JPS6323356B2 - - Google Patents

Info

Publication number
JPS6323356B2
JPS6323356B2 JP58247767A JP24776783A JPS6323356B2 JP S6323356 B2 JPS6323356 B2 JP S6323356B2 JP 58247767 A JP58247767 A JP 58247767A JP 24776783 A JP24776783 A JP 24776783A JP S6323356 B2 JPS6323356 B2 JP S6323356B2
Authority
JP
Japan
Prior art keywords
agent
container
heating device
crushing
expandable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58247767A
Other languages
Japanese (ja)
Other versions
JPS60138199A (en
Inventor
Masato Nagano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP24776783A priority Critical patent/JPS60138199A/en
Publication of JPS60138199A publication Critical patent/JPS60138199A/en
Publication of JPS6323356B2 publication Critical patent/JPS6323356B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Description

【発明の詳細な説明】 本発明は、水和膨張性物質を用いた膨張性破砕
剤と共に使用する加熱装置およびそれを用いた破
砕方法に関するものである。 一般に、膨張性破砕剤は、それが水との水和反
応により発生する膨張圧を利用し、岩石やコンク
リート等を騒音や振動の問題を生じることなく静
かに破砕することができる点に特徴があり、近年
コンクリート構造物の破壊等に広く用いられてい
る。しかし、常温下では膨張圧の増加速度が非常
に小さく、通常岩石やコンクリート等に亀裂が発
生するまでには、膨張性破砕剤を被破砕物に設け
られた穿孔に充填後およそ10〜24時間という長時
間を要し、作業効率(サイクル)および破砕所要
時間の面で、爆薬や機械を使用する破砕方法に劣
つている。 その欠点の解消策として、特公昭49―43416号
公報および特公昭54―38412号公報に記載の方法
があり、前者は、電熱器を熱源としケーシングパ
イプを介して膨張性破砕剤を加熱する方法である
が、単位時間当りの熱量の供給が少ないため長時
間の通電を必要とし、更には通常多数の穿孔の加
熱を同時に行う必要があるので、野外における電
力源の確保が困難であるとともに、場合によつて
は膨張性破砕剤が穿孔から激しく噴出するという
不具合があつた。 また、後者は、電熱器の代りに燃焼剤を用いて
膨張性破砕剤を加熱する方法であるが、燃焼剤の
容器材質として熱可溶性もしくは可燃性のポリエ
チレン等を用い、容器の燃焼時に発生するガスに
よる膨圧力をも破壊に利用するため、急硬性モル
タル等の封塞材を穿孔口元に使用し、これが完全
に硬化した後でなければ破砕効果が悪いとか、ま
たは前述のような膨張性破砕剤の穿孔からの噴出
現象を生じる等の問題点があつた。 本発明者は、膨張性破砕剤のもつ利点を維持し
つつ従来の欠点を根本的に解消することを目的と
して研究した結果、次に示す加熱装置と破砕方法
とを採用することによりその目的を達し得ること
を知り、本発明を完成した。 すなわち、本願第一の発明は、一端を閉じ他端
を開放とし、長さが被破砕物に設けられた穿孔の
深さの1/3以下の容器内に、酸化剤および可燃剤
を主成分とし、発熱量が少なくとも2000calであ
る無ガス燃焼組成物を圧填し、該容器開放部に点
火具を装着してなる膨張性破砕剤用加熱装置に関
するものである。また、第2の発明は、被破砕物
に設けられた穿孔内に、水を含浸させた膨張性破
砕剤を穿孔口元まで充填し、その口元から穿孔の
直径の2倍以下の距離に、前記加熱装置の容器の
開放側端面が来るように加熱装置を膨張性破砕剤
中に埋設し、破砕を行うことを特徴とする破砕方
法に関するものである。 本発明の加熱装置は、第1図に示されるよう
に、一端を閉じ他端を開放とした容器1の底部
に、無ガス燃焼組成物2をその上部に空間を残す
ように圧填し、他端の開放部には、点火具3を装
着してなるものである。そして更に点火具3は、
塞栓8、それを貫通せしめた一対の電気導線7、
その両端に接続された発熱抵抗線5、その周囲に
塗布された点火薬6からなつている。 この加熱装置4は、第2図に示されるように、
被破砕物10に設けられた穿孔内に充填された膨
張性破砕剤9中に埋設されて使用され、その電気
導線7に通電することにより、発熱抵抗線5が発
熱してその周囲の点火薬6が燃焼し、更に無ガス
燃焼組成物2が燃焼して発熱し、容器1を通して
周囲の膨張性破砕剤9を加熱するものである。 そして、その発熱量は、加熱装置を膨張性破砕
剤中に埋設直後、すなわち膨張性破砕剤自体が水
和反応により発熱する前に作動させた場合を想定
しても、2000calあれば十分である。発熱量が
2000cal未満の場合は、作動から被破砕物に亀裂
が発生するまでの破砕所要時間の推定精度が悪く
実用的でない。また、発熱量が増加するに従い破
砕所要時間は短縮されるが、9500calを超えても
破砕所要時間のそれ以上の短縮は認められず5分
程度が限界となる。 従つて、9500calを超える発熱量とすることは
実質的な利点がない。更に、破砕所要時間の推定
精度の点からいえば、3500cal以上の発熱量が望
ましく、この場合の破砕所要時間はほぼ20分以内
となる。 この発生した熱量は、前述のとおり加熱装置の
容器を通じて膨張性破砕剤へ伝熱されるが、その
際容器の大きさの影響を無視することはできな
い。 すなわち、本発明の加熱装置は、穿孔口元部の
膨張性破砕剤のみを加熱することにより、局部的
に水和反応を加速することを目的とするものであ
るが、容器の長さが過度に長い場合には、膨張性
破砕剤への伝熱が容器全体を通じて行われるた
め、膨張性破砕剤が広範囲に加熱されることにな
り、膨張性破砕剤が穿孔から噴出するおそれがあ
り好ましくない。 具体的には容器の長さを穿孔の深さの1/3以下
とすることが必要であり、1/3を超えて長くなる
に従い前記膨張性破砕剤噴出のおそれが強くな
る。 この加熱装置の容器に用いられる材質として
は、まず水の透過、侵入を防ぐ必要から金属、合
成樹脂、ガラス、セラミツク等がよく、更に取扱
い時の落下、衝撃等による破損の危険性および無
ガス燃焼組成物の燃焼による温度、ガス圧の上昇
に対する耐性の点からみれば、中でも金属、合成
樹脂が好適である。 ここで、熱可塑性樹脂または熱硬化性樹脂から
なる合成樹脂を容器材質として用いた場合、無ガ
ス燃焼組成物の燃焼の初期の段階で、容器の溶
融、燃焼が起こり、容器内部の空気および容器の
燃焼ガスが、膨張性破砕剤中に放出されることに
なるが、これらは、加熱装置が膨張性破砕剤の穿
孔口元部に埋設されている関係上順次大気中へ排
出され易いため、膨張性破砕剤を穿孔から噴出さ
せるようなことはない。また、金属としてアルミ
ニウム等の低融点のものを使用した場合にも、容
器の無ガス燃焼組成物を圧填した部分の一部に、
燃焼時に容器が溶けて2〜3mm〓程度の穴を生じ
るので、容器が破裂することなく、前記と同様に
ガスは大気中に流出していくため、問題なく用い
ることができる。 容器内に圧填される燃焼組成物としては、容器
の破裂等を避けるため、温度上昇が適当な範囲
で、かつ無ガスのものを適当量用いることが重要
である。なお、ここでいう無ガスとは、燃焼成分
としてのガス成分を発生しないことを意味する。 この無ガス燃焼組成物は、酸化剤および可燃剤
を主成分とし、要すればそれに添加剤を加えてな
るものであるが、酸化剤としては、例えば酸化第
二鉄、鉛丹、過酸化バリウム、過マンガン酸カリ
ウム等、可燃剤としては、例えばタングステン、
鉄、珪素、アルミニウム等、添加剤としては、例
えば酸化アルミニウム、酸化チタン等が用いられ
る。 これらの配合に当つては、酸化剤から過剰の酸
素ガスが発生しないよう、多少可燃剤を化学量論
比よりも多く配合し、更に必要があれば、前記の
添加剤を加えて燃焼温度を低下させることにより
容器の破裂を防止することができる。 このような無ガス燃焼組成物としては、次のよ
うな配合が例示される。 (酸化第二鉄):(アルミニウム) =(60〜70):(30〜40)重量部 (鉛丹):(珪素) =(55〜84):(16〜45)重量部 (鉛丹:珪素):(酸化アルミニウム) =((62〜79):(8〜11)) :(10〜30)重量部 点火具の発熱低抗線としては、ニクロム線、白
金線等が、またその周囲に塗布される点火薬とし
ては、鉛丹―珪素等の酸化剤―可燃剤からなるも
のまたはトリシネート、ジアゾジニトロフエノー
ル等の起爆薬が、更に塞栓としては、ゴムまたは
プラスチツクが各々用いられる。 次に、本発明の破砕方法について説明する。 本破砕方法は、同じく本発明の加熱装置を用
い、これを被破砕物に設けられた穿孔内に充填さ
れた膨張性破砕剤の穿孔口元部に埋設することを
特徴とするものである。 加熱装置の膨張性破砕剤中への埋設位置とし
て、従来は大別して、穿孔全体(穿孔長にほぼ等
しい長さの容器を使用)、穿孔の底部、または穿
孔の中間部であつた。 ところがこれらの場合は、加熱装置の埋設後、
3時間望ましくは5時間程度を経た後でなけれ
ば、加熱装置を作動させることはできず、実用上
不便であつた。その理由は、加熱装置の作動前に
穿孔口元部の膨張性破砕剤をある程度水和膨張さ
せて、強固な蓋(機能上てん塞物に相当する)を
形成せしめた後でなければ、膨張性破砕剤の加熱
による膨張によつて、それがいわゆる「鉄砲」現
象として穿孔口元部の膨張性破砕剤を激しく噴出
させることがあるからである。 そこで、その時間を短縮しようとして、穿孔口
元部に強固なてん塞物を別の部品として充当する
ことも行われているが、それでも「鉄砲」現象を
完全に防ぐことは不可能であつた。 これに対し、本発明の方法により穿孔口元部に
加熱装置を埋設した場合においては、加熱装置周
辺すなわち穿孔口元付近の膨張性破砕剤が他の位
置に先んじて加熱され、まずその部分の膨張性破
砕剤が膨張し、これが強固な蓋の役目をするた
め、前述の「鉄砲」現象等の弊害を完全に防止
し、かつ短時間のうちに破砕を完了することがで
きる。 また、加熱装置を穿孔口元部の膨張性破砕剤中
に埋設する方法は、具体的には、第2図において
該加熱装置4が、穿孔内の膨張性破砕剤9の中心
軸上にあり、かつ、容器1の開放側端面1aが充
填された膨張性破砕剤9の穿孔口元面9aと同一
面上にあるように埋設することが望ましいが、実
際の施工にあたつては、開放側端面1aと穿孔口
元面9aとの距離が穿孔の直径の2倍以下となる
ように埋設される場合には「鉄砲」現象等の問題
なく破砕を行うことができる。 次に、実施例および比較例によりその効果を明
らかにする。なお、下記実験は、いずれも気温6
〜8℃の範囲で行われたものである。 実施例 1 内径13mm〓、厚さ0.35mmの一端を閉じ他端を開
放とした長さ120mmの銅製容器に、鉛丹80重量部、
珪素20重量部を混合して得られた無ガス燃焼組成
物12gを圧填する。 次に、発熱抵抗線として30μmの太さの白金線
を用い、その両端に一対の電気導線を接続し、白
金線の周囲にトリシネート99.6重量部およびバイ
ンダーとしての酢酸セルロース0.4重量部からな
る点火薬約8mgを塗布した上記一対の電気導線
を、外径12.5mm〓の円柱状ゴム体の塞栓に貫通せ
しめて得られる点火具を容器開放部に挿入し、塞
栓の位置する容器外周を締めつけることにより装
着させ加熱装置を得た。なお、上記無ガス燃焼組
成物の発熱量は12gにおいて3800calであつた。 次に、1.0m×1.0m×1.0mの立方体状のコンク
リート塊に下記穿孔条件により計4孔を穿孔後、
その各々に水を含浸させた膨張性破砕剤を穿孔口
元まで充填するとともに、加熱装置の容器の開放
側端面が、充填された膨張性破砕剤の穿孔口元面
から36mmの距離にあるように加熱装置を埋設す
る。その後、直ちに4個の加熱装置の電気導線を
直列に結線して回路を形成し、8μF、200Vの発
破器を用いて通電を行つた。 なお、4孔中1孔については、膨張性破砕剤を
穿孔に充填する時に孔底から約20cmの位置にアル
メル―クロメル熱電対の測温部を配置し、膨張性
破砕剤の温度変化も時間を追つて計測した。結果
を第1表に示す。 穿孔条件 穿孔径36mm〓 穿孔の深さ80cm 穿孔間隔50cm 実施例 2 無ガス燃焼組成物の重量を25gとすることで、
発熱量を7900calとした点を除いては、実施例1
に準じた条件で試験を行つた。結果を第1表に示
す。 実施例 3 膨張性破砕剤の充填および加熱装置の埋設後、
2時間経過した時点で点火具に通電を行う点を除
いては、実施例1に準じた条件で試験を行つた。
結果を第1表に示す。 実施例 4 被破砕物として内径40mm〓、厚さ1.5mm、長さ65
cm、底部の厚さ1.5mmの有底の鉄製パイプ容器を、
その開放部側の1cmの長さだけを残して砂中に埋
める。次に該鉄製パイプ容器に膨張性破砕剤を開
放部口元まで充填するとともに、実施例1と同一
の加熱装置を用い、該加熱装置の容器の開放側端
面が、充填された膨張性破砕剤の表面から60mmの
距離にあるように加熱装置を埋設する。その後、
直ちに加熱装置の点火具に、3Vのバツテリーで
通電を行つた。 また、膨張性破砕剤を上記鉄製パイプ容器に充
填する時に、その底から約10cmの位置にアルメル
―クロメル熱電対の測温部を配置し、膨張性破砕
剤の温度変化も時間を追つて計測した。結果を第
1表に示す。 比較例 1 無ガス燃焼組成物の重量を5gとすることで、
発熱量を1600calとした点を除いては、実施例1
に準じた条件で試験を行つた。結果を第1表に示
す。 比較例 2 加熱装置の容器の開放側端面が、膨張性破砕剤
の穿孔口元面から140mmの距離にあるように加熱
装置を埋設する点を除いては、実施例1に準じた
条件で試験を行つた。結果を第1表に示す。 比較例 3 加熱装置を用いない点を除いては、実施例1に
準じた条件で試験を行つた。結果を第1表に示
す。 比較例 4 加熱装置を用いない点を除いては、実施例4に
準じた条件で試験を行つた。結果を第1表に示
す。 第1表の結果から明らかなように、本発明の加
熱装置を用い、これを穿孔に充填された膨張性破
砕剤の穿孔口元部に埋設し、任意の時間に作動さ
せることにより、作動後極めて短時間に破砕を完
了することができる。 また、点火具の作動は、運搬可能なバツテリ
ー、発破器等の電源からの通電で開始されるた
め、電熱器を加熱装置として用い、長時間通電を
必要とする従来方法に比較して、電源確保の面お
よび通電開始から終了までの一連の操作所要時間
の面で有利性がある。 更に、本発明は作業効率(サイクル)の向上お
よび膨張性破砕剤の破砕力の改善の面で寄与する
ところが大であるとともに、別個にてん塞物を用
いる必要がなく、加熱装置の作動も任意の時間に
行うことができるという特徴を具備するものであ
る。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heating device used with an expandable crushing agent using a hydrated expandable substance and a crushing method using the same. In general, expandable crushing agents are characterized by their ability to quietly crush rocks, concrete, etc., without causing noise or vibration problems, by utilizing the expansion pressure generated by the hydration reaction with water. In recent years, it has been widely used for destroying concrete structures. However, at room temperature, the rate of increase in expansion pressure is very slow, and it usually takes about 10 to 24 hours after filling the expanding crushing agent into a hole in the material to be crushed before cracks occur in rocks, concrete, etc. This method requires a long time, and is inferior to methods that use explosives or machinery in terms of work efficiency (cycle) and time required for crushing. As a solution to this drawback, there are methods described in Japanese Patent Publication No. 49-43416 and Japanese Patent Publication No. 54-38412. The former method uses an electric heater as a heat source to heat the expandable crushing agent through a casing pipe. However, since the amount of heat supplied per unit time is small, it requires electricity to be turned on for a long time, and furthermore, it is usually necessary to heat many perforations at the same time, making it difficult to secure a power source in the field. In some cases, there was a problem in which the expandable crushing agent was violently ejected from the perforations. In addition, the latter method uses a combustion agent instead of an electric heater to heat the expandable crushing agent, but it uses heat-soluble or flammable polyethylene as the container material for the combustion agent, and the material generated when the container is burned is In order to use the turgor force caused by gas for fracture, a sealing material such as rapidly hardening mortar is used at the opening of the hole, and the crushing effect is not good unless it is completely hardened. There were problems such as a phenomenon in which the agent spewed out from the perforations. As a result of research aimed at fundamentally eliminating the conventional drawbacks while maintaining the advantages of expansible crushing agents, the inventor has found that the purpose has been achieved by adopting the heating device and crushing method described below. He realized what could be achieved and completed the present invention. That is, the first invention of the present application contains an oxidizing agent and a combustible agent as main ingredients in a container having one end closed and the other end open and having a length of 1/3 or less of the depth of a hole provided in the object to be crushed. The present invention relates to a heating device for an expandable crushing agent, which is pressurized with a gasless combustion composition having a calorific value of at least 2,000 cal, and a igniter is attached to the open part of the container. Further, the second invention provides the above-mentioned invention, in which an expandable crushing agent impregnated with water is filled into a hole provided in the object to be crushed up to the mouth of the hole, and a distance of at most twice the diameter of the hole from the mouth is filled. The present invention relates to a crushing method characterized in that a heating device is buried in an expandable crushing agent so that the open end surface of a container of the heating device is located, and crushing is performed. As shown in FIG. 1, the heating device of the present invention includes pressurizing a gas-free combustion composition 2 into the bottom of a container 1 with one end closed and the other end open, leaving a space above. An igniter 3 is attached to the open portion at the other end. Furthermore, the igniter 3 is
an embolus 8, a pair of electrical conductors 7 passing through it;
It consists of a heat generating resistance wire 5 connected to both ends of the wire and an ignition charge 6 applied around it. This heating device 4, as shown in FIG.
It is used by being embedded in an expandable crushing agent 9 filled in a hole provided in the object 10 to be crushed, and when the electric conductor 7 is energized, the heating resistance wire 5 generates heat and the ignition powder around it is generated. 6 is combusted, and the gasless combustion composition 2 is further combusted to generate heat, which heats the surrounding expandable crushing agent 9 through the container 1. As for the calorific value, 2000 cal is sufficient even assuming that the heating device is operated immediately after being buried in the expandable crushing agent, that is, before the expandable crushing agent itself generates heat due to hydration reaction. . The amount of heat generated
If it is less than 2000 cal, the accuracy of estimating the time required for crushing from the time of operation until cracks appear in the crushed object is poor, making it impractical. Further, as the calorific value increases, the time required for crushing is shortened, but even if it exceeds 9,500 cal, no further reduction in the time required for crushing is recognized, and the limit is about 5 minutes. Therefore, there is no substantial advantage in setting the calorific value to more than 9500 cal. Furthermore, from the point of view of accuracy in estimating the time required for crushing, a calorific value of 3500 cal or more is desirable, and in this case the time required for crushing will be approximately within 20 minutes. The generated heat is transferred to the expandable crushing agent through the container of the heating device as described above, but in this case, the influence of the size of the container cannot be ignored. That is, the heating device of the present invention aims to accelerate the hydration reaction locally by heating only the expandable crushing agent at the base of the perforation, but if the length of the container is too long, If it is too long, heat is transferred to the expandable crushing agent through the entire container, which causes the expandable crushing agent to be heated over a wide range, which is undesirable since there is a risk that the expandable crushing agent will be ejected from the perforations. Specifically, the length of the container needs to be 1/3 or less of the depth of the perforation, and as the length exceeds 1/3, the risk of the expandable crushing agent ejecting increases. The material used for the container of this heating device is metal, synthetic resin, glass, ceramic, etc., since it is necessary to prevent water from penetrating or invading, and there is also a risk of damage due to drops or shocks during handling, and there is no gas. From the standpoint of resistance to increases in temperature and gas pressure caused by combustion of the combustion composition, metals and synthetic resins are particularly preferred. Here, when a synthetic resin consisting of a thermoplastic resin or a thermosetting resin is used as the container material, the container melts and burns in the initial stage of combustion of the gasless combustion composition, causing the air inside the container to of combustion gas will be released into the expandable crushing agent, but since the heating device is buried in the opening of the expandable crushing agent, these gases are easily discharged into the atmosphere. There is no possibility that the crushing agent will be ejected from the perforations. In addition, even if a metal with a low melting point such as aluminum is used, a portion of the container into which the gas-free combustion composition is pressurized may be
During combustion, the container melts and creates a hole of about 2 to 3 mm, so the container does not burst and the gas flows out into the atmosphere as described above, so it can be used without any problems. It is important to use an appropriate amount of the combustion composition to be pressurized into the container, which has a temperature rise within an appropriate range and is gas-free, in order to avoid rupture of the container. Note that the term "gas-free" here means that no gas component as a combustion component is generated. This gas-free combustion composition mainly contains an oxidizing agent and a combustible agent, with additives added thereto if necessary. Examples of the oxidizing agent include ferric oxide, red lead, and barium peroxide. , potassium permanganate, etc. Examples of combustible agents include tungsten, potassium permanganate, etc.
For example, aluminum oxide, titanium oxide, etc. are used as additives such as iron, silicon, and aluminum. When formulating these, the combustible agent is added in a larger amount than the stoichiometric ratio to prevent excessive oxygen gas from being generated from the oxidizing agent, and if necessary, the above additives are added to lower the combustion temperature. By lowering the temperature, it is possible to prevent the container from bursting. Examples of such gasless combustion compositions include the following formulations. (ferric oxide): (aluminum) = (60-70): (30-40) parts by weight (redundant): (silicon) = (55-84): (16-45) parts by weight (redium: Silicon): (Aluminum oxide) = ((62-79): (8-11)): (10-30) parts by weight Nichrome wire, platinum wire, etc. are used as the low-tension wire for the igniter, and the surrounding The igniter to be applied is one consisting of an oxidizing agent such as red lead-silicon and a combustible agent, or an explosive such as tricinate or diazodinitrophenol, and as the embolus, rubber or plastic is used. Next, the crushing method of the present invention will be explained. This crushing method is characterized by using the heating device of the present invention and embedding it in the opening of the expandable crushing agent filled in the hole provided in the object to be crushed. Conventionally, the location for embedding the heating device in the expandable crushing agent has been roughly divided into the entire borehole (using a container with a length approximately equal to the length of the borehole), the bottom of the borehole, or the middle of the borehole. However, in these cases, after the heating device is buried,
The heating device cannot be operated until 3 hours, preferably about 5 hours have elapsed, which is inconvenient in practice. The reason for this is that before the heating device is activated, the expandable crushing agent at the mouth of the perforation must hydrate and expand to some extent to form a strong lid (functionally equivalent to a seal). This is because the expansion of the crushing agent due to heating may cause the expandable crushing agent at the base of the perforation to be violently ejected as a so-called "gun" phenomenon. Therefore, in an attempt to shorten this time, a strong blocking material has been installed as a separate part at the mouth of the drill hole, but it has not been possible to completely prevent the "gunshot" phenomenon. On the other hand, when a heating device is buried in the drilling mouth using the method of the present invention, the expandable crushing agent around the heating device, that is, near the drilling mouth, is heated before other locations, and the expandable crushing agent in that area is first heated. Since the crushing agent expands and acts as a strong lid, adverse effects such as the above-mentioned "gun" phenomenon can be completely prevented and crushing can be completed in a short time. Further, the method of embedding the heating device in the expandable crushing agent at the mouth of the hole is, specifically, as shown in FIG. In addition, it is desirable to bury the container 1 so that the open side end surface 1a is on the same plane as the perforation mouth surface 9a of the filled expandable crushing agent 9. However, in actual construction, the open side end surface 1a If the hole is buried so that the distance between the hole 1a and the bottom surface 9a of the hole is less than twice the diameter of the hole, crushing can be carried out without problems such as the "gun" phenomenon. Next, the effects will be clarified through Examples and Comparative Examples. The following experiments were conducted at a temperature of 6.
The temperature range was 8°C. Example 1 80 parts by weight of red lead was placed in a 120 mm long copper container with an inner diameter of 13 mm and a thickness of 0.35 mm with one end closed and the other end open.
12 g of a gasless combustion composition obtained by mixing 20 parts by weight of silicon is charged. Next, a platinum wire with a thickness of 30 μm was used as a heat-generating resistance wire, a pair of electrical conductors were connected to both ends of the wire, and an ignition charge consisting of 99.6 parts by weight of tricinate and 0.4 parts by weight of cellulose acetate as a binder was placed around the platinum wire. By passing the above pair of electrical conductors coated with about 8 mg into a cylindrical rubber embolus with an outer diameter of 12.5 mm, the resulting igniter is inserted into the opening of the container, and the outer periphery of the container where the embolus is located is tightened. A heating device was obtained. The calorific value of the gas-free combustion composition was 3800 cal in 12 g. Next, after drilling a total of 4 holes in a 1.0m x 1.0m x 1.0m cube-shaped concrete block according to the drilling conditions below,
Fill each container with an expandable crushing agent impregnated with water up to the opening of the hole, and heat the container so that the open end surface of the container of the heating device is 36 mm from the surface of the hole opening of the filled expandable crushing agent. Bury the device. Immediately thereafter, the electrical conductors of the four heating devices were connected in series to form a circuit, and energized using an 8 μF, 200 V blaster. For one of the four holes, when filling the hole with the expandable crushing agent, an alumel-chromel thermocouple temperature measuring part was placed at a position approximately 20 cm from the bottom of the hole, and the temperature change of the expandable crushing agent was also measured over time. We tracked and measured. The results are shown in Table 1. Drilling conditions Hole diameter: 36 mm Hole depth: 80 cm Hole spacing: 50 cm Example 2 By setting the weight of the gas-free combustion composition to 25 g,
Example 1 except that the calorific value was 7900 cal.
The test was conducted under conditions similar to the above. The results are shown in Table 1. Example 3 After filling the expandable crushing agent and burying the heating device,
The test was conducted under the same conditions as in Example 1, except that the igniter was energized after 2 hours had elapsed.
The results are shown in Table 1. Example 4 The object to be crushed has an inner diameter of 40 mm, a thickness of 1.5 mm, and a length of 65 mm.
cm, a bottomed iron pipe container with a bottom thickness of 1.5 mm,
Bury it in the sand, leaving only the 1cm length on the open side. Next, the iron pipe container is filled with expandable crushing agent up to the opening of the open part, and using the same heating device as in Example 1, the open end surface of the container of the heating device is The heating device is buried at a distance of 60mm from the surface. after that,
I immediately energized the igniter of the heating device with a 3V battery. Additionally, when filling the expandable crushing agent into the steel pipe container mentioned above, an alumel-chromel thermocouple temperature measuring section was placed approximately 10 cm from the bottom of the container to measure temperature changes in the expandable crushing agent over time. did. The results are shown in Table 1. Comparative Example 1 By setting the weight of the gas-free combustion composition to 5 g,
Example 1 except that the calorific value was 1600 cal.
The test was conducted under conditions similar to the above. The results are shown in Table 1. Comparative Example 2 The test was conducted under the same conditions as in Example 1, except that the heating device was buried so that the open end of the container of the heating device was 140 mm from the surface of the perforation opening of the expandable crushing agent. I went. The results are shown in Table 1. Comparative Example 3 A test was conducted under the same conditions as in Example 1, except that no heating device was used. The results are shown in Table 1. Comparative Example 4 A test was conducted under the same conditions as in Example 4, except that no heating device was used. The results are shown in Table 1. As is clear from the results in Table 1, by using the heating device of the present invention, embedding it at the mouth of the expandable crushing agent filled in the hole, and operating it at an arbitrary time, it is possible to Crushing can be completed in a short time. In addition, since the igniter is started by energizing it from a portable battery, blaster, or other power source, compared to conventional methods that use an electric heater as a heating device and require energization for a long time, This is advantageous in terms of security and the time required for a series of operations from the start to the end of energization. Furthermore, the present invention greatly contributes to improving work efficiency (cycle) and improving the crushing force of the expandable crushing agent, and there is no need to use a separate blockage, and the heating device can be operated at will. It has the feature that it can be carried out at any time. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の加熱装置の構造を例示する
縦断面図、第2図は、本発明の加熱装置を膨張性
破砕剤中に埋設したときの位置関係を説明するた
めの縦断面図である。 1:容器、1a:開放側端面、2:無ガス燃焼
組成物、3:点火具、4:加熱装置、5:発熱抵
抗線、6:点火薬、7:電気導線、8:塞栓、
9:膨張性破砕剤、9a:穿孔口元面、10:被
破砕物。
FIG. 1 is a vertical cross-sectional view illustrating the structure of the heating device of the present invention, and FIG. 2 is a vertical cross-sectional view illustrating the positional relationship when the heating device of the present invention is embedded in an expandable crushing agent. It is. 1: Container, 1a: Open side end surface, 2: Gasless combustion composition, 3: Igniter, 4: Heating device, 5: Heat generating resistance wire, 6: Ignition powder, 7: Electrical conductor, 8: Embolus,
9: Expandable crushing agent, 9a: Perforation mouth surface, 10: Object to be crushed.

Claims (1)

【特許請求の範囲】 1 酸化剤、可燃剤を主成分とする無ガス燃焼組
成物を充填し、点火具を装着してなる膨張性破砕
剤において、一端を閉じ他端を開放とし、長さが
被破砕物に設けられた穿孔の深さの1/3以下の容
器内に、酸化剤及び可燃剤を主成分とし、発熱量
が少なくとも2000calである無ガス燃焼組成物を
圧填し、該容器開放部に点火具を装着してなる膨
張性破砕剤用加熱装置。 2 酸化剤、可燃剤を主成分とする無ガス燃焼組
成物を充填し、点火具を装着してなる膨張性破砕
剤による破砕方法において、破砕物に設けられた
穿孔内に、水を含浸させた膨張性破砕剤を穿孔口
元まで充填し、その口元から穿孔の直径の2倍以
下の距離に、下記加熱装置Aの容器の開放側端面
が来るように加熱装置を膨張性破砕剤中に埋設
し、破砕を行うことを特徴とする破砕方法。 (A):一端を閉じ他端を開放とし、長さが被破砕物
に設けられた穿孔の深さの1/3以下の容器内に、
酸化剤及び可燃剤を主成分とし、発熱量が少な
くとも2000calである無ガス燃焼組成物を圧填
し、該容器開放部に点火具を装着してなる膨張
性破砕剤用加熱装置。
[Scope of Claims] 1. An expansible crushing agent filled with a gasless combustion composition containing an oxidizing agent and a combustible agent as main components and equipped with an igniter, one end of which is closed and the other end of which is open. A gas-free combustion composition containing an oxidizing agent and a combustible agent as main components and having a calorific value of at least 2000 cal is pressurized into a container having a depth of 1/3 or less of the depth of the perforation provided in the material to be crushed. A heating device for an expandable crushing agent that has an igniter attached to the open part of the container. 2 In a crushing method using an expansive crushing agent filled with a gasless combustion composition containing an oxidizing agent and a combustible agent as main components and equipped with an igniter, water is impregnated into the perforations provided in the crushed material. The heating device is filled in the expandable crushing agent up to the mouth of the perforation, and the heating device is buried in the expandable crushing agent so that the open end of the container of the heating device A below is at a distance of less than twice the diameter of the perforation from the mouth of the hole. A crushing method characterized by carrying out crushing. (A): In a container with one end closed and the other end open, the length is less than 1/3 of the depth of the hole made in the object to be crushed.
1. A heating device for an expandable crushing agent, comprising a gas-free combustion composition containing an oxidizing agent and a combustible agent as main components and having a calorific value of at least 2000 cal, and an igniter attached to the open part of the container.
JP24776783A 1983-12-24 1983-12-24 Heating apparatus for expansible crushing agent and crushingmethod Granted JPS60138199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24776783A JPS60138199A (en) 1983-12-24 1983-12-24 Heating apparatus for expansible crushing agent and crushingmethod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24776783A JPS60138199A (en) 1983-12-24 1983-12-24 Heating apparatus for expansible crushing agent and crushingmethod

Publications (2)

Publication Number Publication Date
JPS60138199A JPS60138199A (en) 1985-07-22
JPS6323356B2 true JPS6323356B2 (en) 1988-05-16

Family

ID=17168348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24776783A Granted JPS60138199A (en) 1983-12-24 1983-12-24 Heating apparatus for expansible crushing agent and crushingmethod

Country Status (1)

Country Link
JP (1) JPS60138199A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438412A (en) * 1977-09-02 1979-03-23 Hitachi Ltd Locating method and system of unbalanced position in rotary machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438412A (en) * 1977-09-02 1979-03-23 Hitachi Ltd Locating method and system of unbalanced position in rotary machine

Also Published As

Publication number Publication date
JPS60138199A (en) 1985-07-22

Similar Documents

Publication Publication Date Title
JP2960550B2 (en) Method and apparatus for blasting hard rock
US7591318B2 (en) Method for removing a sealing plug from a well
US4530396A (en) Device for stimulating a subterranean formation
EP1933004A1 (en) Method of controlling hardening of a compound in a wellbore
US2621744A (en) Plugging device
US3713393A (en) Igniter mechanism for solid propellants under high fluid head
JPS6323356B2 (en)
US7124820B2 (en) Exothermic tool and method for heating a low temperature metal alloy for repairing failure spots along a section of a tubular conduit
EP3659992B1 (en) Metallic mixture blasting capsule
JPS60215919A (en) Apparatus for separating tensile material of compression anchor prestressed by formation of destruction objective position
JP4431169B2 (en) Crushing cartridge and crushing method of rock or concrete structure using crushing cartridge
JPH0335799Y2 (en)
US781619A (en) Blasting apparatus.
KR20050050655A (en) Heat-producing material and device
GB2335971A (en) Bomb disposal
RU2295637C1 (en) Oil well bottom zone treatment device
JPH0368999B2 (en)
EP1461511B1 (en) Element for initiating propellant
JPS615196A (en) Crushing method of fragile substance
WO2023079313A1 (en) A chemical reaction heat source composition for use in downhole operations and associated apparatus and methods
US2820521A (en) Device for combatting lost circulation
GB2419591A (en) Pyrotechnic torch
JPS60164596A (en) Destruction method utilizing heat conducor
CA1224714A (en) Device for stimulating a subterranean formation
JPS6145090A (en) Expansible crushing agent and crushing construction method