords
resin
thermistor
thermistor element
dumet
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6564287A
Other languages
Japanese (ja)
Other versions
JPH0629792B2 (en
Inventor
Yasunobu Izumi
泉 康伸
Kazuhiko Yagata
屋ケ田 和彦
Yasuo Noguchi
野口 康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP62065642A priority Critical patent/JPH0629792B2/en
Publication of JPS63234122A publication Critical patent/JPS63234122A/en
Publication of JPH0629792B2 publication Critical patent/JPH0629792B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To obtain a thermistor which has high reliability which maintains its response speed in water or at a narrow part in a living body, etc., by coating the connection parts between Dumet wires and external lead wires with a resin tube and charged resin in combination. CONSTITUTION:This thermistor consists of a glass-coated thermistor element 1 or <=1mm in external diameter and two Dumet wires 2. The external lead wires 4 which are coated 9 with resin previously are connected to the Dumet wires 2, the resin tube 7 is mounted covering the Dumet wires 2, connection parts 8, and the parts of the external lead wires terminals nearby the connection parts, and the resin for insulation is charged in the resin tube 7. At this time, the surface of the thermistor element 1 and the contact part between the resin tube 7 and thermistor element 1 are coated with resin for insulation to provide a resin coat layer 6 preferably. Further, the connection part between the Dumet wires 2 and the external lead wires 4 which are coated with the insulating resin are set at an interval of <=10mum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、応答速度が早く、細狭部の温度測定が可能で
、高い信頼性を有する小型サーミスタに関し、更に詳し
くは、高温度雰囲気中、あるいは水中、生体内等に挿入
して使用できる小型サーミスタの構造に関するものであ
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a small thermistor that has a fast response speed, can measure temperature in narrow areas, and has high reliability. , or the structure of a small thermistor that can be inserted into water, a living body, etc.

C従来技術〕 サーミスタは半導体の感温抵抗体で、近年様々の改良に
よりその安定性が向上し、工業計測用温度センサーとし
て多量に利用されるようになってきた。用途範囲も現在
では多岐にわたり、工業的な温度計測用をはじめ、医療
用では電子体温計や生体内温の測定等あらゆる分野にお
いて利用されている。
C. Prior Art] A thermistor is a semiconductor temperature-sensitive resistor, and its stability has been improved through various improvements in recent years, and it has come to be widely used as a temperature sensor for industrial measurement. Currently, the range of applications is wide-ranging, and they are used in all kinds of fields, including industrial temperature measurement and medical use, such as electronic thermometers and measurement of internal body temperature.

サーミスタ素子は、主にMn、Go、Ni。Thermistor elements are mainly made of Mn, Go, and Ni.

Feなと2種以上の遷移金属酸化物の焼結体よりなり、
通常の工業的用途には、測定温度が増加するに従って抵
抗が低下するN TC(Negative Tem−p
erature GOeffiCient)型サーミス
タが主に使われる。また、サーミスタ素子はその製法、
形状により、ビード形、ディスク形、ロッド形、厚膜形
、薄膜形等各種の形状があり、その中で現在は前2者が
多く使用されている。従来から使用されているサーミス
タの構造について、その−例を示すと第2図のごとくで
、サーミスタ素子1の上には一般に絶縁用ガラスコート
層3が設けられており、サーミスタ素子1より2本のジ
ュメット線2が導出され、更に外部機器との接続用の゛
リード線4に接1続されている。絶縁性を高めるために
更にその上に樹脂コート層6が設けられる場合もある。
Consisting of a sintered body of Fe and two or more transition metal oxides,
For typical industrial applications, NTC (Negative Temp-p) is used, where the resistance decreases as the measurement temperature increases.
Therature GOeffiCient) type thermistors are mainly used. In addition, the manufacturing method of the thermistor element,
There are various shapes depending on the shape, such as a bead shape, a disk shape, a rod shape, a thick film shape, and a thin film shape, among which the former two types are currently used most often. An example of the structure of a conventionally used thermistor is shown in Fig. 2, in which an insulating glass coat layer 3 is generally provided on the thermistor element 1, and two layers are formed from the thermistor element 1. A dumet wire 2 is led out and further connected to a lead wire 4 for connection with external equipment. In some cases, a resin coat layer 6 is further provided thereon to improve insulation.

従来のサーミスタ素子は、直径1M4以上のものが殆ん
どである。
Most conventional thermistor elements have a diameter of 1M4 or more.

一方、最近の用途として高湿度雰囲気中で、し′かもi
s以下の寸法の細狭部における温度測定の必要性が高ま
っている。特に生体内における温度測定は、サーミスタ
の小型化及び高度の信頼性が要求される分野である。更
に、工業用、医療用を問わず、温度計測において高い応
答速度を必要とする場合が多く、従来の1mm以上の直
径を有するサーミスタでは応答速度が不十分であった。
On the other hand, recent applications include
There is an increasing need for temperature measurement in narrow areas with dimensions of s or less. In particular, temperature measurement within a living body is a field that requires miniaturization and high reliability of thermistors. Furthermore, whether for industrial or medical purposes, temperature measurement often requires a high response speed, and conventional thermistors having a diameter of 1 mm or more have insufficient response speed.

従来にも11!Ill以下の直径を有するサーミスタは
検討されており、第2図のごとくジュメット線2、ある
いはジュメット線2とリード線4の接合部8などの絶縁
性を高めるために、種々の工夫がなされてきた。その二
側として樹脂コートが用“いられているが、この場合十
分な絶縁性を得るためには3〜5回以上の樹脂のディッ
プコートが必要であり、それにもかかわらずジュメット
線2、またははジュメット線2とリード線4の接合部8
に絶縁不良が発生する可能性が高い。
Conventionally 11! Thermistors having a diameter of Ill or less have been studied, and various efforts have been made to improve the insulation of the Dumet wire 2 or the joint 8 between the Dumet wire 2 and the lead wire 4, as shown in FIG. . A resin coat is used as the second side, but in this case, 3 to 5 or more resin dip coats are required to obtain sufficient insulation. is the joint 8 between the dumet wire 2 and the lead wire 4
There is a high possibility that insulation failure will occur.

この他、全体を樹脂に封入したり、第3図に示したよう
に樹脂チューブを被覆し樹脂を充填する方法等が行なわ
れているが、いずれの方法においても絶縁性では十分な
ものであるのに対し、サーミスタ感温部の熱容量が増大
し、従って応答速度の大巾な低下が避けられないという
欠点があった。
Other methods include encapsulating the entire body in resin, or covering a resin tube and filling it with resin as shown in Figure 3, but either method has sufficient insulation properties. On the other hand, the heat capacity of the thermistor temperature-sensing portion increases, which inevitably leads to a large drop in response speed.

〔発明の目的〕[Purpose of the invention]

本発明は、従来できなかった高度の信頼性及び早い応答
速度を併せ持つ直径III!r1以下の小型サーミスタ
を得んとして研究した結果、ジュメット線と外部リード
線の接合部を樹脂チューブおよび充填樹脂を組合わせて
被覆することにより、絶縁性を高められるとの知見を得
、更にこの知見に基づき種々研究を進めて本発明を完成
するに至ったものである。その目的とするところは、高
湿度雰囲気中、水中あるいは生体内の細狭部において、
応答速度を損うことなく高い信頼性を付与せしめること
のできるサーミスタを提供することにある。
The present invention has a diameter III that combines a high degree of reliability and a fast response speed that could not previously be achieved! As a result of research aimed at creating a small thermistor with r1 or less, we found that insulation could be improved by covering the joint between the Dumet wire and the external lead wire with a combination of a resin tube and filled resin. Based on this knowledge, various studies have been carried out and the present invention has been completed. The purpose of this is to perform the
It is an object of the present invention to provide a thermistor that can be provided with high reliability without impairing response speed.

、〔発明の構成〕 即ち本発明は、ガラスコートされた外径1s以下のサー
ミスタ素子、及び該サーミスタ素子より導出された2本
のジュメット線より成るサーミスタであって、サーミス
タ素子表面のガラスコート層と、ジュメット線と絶縁樹
脂コートされた外部リード線末端の接合部との間隔を1
0MIII以内とし、サーミスタ素子より導出されたジ
ュメット線、接合部、及び外部リード線末端の接合部近
傍をサーミスタ素子部より内径の小ざい樹脂チューブで
被覆し、該樹脂チューブ内の空隙に絶縁用樹脂を充填し
、ざらに、サーミスタ素子表面及び樹脂チューブの少な
くともサーミスタ素子に接する部位に絶縁用樹脂をコー
トしたことを特徴とするサーミスタである。
, [Structure of the Invention] That is, the present invention provides a thermistor consisting of a glass-coated thermistor element having an outer diameter of 1 s or less, and two Dumet wires derived from the thermistor element, the glass coat layer on the surface of the thermistor element. The distance between the Dumet wire and the joint of the end of the external lead wire coated with insulating resin is 1.
0MIII or less, cover the Dumet wire led out from the thermistor element, the joint, and the vicinity of the joint at the end of the external lead wire with a resin tube whose inner diameter is smaller than the thermistor element, and fill the gap in the resin tube with insulating resin. This thermistor is characterized in that the surface of the thermistor element and at least the portion of the resin tube in contact with the thermistor element are coated with an insulating resin.

以下、第1図を用いて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail using FIG. 1.

本発明のサーミスタは、サーミスタ素子1及び2本のジ
ュメット線2より基本的に構成され、ジュメット線2に
予め樹脂被覆9の施された外部リード線4を接合した後
、樹脂チューブ7をジュメット線、接合部8、及び外部
り、−ド線末端の接合部近傍を覆うように装着し、更に
絶縁用樹脂を樹脂チューブ7内へ充填する。このとき、
サーミスタ素子表面及び樹脂チューブとサーミスタ素子
との接点部分にも絶縁用樹脂をコートし、樹脂コート層
6を設けることが望ましい。
The thermistor of the present invention basically consists of a thermistor element 1 and two Dumet wires 2. After joining the Dumet wire 2 with an external lead wire 4 coated with a resin coating 9 in advance, a resin tube 7 is attached to the Dumet wire. , the joint part 8 and the vicinity of the joint part at the end of the external and negative wires, and the resin tube 7 is filled with an insulating resin. At this time,
It is desirable to coat the surface of the thermistor element and the contact portion between the resin tube and the thermistor element with an insulating resin to provide a resin coat layer 6.

サーミスタ素子の外形形状には、ビート型、ディスク型
、ロンド型等があるが特に限定されるものではない。ま
た、デュメット線2に接合され機器類と接続するための
外部リード線4としては、塩化ビニル樹脂、フッ素系樹
脂等で樹脂被覆されたものを用いても何らさしつかえは
ないが、サーミスタを小型化、組型化するためには、エ
ナメル線等の絶縁用樹脂ワニスで樹脂被覆したものを用
いるのがより好ましい。デュメット線2と外部リード線
4と接合する場合には、外部リード線4の末端部の樹脂
被覆9を機械的方法または薬液により剥離しミ接合には
一般に精密抵抗溶接器が用いられるが、これに限定され
るものではない。
The external shape of the thermistor element includes a beat shape, a disk shape, a rond shape, etc., but is not particularly limited. In addition, as the external lead wire 4 that is joined to the dumet wire 2 and connected to equipment, it is acceptable to use one coated with vinyl chloride resin, fluorine resin, etc., but the thermistor can be made smaller. In order to form a mold, it is more preferable to use a wire coated with an insulating resin varnish such as an enameled wire. When joining the dumet wire 2 and the external lead wire 4, the resin coating 9 at the end of the external lead wire 4 is peeled off mechanically or with a chemical solution, and a precision resistance welder is generally used for joining. It is not limited to.

サーミスタ素子1表面のガラスコート層3と接合、部8
との間隔は10m以内とするのが良く、10mを越える
場合はサーミスタ仝体の寸法が大きくなり、また、2本
のデュメット線2が接触して短絡を起こす危険が大きく
なり好ましくない。
Bonding portion 8 with the glass coat layer 3 on the surface of the thermistor element 1
The distance between the two dumet wires 2 is preferably within 10 m; if it exceeds 10 m, the dimensions of the thermistor body will increase, and there will be a greater risk that the two dumet wires 2 will come into contact and cause a short circuit, which is not preferable.

これに伴なって、樹脂チューブ7の長さは、接合部8の
位置によっても変わるが、接合部8が樹脂チューブ7の
中央部に位置させるのが望ましいので、通常サーミスタ
素子1のガラスコート層3より露出するデュメット線2
の長さを1〜10mとすれば、樹脂チューブ7の長さは
2〜20Mの範囲とするのが良い。樹脂チューブ7は、
内径がサーミスタ素子1の径より小さく、接合部8を容
易に覆うことができるものであれば良いが、肉厚は容易
につぶれない程度でできる限り薄いもの、例として0.
02mmから0.1#1111の範囲の肉厚が好適であ
る。また、樹脂チューブ7の材質としては、ポリエステ
ル系樹脂、ポリイミド系樹脂、フッ素系樹脂等が挙げら
れるが、特にこれら(限定されない。
Along with this, the length of the resin tube 7 varies depending on the position of the joint part 8, but since it is desirable that the joint part 8 is located at the center of the resin tube 7, the length of the resin tube 7 is usually Dumet wire 2 exposed from 3
If the length of the resin tube 7 is 1 to 10 m, the length of the resin tube 7 is preferably in the range of 2 to 20 m. The resin tube 7 is
It is acceptable as long as the inner diameter is smaller than the diameter of the thermistor element 1 and can easily cover the joint part 8, but the wall thickness is as thin as possible without being easily crushed, for example 0.
Wall thicknesses ranging from 0.2 mm to 0.1 #1111 are preferred. Furthermore, examples of the material for the resin tube 7 include polyester resins, polyimide resins, fluorine resins, etc., but are not particularly limited to these.

樹脂チューブ7内の空隙部5に充填する絶縁用樹脂とし
ては、ポリイミド系樹脂、ポリエステル系樹脂、エポキ
シ系樹脂及びポリウレタン系樹脂からなる群から選ばれ
た少くとも一種を含み、無溶剤タイプの液状樹脂である
ことが必要である。
The insulating resin to be filled in the cavity 5 in the resin tube 7 includes at least one type selected from the group consisting of polyimide resin, polyester resin, epoxy resin, and polyurethane resin, and is a solvent-free liquid resin. It needs to be resin.

すなわち、溶剤を含む樹脂溶液を用いた場合、樹脂溶液
を充填し、溶剤を除去する過程で樹脂チューブ内の樹脂
充填部に空洞が生じ、この結果絶縁性が極度に低下する
ため使用はできない。液状樹脂を樹脂チューブ内へ充填
する方法は、通常、減圧式にて行う。すなわち、サーミ
スタの先にチューブをセットした状態で樹脂液中へ浸漬
し、更に真空ポンプ等により減圧し所定の時間放置した
後、樹脂液より取り出して樹脂の硬化を行う。このため
液状樹脂の粘度は、500〜100,000cps好ま
しくは5,000〜50,0OOcpsとするのがよい
。粘度が500cps以下の場合には、低粘度のため充
填のためには好都合であるが、充填後の硬化時において
液状樹脂が樹脂チューブより流れ出る可能性が高く不適
当である。一方、100,000cusを越える場合に
は、流れにくいために樹脂チューブ内への充填に時間が
かかりすぎ、かつ充填不良となるケースが多いため適当
ではない。尚、上記の液状樹脂の粘度は、充填する際の
粘度であり、従って、必要に応じて温度をコントロール
することによって、粘度を所定の範囲内に保ちながら充
填することも可能である。
That is, when a resin solution containing a solvent is used, a cavity is formed in the resin-filled portion of the resin tube during the process of filling the resin solution and removing the solvent, and as a result, the insulation properties are extremely reduced, making it unusable. The liquid resin is normally filled into the resin tube using a reduced pressure method. That is, the tube is set at the tip of the thermistor and then immersed in the resin liquid, the pressure is further reduced by a vacuum pump, etc., and the tube is left for a predetermined period of time, and then taken out from the resin liquid and the resin is cured. Therefore, the viscosity of the liquid resin is preferably 500 to 100,000 cps, preferably 5,000 to 50,000 cps. If the viscosity is 500 cps or less, it is convenient for filling due to its low viscosity, but it is unsuitable because there is a high possibility that the liquid resin will flow out from the resin tube during curing after filling. On the other hand, if it exceeds 100,000 cus, it is not suitable because it is difficult to flow and it takes too much time to fill the resin tube, and there are many cases where filling is incomplete. Note that the viscosity of the liquid resin described above is the viscosity at the time of filling, and therefore, by controlling the temperature as necessary, it is possible to fill while keeping the viscosity within a predetermined range.

樹脂コート層6を形成するための樹脂としては、前記の
絶縁用樹脂、ポリイミド系樹脂、ポリエステル系樹脂、
エポキシ系樹脂、またはポリウレタン系樹脂の無溶剤タ
イプの液状樹脂のほか、溶剤タイプのポリイミド系樹脂
、ポリエステル系樹脂溶液等が使用できる。また、被膜
形成性や絶縁性。
As the resin for forming the resin coat layer 6, the above-mentioned insulating resins, polyimide resins, polyester resins,
In addition to solvent-free liquid resins such as epoxy resins or polyurethane resins, solvent-type polyimide resins and polyester resin solutions can be used. Also, film forming properties and insulation properties.

耐湿倹性、゛耐熱性等のサーミスタの使用上要求される
特性を満たすものであれば、得に樹脂の種類は限定され
るものではなく、これらの樹脂の2種以上を組合せて使
用しても何ら差しつかえはないが、接着性の面からは樹
脂チューブ内の充填樹脂と同じ樹脂を用いることが好ま
しい。従ってこの場合は、サーミスタを樹脂液に浸漬す
るなどの方法によって、空隙部5に樹脂を充填する際に
、同時に樹脂コート層6も得られることから改めてコー
トする必要性はなく、1度の作業工程にて作成可能であ
り、このためコスト而でも極めて有利になるものである
。また、樹脂チューブ7と樹脂コ−ト層6との境界部に
、補強用として充填用樹脂、あるいは樹脂コート層6に
用いた樹脂を塗布することも安全性を更に高めるために
効果的である。
The type of resin is not particularly limited as long as it satisfies the characteristics required for use of the thermistor, such as moisture resistance and heat resistance, and two or more of these resins may be used in combination. However, from the viewpoint of adhesiveness, it is preferable to use the same resin as the filling resin in the resin tube. Therefore, in this case, when filling the void 5 with resin by immersing the thermistor in a resin liquid, the resin coating layer 6 is also obtained at the same time, so there is no need to coat it again, and it is a one-time operation. It can be produced in a process, and is therefore extremely advantageous in terms of cost. It is also effective to apply a filling resin or the resin used for the resin coat layer 6 for reinforcement to the boundary between the resin tube 7 and the resin coat layer 6 to further increase safety. .

〔発明の効果〕〔Effect of the invention〕

本発明に従うと、サーミスタの外部リード線とデュメッ
ト線との接合部近傍における樹脂部の形成が確実で、絶
縁特性に優れ、高温度雰囲気中、水中あるいは生体内等
の細狭部において応答速度を損うことなく、高い信頼性
を有する小型サーミスタが得られ、このため工業用とし
てのみならず、極めて高い安全性を要求される医療用の
分野にも適用可能な温度センサーとして好適である。
According to the present invention, the resin part is reliably formed near the joint between the external lead wire and the dumet wire of the thermistor, has excellent insulation properties, and has a high response speed in a narrow space such as in a high temperature atmosphere, underwater, or inside a living body. A compact thermistor with high reliability can be obtained without any damage, and therefore it is suitable as a temperature sensor that can be applied not only to industrial use but also to the medical field where extremely high safety is required.

実施例1 直径0.02mφの2本のデュメット線が導出されガラ
スコートされた、外径0.’9mφのサーミスタ素子を
用い、このデュメット線とポリエステル被覆された直径
0.1a++φのNi リード線を精密抵抗溶接機によ
り接合を行った。接合位置はサーミスタ素子より2mで
あった。次に、リード線を末端側から長ざ5#、内径0
.48φ、外径0.5#φのポリイミドチューブに挿入
し、接合部を中心にして被覆した。
Example 1 Two dumet wires with a diameter of 0.02 mφ were drawn out and coated with glass to have an outer diameter of 0.02 mφ. Using a thermistor element with a diameter of 9 mφ, this dumet wire and a polyester-coated Ni lead wire with a diameter of 0.1 a++φ were joined using a precision resistance welding machine. The bonding position was 2 m from the thermistor element. Next, connect the lead wire from the end side with a length of 5# and an inner diameter of 0.
.. It was inserted into a polyimide tube with a diameter of 48φ and an outer diameter of 0.5#φ, and the joint was covered with the center.

次に、エポキシ樹脂主剤及び硬化剤を所定量混合し攪拌
を行った。得られた樹脂液の室温における粘度は10.
ooocpsであった。これをペルジャー内において、
サーミスタ素子部をエポキシ樹脂液に浸漬し、真空ポン
プを用いて750mt1g、10分間減圧を行った。室
温下でエポキシ樹脂の硬化を行い、第1図のごときサー
ミスタを得た。
Next, predetermined amounts of the epoxy resin base and curing agent were mixed and stirred. The viscosity of the obtained resin liquid at room temperature was 10.
It was ooocps. Put this in Pelger,
The thermistor element portion was immersed in the epoxy resin liquid, and the pressure was reduced to 750 mt1g for 10 minutes using a vacuum pump. The epoxy resin was cured at room temperature to obtain a thermistor as shown in FIG.

サーミスタは合計10個作成し、コート層の絶縁性試験
として、水中で銅を対電極としこれより20mの位置に
サーミスタを本漬して、両者間に直流20Vを印加した
時の抵抗値を測定した。また、応答速度の試験として、
室温25℃の空中より50℃の温水中ヘサーミスタを浸
漬し、サーミスタ抵抗値変化の63.2%に達する時間
、すなわち時定数を測定した。その結果゛、本実施例に
おいて得られたサーミスタは、水中での絶縁性は10X
1012Ω以上と高い値を示し、時定数は0.3秒以下
と極めて早い応答速度であった。尚、以下の実施例及び
比較例においては、特に断らないかぎり実施例1と同様
に行うものとする。
A total of 10 thermistors were made, and to test the insulation of the coating layer, the thermistor was immersed in water at a distance of 20 m from copper as a counter electrode, and the resistance value was measured when 20 V DC was applied between the two. did. In addition, as a test of response speed,
The hethermistor was immersed in warm water at 50°C from air at room temperature 25°C, and the time required to reach 63.2% of the thermistor resistance change, that is, the time constant, was measured. As a result, the thermistor obtained in this example had an insulation property of 10X in water.
It showed a high value of 1012Ω or more, and the time constant was 0.3 seconds or less, which was an extremely fast response speed. In addition, in the following Examples and Comparative Examples, unless otherwise specified, the same procedures as in Example 1 were carried out.

比較例1 実施例1において、チューブを用いずに直接サーミスタ
素子をエポキシ樹脂溶液へ浸漬し、ひきあげ硬化した。
Comparative Example 1 In Example 1, the thermistor element was directly immersed in an epoxy resin solution without using a tube, and then pulled up and cured.

得られたサーミスタは、水中絶縁性試験において104
Ω以下と低い抵抗値を示し、デュメット線部分の絶縁が
不十分であった。
The obtained thermistor achieved a rating of 104 in an underwater insulation test.
The resistance value was low, less than Ω, and the insulation of the dumet wire portion was insufficient.

粘度95,000cpsである二液性ウレタン樹脂液を
減圧下でチューブ内に充填した。その結果、得られたサ
ーミスタの水中での絶縁性はいずれも1012Ω以上の
抵抗値を示し、時定数は0.5秒以1下と早かった。
A two-component urethane resin liquid having a viscosity of 95,000 cps was filled into the tube under reduced pressure. As a result, the insulation properties of the obtained thermistors in water all showed resistance values of 1012Ω or more, and the time constants were as fast as 0.5 seconds or less.

比較例2.3 実施例1において、樹脂液粘度を400C匹及び110
,000cpsとし、それぞれ比較例2及び3とした。
Comparative Example 2.3 In Example 1, the resin liquid viscosity was set to 400C and 110C.
,000 cps, and were used as Comparative Examples 2 and 3, respectively.

得られたサーミスタの水中絶縁性試めチューブより樹脂
が流れ落ち、一方、比較例3においては反対に粘度が高
すぎるため、減圧によってもチューブ内へ樹脂が十分に
充填されず、このためいずれの比較例においても結果と
してチューブ内の充填不足による絶縁不良であった。
The resin flowed down from the underwater insulation test tube of the obtained thermistor, whereas in Comparative Example 3, the viscosity was too high, so the resin was not sufficiently filled into the tube even by reducing the pressure, and therefore none of the comparisons In this example as well, the result was poor insulation due to insufficient filling in the tube.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明におけるサーミスタ素子部の断面構造を
示す図である。また、第2図及び第3図は従来のサーミ
スタ素子部の断面構造を示す図である。
FIG. 1 is a diagram showing a cross-sectional structure of a thermistor element portion in the present invention. Further, FIGS. 2 and 3 are diagrams showing the cross-sectional structure of a conventional thermistor element section.

Claims (2)

【特許請求の範囲】[Claims] (1)ガラスコートされた外径1mm以下のサーミスタ
素子、及び該サーミスタ素子より導出された2本のデュ
メット線より成るサーミスタであつて、サーミスタ素子
表面のガラスコート層と、デュメット線と絶縁樹脂コー
トされた外部リード線末端の接合部との間隔を10mm
以内とし、サーミスタ素子より導出されたデュメット線
、接合部、及び外部リード線末端の接合部近傍をサーミ
スタ素子部より内径の小さい樹脂チューブで被覆し、該
樹脂チューブ内の空隙に絶縁用樹脂を充填し、さらに、
サーミスタ素子表面及び樹脂チューブの少なくともサー
ミスタ素子に接する部位に絶縁用樹脂をコートしたこと
を特徴とするサーミスタ。
(1) A thermistor consisting of a glass-coated thermistor element with an outer diameter of 1 mm or less and two dumet wires derived from the thermistor element, the glass coat layer on the surface of the thermistor element, the dumet wire and the insulating resin coat. The distance between the end of the external lead wire and the joint is 10 mm.
Cover the dumet wire led out from the thermistor element, the joint, and the vicinity of the joint at the end of the external lead wire with a resin tube whose inner diameter is smaller than that of the thermistor element, and fill the void inside the resin tube with insulating resin. And furthermore,
A thermistor characterized in that the surface of the thermistor element and at least the portion of the resin tube in contact with the thermistor element are coated with an insulating resin.
(2)樹脂チューブ内の空隙に充填する絶縁用樹脂が、
ポリイミド系樹脂、ポリエステル系樹脂、エポキシ系樹
脂及びポリウレタン系樹脂よりなる群から選ばれた少く
とも一種を含み、500〜100,000cpsの範囲
の粘度を有する無溶剤タイプの液状樹脂であることを特
徴とする、特許請求の範囲第1項記載のサーミスタ。
(2) The insulating resin that fills the void inside the resin tube is
It is characterized by being a solvent-free liquid resin containing at least one selected from the group consisting of polyimide resin, polyester resin, epoxy resin, and polyurethane resin, and having a viscosity in the range of 500 to 100,000 cps. A thermistor according to claim 1, wherein:
JP62065642A 1987-03-23 1987-03-23 Thermistor Expired - Lifetime JPH0629792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62065642A JPH0629792B2 (en) 1987-03-23 1987-03-23 Thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62065642A JPH0629792B2 (en) 1987-03-23 1987-03-23 Thermistor

Publications (2)

Publication Number Publication Date
JPS63234122A true JPS63234122A (en) 1988-09-29
JPH0629792B2 JPH0629792B2 (en) 1994-04-20

Family

ID=13292875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62065642A Expired - Lifetime JPH0629792B2 (en) 1987-03-23 1987-03-23 Thermistor

Country Status (1)

Country Link
JP (1) JPH0629792B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335442U (en) * 1989-08-17 1991-04-08
JP2008026200A (en) * 2006-07-24 2008-02-07 Matsushita Electric Ind Co Ltd Temperature sensor and heated toilet seat equipped therewith

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867437B2 (en) * 2006-04-05 2012-02-01 株式会社デンソー Temperature sensor
KR20080102510A (en) * 2007-05-21 2008-11-26 대양전기공업 주식회사 Temperature measuring device by means of a thin film type temperature sensor and a manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946015A (en) * 1972-09-08 1974-05-02
JPS49119743U (en) * 1973-02-09 1974-10-14
JPS61110019A (en) * 1984-11-02 1986-05-28 Sanyo Electric Co Ltd Manufacture of temperature detector
JPS61117202U (en) * 1985-01-09 1986-07-24

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946015A (en) * 1972-09-08 1974-05-02
JPS49119743U (en) * 1973-02-09 1974-10-14
JPS61110019A (en) * 1984-11-02 1986-05-28 Sanyo Electric Co Ltd Manufacture of temperature detector
JPS61117202U (en) * 1985-01-09 1986-07-24

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335442U (en) * 1989-08-17 1991-04-08
JP2008026200A (en) * 2006-07-24 2008-02-07 Matsushita Electric Ind Co Ltd Temperature sensor and heated toilet seat equipped therewith

Also Published As

Publication number Publication date
JPH0629792B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
US6660554B2 (en) Thermistor and method of manufacture
US2961625A (en) Thermistor probe
US4259657A (en) Self heat generation type positive characteristic thermistor and manufacturing method thereof
JPS63234122A (en) Thermistor
US3896409A (en) Liquid level sensor for corrosive baths
CN104501988A (en) Wide-temperature-region high-accuracy NTC (Negative Temperature Coefficient) temperature sensor and manufacturing method thereof
US6134771A (en) Method of encasing leads of an electronic part
JP3590157B2 (en) Printed circuit board for electronic thermometer, electronic thermometer using the same, and method of manufacturing the same
JP3198823B2 (en) Resin mold thermistor sensor
JP6959573B2 (en) Resin-sealed electronic components
JPS63153803A (en) Small size thermistor
JPS63145930A (en) Temperature sensor
US11682505B2 (en) Radiation curable thermistor encapsulation
JP3152352B2 (en) Thermistor element
US3793711A (en) Method of making the probe assembly of a temperature sensor
EP1353377A2 (en) Semiconductor device having pad electrode connected to wire
JP2004335793A (en) Thermometer
JPS6346701A (en) Manufacture of leaded thermistor
JP2001116625A (en) Film type platinum temperature measuring resistor and manufacturing method therefor, and thin surface sensor
JP4763454B2 (en) Temperature sensor
JPH04298002A (en) Resin-sealed thermistor
JP2002353004A (en) Ntc thermistor for temperature detection
JPH0444412B2 (en)
JPS583362B2 (en) Resin deep mold thermistor
JPH0616836U (en) Thermistor temperature sensor