JPS63233363A - Detecting method for flaw by eddy current - Google Patents

Detecting method for flaw by eddy current

Info

Publication number
JPS63233363A
JPS63233363A JP6697487A JP6697487A JPS63233363A JP S63233363 A JPS63233363 A JP S63233363A JP 6697487 A JP6697487 A JP 6697487A JP 6697487 A JP6697487 A JP 6697487A JP S63233363 A JPS63233363 A JP S63233363A
Authority
JP
Japan
Prior art keywords
defect
flaw
depth
flaw detection
detection signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6697487A
Other languages
Japanese (ja)
Inventor
Takahide Sakamoto
隆秀 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6697487A priority Critical patent/JPS63233363A/en
Publication of JPS63233363A publication Critical patent/JPS63233363A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To enable the detection of the exact flaw depth by determining the kind of a flaw and by assuming the flaw depth thereafter from the relationship between flaw depths and phase angles which is found beforehand in regard to flaws of said kind. CONSTITUTION:A ternary figure showing the relationships among an amplitude (s) of a flaw detection signal, a flaw depth (d), an inter-peak time difference DELTAt and the kinds of a flaw and a graph of the relationship between a phase angle theta of the flaw detection signal and the flaw depth which is found beforehand in accordance with the kind of each flaw, are prepared. Then, the flaw detection signal is obtained from a metal tube to be inspected, the kinds of a flaw is determined from the result of detection, and the depth of the flaw is assumed. In this way, the depth of the flaw can be detected accurately.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属管等の欠陥(IE1割れ、凹み等)を検
出するための渦流探傷方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an eddy current flaw detection method for detecting defects (IE1 cracks, dents, etc.) in metal pipes and the like.

〔従来技術〕[Prior art]

たとえば熱交換器の熱交換器管の検査には渦流探傷法が
用いられる。これは第4図にその装置構成を模式的に示
す如く、検出対象の金属管1内にコイル2を挿入し、こ
のコイル2に交番電流を印加しつつコイル掃引器3によ
り信号ケーブル6を掃引してコイル2を管1内で移動さ
せる。
For example, eddy current flaw detection is used to inspect heat exchanger tubes in heat exchangers. As shown schematically in FIG. 4, a coil 2 is inserted into a metal tube 1 to be detected, and while an alternating current is applied to the coil 2, a signal cable 6 is swept by a coil sweeper 3. to move the coil 2 within the tube 1.

コイル2からは交流磁場が発生され、これが管1内をコ
イル2と共に移動するので渦電流が管1の検出対象の部
位に順位誘起される。そして、管lに減肉9割れ等の欠
陥があると渦電流に乱れが生じ、これによりコイル2の
インピーダンスが変化する。従って、コイル2のインピ
ーダンス変化を探傷信号として解析すれば管1の欠陥が
検出可能である。
An alternating magnetic field is generated from the coil 2, and as this moves within the tube 1 together with the coil 2, eddy currents are induced in the portion of the tube 1 to be detected. If the tube 1 has a defect such as thinning or cracking, the eddy current will be disturbed, and the impedance of the coil 2 will change. Therefore, defects in the tube 1 can be detected by analyzing the change in impedance of the coil 2 as a flaw detection signal.

上述のコイル2のインピーダンス変化は探傷信号として
渦流探傷器4に与えられ、CRTディスプレイ40にベ
クトル波形として表示される。
The impedance change of the coil 2 described above is given to the eddy current flaw detector 4 as a flaw detection signal, and is displayed on the CRT display 40 as a vector waveform.

第5図はそのCRTディスプレイ40に表示される探傷
信号のCRT波形の一例を示しており、画面左右方向の
X軸と同上下方向のY軸との交点である原点0からa、
b、c、 dの順に8の字形のパターンで軌跡を描く。
FIG. 5 shows an example of the CRT waveform of the flaw detection signal displayed on the CRT display 40, starting from the origin 0, which is the intersection of the X-axis in the horizontal direction of the screen and the Y-axis in the vertical direction,
Draw a trajectory in the order of b, c, and d in a figure-eight pattern.

このCRTディスプレイ40上で8の字形に表示される
探傷信号を、横軸に時間をとってX成分とY成分それぞ
れの経時変化を示した波形が第6図のグラフである。こ
の第6図のグラフでは、Y成分のピーク間時間差ΔTが
示されている。
The waveform of the flaw detection signal displayed in a figure 8 shape on the CRT display 40, with time plotted on the horizontal axis, is the waveform of the X component and Y component, respectively, as shown in the graph of FIG. The graph of FIG. 6 shows the inter-peak time difference ΔT of the Y component.

ところで、渦流探傷法による欠陥の評価は一般的に、第
5図に示すCRT波形の8の字形パターンの振幅Sと位
相角θとに基づいて行われる。具体的には以下の如くで
ある。
By the way, defect evaluation by the eddy current flaw detection method is generally performed based on the amplitude S and phase angle θ of the figure-8 pattern of the CRT waveform shown in FIG. Specifically, it is as follows.

1辰幅Sは欠陥の深さよりはその欠陥の容積と対応する
傾向がある。従って、浅(て幅が広い溝状の欠陥と、深
くて幅が狭い割れ状の欠陥とがほぼ同じ振幅となる場合
が多く、両者の判別は困難である。このため、振幅Sに
より欠陥の評価を行うことは現在では余り重要視されて
いない。一方、位相角θは振幅Sに比較して、欠陥の深
さとの相関が高いので、現在ではこの位相角θを基準に
欠陥の評価を行うことが多い。
The width S tends to correspond to the volume of the defect rather than the depth of the defect. Therefore, shallow, wide, groove-like defects and deep, narrow, crack-like defects often have almost the same amplitude, making it difficult to distinguish between the two. Evaluation is not so important at present.On the other hand, since the phase angle θ has a higher correlation with the depth of the defect than the amplitude S, it is now possible to evaluate the defect based on this phase angle θ. There are many things to do.

さて、位相角θに基づく欠陥評価は、予め基準の金属管
に自然欠陥を模擬した人工欠陥を種々の深さで加工して
おき、これらの人工欠陥を測定することにより、たとえ
ば第7図に示す如く、欠陥深さと探傷信号の位相角θと
の関係(第7図の例では内外面の欠陥それぞれ及び貫通
欠陥について類別しである)を示す較正曲線を作成して
おき、実際の検査により得られた探傷信号の内のある程
度以上の振幅Sを示す信号についてその位相角θに対応
する欠陥深さを推定するものである。
Now, defect evaluation based on the phase angle θ is performed by machining artificial defects simulating natural defects on a reference metal pipe at various depths in advance and measuring these artificial defects, for example, as shown in Fig. 7. As shown in the figure, a calibration curve showing the relationship between the defect depth and the phase angle θ of the flaw detection signal (in the example shown in Fig. 7, defects on the inner and outer surfaces and through-hole defects are categorized) is created, and it is determined by the actual inspection. The defect depth corresponding to the phase angle θ is estimated for a signal showing an amplitude S above a certain level among the obtained flaw detection signals.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上述のような渦流探傷法における従来の位相角
θに基づく欠陥の評価方法では、欠陥の種類、たとえば
溝状の欠陥、減肉のような凹状の欠陥1割れのような極
めて狭い幅で深い欠陥、あるいは貫通孔等の種々の欠陥
の種類の判定は出来ず、このため予め振幅Sと欠陥深さ
との関係を求めである人工欠陥とは形状が異なる欠陥に
対しては正確な欠陥深さが得られないという問題があっ
た。
However, in the conventional defect evaluation method based on the phase angle θ in the eddy current flaw detection method described above, it is difficult to evaluate the type of defect, such as a groove-like defect, a concave defect such as thinning, and an extremely narrow width such as a single crack. It is not possible to determine the types of defects such as deep defects or through holes, so it is necessary to determine the relationship between the amplitude S and the defect depth in advance. There was a problem that it was not possible to obtain

本発明は上述のような問題の解決を目的としてなされた
ものであり、まず欠陥の種類を判定した上でそれに応じ
て欠陥の深さを推定することにより、従来に比してより
正確に欠陥の深さを推定し得る渦流探傷方法の提供を目
的とする。
The present invention was made with the aim of solving the above-mentioned problems, and by first determining the type of defect and then estimating the depth of the defect accordingly, it is possible to identify defects more accurately than before. The purpose is to provide an eddy current flaw detection method that can estimate the depth of

c問題点を解決するための手段〕 本発明の渦流探傷方法は、得られた探傷信号の位相角に
基づいて欠陥の概略の深さを推定し、この推定値と、振
幅と、ピーク間時間差とから欠陥の種類を判定し、欠陥
の種類それぞれについて予め求めである欠陥深さと位相
角との関係から欠陥深さを推定するものである。
Means for Solving Problem c] The eddy current flaw detection method of the present invention estimates the approximate depth of a defect based on the phase angle of the obtained flaw detection signal, and uses this estimated value, amplitude, and peak-to-peak time difference. The defect type is determined from the above, and the defect depth is estimated from the relationship between the defect depth and phase angle, which are determined in advance for each defect type.

本発明は、検査対象の導電性物体に対向されたコイルに
交番電流を印加し、発生される渦電流の前記導電性物体
の欠陥に起因する変化を探傷信号として得ることにより
、前記導電性物体の欠陥を検出する渦流探傷方法におい
て、複数の欠陥の種類それぞれに応じて探傷信号の位相
角と欠陥深さとの関係予めを求めておき、得られた探傷
信号の位相角と、振幅と、極大値と極小値との間の時間
差との組合わせにより欠陥の種類を判定し、判定された
欠陥の種類の位相角と欠陥深さとの関係に基づいて前記
導電性物体の欠陥の深さを推定することを特徴とする。
The present invention applies an alternating current to a coil facing a conductive object to be inspected, and obtains a change in the generated eddy current due to a defect in the conductive object as a flaw detection signal. In the eddy current flaw detection method for detecting defects, the relationship between the phase angle of the flaw detection signal and the defect depth is determined in advance according to each of multiple defect types, and the phase angle, amplitude, and maximum of the flaw detection signal obtained are determined in advance. Determine the type of defect based on a combination of the time difference between the value and the minimum value, and estimate the depth of the defect in the conductive object based on the relationship between the phase angle of the determined defect type and the defect depth. It is characterized by

〔作用〕[Effect]

本発明の渦流探傷方法では、まず欠陥の種類が判定され
た後、その種類の欠陥について予め求められている欠陥
深さと位相角との関係から欠陥深さが推定される。
In the eddy current flaw detection method of the present invention, the type of defect is first determined, and then the defect depth is estimated from the relationship between the defect depth and the phase angle that have been determined in advance for that type of defect.

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面に基づいて詳述す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on drawings showing embodiments thereof.

本発明は、検出対象の導電性物体、たとえば熱交換器管
のような金属の管1内に挿入され移動されるコイル2に
交番電流を印加することにより発生する渦電流の管1の
種々の欠陥に対応する変化により生じるコイル2のイン
ピーダンス変化として得られる探傷信号の振幅Sが欠陥
の容積と高い相関が有ること、同じく位相角θが欠陥の
深さと相関が有ること、そしてY成分のピーク間時間差
ΔTが欠陥の軸方向(検出対象管の軸方向)の長さと相
関があることから、これらの諸元を総合的に判断すれば
、欠陥の種類をほぼ正確に判定可能であることに着目し
てなされたものである。
The present invention deals with various types of eddy currents generated by applying an alternating current to a coil 2 inserted and moved within a conductive object to be detected, for example a metal tube 1 such as a heat exchanger tube. The amplitude S of the flaw detection signal obtained as a change in the impedance of the coil 2 caused by the change corresponding to the defect has a high correlation with the volume of the defect, the phase angle θ also has a correlation with the depth of the defect, and the peak of the Y component. Since the time difference ΔT is correlated with the length of the defect in the axial direction (the axial direction of the tube to be detected), it is possible to almost accurately determine the type of defect by comprehensively evaluating these specifications. This was done with this in mind.

具体的には、まず第5図に示した探傷信号のベクトル波
形の位相角θにより欠陥深さdの概略を推定する。これ
は前述の如く、従来一般に行われている手法と同様に、
たとえば第7図に示した如き標準較正曲線を作成してお
き、これに基づいて行えばよい。
Specifically, first, the defect depth d is roughly estimated using the phase angle θ of the vector waveform of the flaw detection signal shown in FIG. As mentioned above, this method is similar to the conventional method,
For example, a standard calibration curve as shown in FIG. 7 may be prepared in advance, and the measurement may be performed based on this.

次に、振幅S、欠陥深さd、第6図に示したY成分のピ
ーク間時間差ΔTから欠陥の種別を判定する。
Next, the type of defect is determined from the amplitude S, the defect depth d, and the inter-peak time difference ΔT of the Y component shown in FIG.

この欠陥種別の判定は、たとえば第1図に示す如く、振
幅S、欠陥深さd、ピーク間時間差ΔTの三つの要素を
それぞれ正三角形の頂点にとった三元図により容易に可
能である。具体的には以下の5群に分類可能である。
This defect type can be easily determined using a ternary diagram in which three elements, amplitude S, defect depth d, and peak-to-peak time difference ΔT, are each placed at the apex of an equilateral triangle, as shown in FIG. 1, for example. Specifically, it can be classified into the following five groups.

第1群・・・減肉のような凹状の欠陥 振幅S・・・大 欠陥深さd・・・小〜中 ピーク間時間差ΔT・・・大 第■群・・・円周方向の割れ、i状の欠陥振幅S・・・
大 欠陥深さd・・・中〜大 ピーク間時間差ΔT・・・小〜中 第■群・・・孔食状の欠陥 振f@S・・・中 欠陥深さd・・・大 ピーク間時間差ΔT・・・小 第■群・・・割れ状の欠陥 振幅S・・・小〜中 欠陥深さd・・・大 ピーク間時間差ΔT・・・小〜中 第V群・・−雑音 第■群〜第■群以外のすべて それぞれについて注釈を加えると、第1群は、欠陥容積
が大(振幅Sが大)、欠陥深さdが小〜中。
1st group...Concave defect amplitude S like thinning...Large defect depth d...Small to medium peak time difference ΔT...Large 2nd group...Crack in circumferential direction, i-shaped defect amplitude S...
Large defect depth d... Time difference between medium and large peaks ΔT... Small to medium Group ■... Pitting-like defect vibration f@S... Medium defect depth d... Between large peaks Time difference ΔT...Small group ■...Crack-like defect amplitude S...Small to medium defect depth d...Large peak-to-peak time difference ΔT...Small to medium Group V...-Noise number Adding notes for all groups except group ① to group ①, in group 1, the defect volume is large (amplitude S is large) and the defect depth d is small to medium.

欠陥の軸方向長さが大(ピーク間時間差ΔTが大)であ
り、これは比較的浅いが大きな欠陥、即ち浅く凹んだ欠
陥、具体的には減肉のような欠陥である。
The axial length of the defect is large (the peak-to-peak time difference ΔT is large), and this is a relatively shallow but large defect, that is, a shallow concave defect, specifically a defect such as thinning.

第■群は、欠陥容積が大(振幅Sが大)、欠陥深さdが
中〜大、欠陥の軸方向長さが小〜中(ピーク間時間差Δ
Tが小〜中)であり、これは比較的深いが幅が狭く、し
かも管1の軸方向長さがあまり長くはない欠陥、即ち管
lの円周方向に長く狭く且つ深い欠陥、具体的には円周
方向に延びる割れまたは溝状の欠陥である。  。
Group ■ has a large defect volume (large amplitude S), medium to large defect depth d, and small to medium defect axial length (peak-to-peak time difference Δ
T is small to medium), and this is a defect that is relatively deep but narrow, and the axial length of the tube 1 is not very long, that is, a defect that is long, narrow, and deep in the circumferential direction of the tube 1. This is a crack or groove-like defect that extends in the circumferential direction. .

第■群は、欠陥容積が中(振幅Sが中)、欠陥深さdが
大、欠陥の軸方向長さが小(ピーク間時間差ΔTが小)
であり、これは比較的深いが幅が狭く、しかも容積も小
さい欠陥、即ち管lの厚み方向に延びる礼状の欠陥、具
体的には貫通孔に至る前の孔食状の欠陥である。
Group ■ has a medium defect volume (medium amplitude S), a large defect depth d, and a small axial length of the defect (small inter-peak time difference ΔT).
This is a defect that is relatively deep, narrow in width, and small in volume, that is, a pitting-like defect extending in the thickness direction of the pipe 1, specifically, a pitting-like defect before reaching the through hole.

第■群は、欠陥容積が小〜中(振幅Sが小〜中)。Group (2) has a small to medium defect volume (small to medium amplitude S).

欠陥深さdが大、欠陥の軸方向長さが小〜中(ピーク間
時間差ΔTが小〜中)であり、これは比較的深いが幅は
それ程広くなく、しかも管丁の軸方部長さが余り長くは
ない欠陥、即ち深くてやや長い欠陥、具体的には割れの
ような欠陥である。
The defect depth d is large, the axial length of the defect is small to medium (the peak-to-peak time difference ΔT is small to medium), which is relatively deep, but the width is not very wide, and the axial length of the pipe is small to medium. This is a defect that is not very long, that is, a deep and somewhat long defect, specifically a crack-like defect.

以上のようにして、振幅S、欠陥深さd、ピーク間時間
差ΔTの三つの要素に基づいて欠陥の種類が判定可能で
あるから、得られた探傷信号からその欠陥のft類が判
される。そして、判定された欠陥の種類それぞれに対応
した較正曲線に従って、位相角θを基に欠陥の深さを推
定する。
As described above, since the type of defect can be determined based on the three elements of amplitude S, defect depth d, and peak-to-peak time difference ΔT, the ft class of the defect can be determined from the obtained flaw detection signal. . Then, the depth of the defect is estimated based on the phase angle θ according to a calibration curve corresponding to each determined defect type.

第2図は欠陥の種類に応じた位相角θと欠陥深さとの関
係を示すグラフであり、−例として第3図に示す如き4
種類の欠陥、即ち内面孔食状欠陥■、外面孔食状欠陥■
、外面円周リング状欠陥■それぞれについての探傷信号
の位相角θと欠陥深さとの関係を示しである。なお、内
面及び外面の孔食状欠陥■、■は共に管1の肉厚の10
0%にまで深くなった場合には貫通孔■になる。
FIG. 2 is a graph showing the relationship between the phase angle θ and the defect depth depending on the type of defect.
Types of defects, namely internal pitting defects■, external pitting defects■
, shows the relationship between the phase angle θ of the flaw detection signal and the defect depth for each of the outer circumferential ring-shaped defects. Note that pitting defects (■) and (■) on the inner and outer surfaces are both 10% of the wall thickness of tube 1.
When the depth reaches 0%, it becomes a through hole (■).

第2図のグラフからは、たとえば同じ外面の欠陥であっ
ても、孔食状欠陥■と円周リング状欠陥■とでは探傷信
号の位相角θが90”の場合にそれぞれ欠陥深さは40
%と5%と推定される。この場合、従来の欠陥評価方法
では、第4図からも明らかな如く、いずれの場合も約7
5%の欠陥深さと推定されていた。
From the graph in Figure 2, for example, even if the defect is on the same outer surface, the pitting-like defect ■ and the circumferential ring-like defect ■ have a defect depth of 40" when the phase angle θ of the flaw detection signal is 90".
% and 5%. In this case, in the conventional defect evaluation method, as is clear from FIG.
The defect depth was estimated to be 5%.

従って、本発明方法の実施に際しては、まず第1図に示
す如き探傷信号の振幅S、欠陥深さd、ピーク間時間差
ΔTと欠陥の!類との関係を示す三元図と、第2図に示
す如きそれぞれの欠陥の種類に応じた探傷信号の位相角
θと欠陥深さとの関係を予め求めたグラフとを用意する
。そして、第4図の如き装置にて検査対象の管lから探
傷信号を得て、その結果から第1図に基づいて欠陥の種
類を判定し、第2図に基づいて欠陥深さを推定する。
Therefore, when carrying out the method of the present invention, first, the amplitude S of the flaw detection signal, the defect depth d, the time difference between peaks ΔT, and the value of the defect as shown in FIG. A ternary diagram showing the relationship between the defects and the defect depth, and a graph showing the relationship between the phase angle θ of the flaw detection signal and the defect depth according to each defect type as shown in FIG. 2 are prepared. Then, a flaw detection signal is obtained from the pipe to be inspected using a device as shown in Fig. 4, the type of defect is determined from the results based on Fig. 1, and the defect depth is estimated based on Fig. 2. .

なお、上記実施例はたとえば熱交換器管のような金属管
を検査対象としているが、管に限らず種々の金属体、よ
り具体的には導電性物体の欠陥検査に本発明は適用可能
である。
In addition, although the above-mentioned embodiment inspects metal tubes such as heat exchanger tubes, the present invention is applicable not only to tubes but also to defect inspections of various metal objects, more specifically conductive objects. be.

〔効果〕〔effect〕

以上のように本発明によれば、得られた探傷信号の位相
角、振幅、ピーク間時間差から欠陥の種類が判定され、
この判定された欠陥の種類に応じて欠陥深さの推定が行
えるので、従来に比してより正確な欠陥深さが検出可能
になる。
As described above, according to the present invention, the type of defect is determined from the phase angle, amplitude, and time difference between peaks of the obtained flaw detection signal,
Since the defect depth can be estimated according to the determined defect type, the defect depth can be detected more accurately than in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は探傷信号の振幅S、欠陥深さd、ピーク間時間
差ΔTと欠陥の種類との関係を示す三元図、第2図は種
々の欠陥の種類それぞれに対応する位相角θと欠陥深さ
との較正曲線の一例を示すグラフ、第3図は第2図のグ
ラフに較正曲線が示された各欠陥の説明図、第4図は一
般的な渦流探傷方法の実施状態を示す模式図、第5図は
探傷信号のベクトル波形を示す模式図、第6図は第5図
のベクトル波形をX及びY成分それぞれについて経時的
に表したチャート、第7図は従来方法にて使用される人
工欠陥の深さと探傷信号の位相角θとの較正曲線を示す
グラフである。 1・・・管  2・・・コイル S・・・振幅  θ・・・位相角  ΔT・・・ピーク
間時間差  d・・・(推定)欠陥深さ 特 許 出願人  住友金属工業株式会社代理人 弁理
士  河 野   登 夫も1図 隻3図 欠下急 ラマ瞑ご (閃厚丸) %2  図 隻4図 篤5図 0  25  50  75  100(’/、)人工
欠殆i采ご(肉厚丸) 第 7 図 第6図
Figure 1 is a ternary diagram showing the relationship between the amplitude S of the flaw detection signal, the defect depth d, the time difference ΔT between peaks, and the defect type, and Figure 2 is the relationship between the phase angle θ and the defect for each of the various defect types. A graph showing an example of a calibration curve with depth, Fig. 3 is an explanatory diagram of each defect whose calibration curve is shown in the graph of Fig. 2, and Fig. 4 is a schematic diagram showing the implementation state of a general eddy current flaw detection method. , Fig. 5 is a schematic diagram showing the vector waveform of the flaw detection signal, Fig. 6 is a chart showing the vector waveform of Fig. 5 over time for each of the X and Y components, and Fig. 7 is used in the conventional method. It is a graph showing a calibration curve between the depth of an artificial defect and the phase angle θ of a flaw detection signal. 1...Pipe 2...Coil S...Amplitude θ...Phase angle ΔT...Time difference between peaks d...(estimated) defect depth Patent Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent Attorney Noboru Kono also has 1 figure and 3 figures missing. Circle) Figure 7 Figure 6

Claims (1)

【特許請求の範囲】 1、検査対象の導電性物体に対向されたコイルに交番電
流を印加し、発生される渦電流の前記導電性物体の欠陥
に起因する変化を探傷信号として得ることにより、前記
導電性物体の欠陥を検出する渦流探傷方法において、 複数の欠陥の種類それぞれに応じて探傷信 号の位相角と欠陥深さとの関係予めを求めておき、 得られた探傷信号の位相角と、振幅と、極 大値と極小値との間の時間差との組合わせにより欠陥の
種類を判定し、 判定された欠陥の種類の位相角と欠陥深さ との関係に基づいて前記導電性物体の欠陥の深さを推定
することを特徴とする渦流探傷方法。
[Claims] 1. By applying an alternating current to a coil facing a conductive object to be inspected and obtaining a change in the generated eddy current due to a defect in the conductive object as a flaw detection signal, In the eddy current flaw detection method for detecting defects in a conductive object, the relationship between the phase angle of the flaw detection signal and the defect depth is determined in advance according to each of a plurality of defect types, and the phase angle of the obtained flaw detection signal and Determine the type of defect based on a combination of the amplitude and the time difference between the maximum value and the minimum value, and determine the type of defect in the conductive object based on the relationship between the phase angle of the determined defect type and the defect depth. An eddy current flaw detection method characterized by estimating depth.
JP6697487A 1987-03-20 1987-03-20 Detecting method for flaw by eddy current Pending JPS63233363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6697487A JPS63233363A (en) 1987-03-20 1987-03-20 Detecting method for flaw by eddy current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6697487A JPS63233363A (en) 1987-03-20 1987-03-20 Detecting method for flaw by eddy current

Publications (1)

Publication Number Publication Date
JPS63233363A true JPS63233363A (en) 1988-09-29

Family

ID=13331503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6697487A Pending JPS63233363A (en) 1987-03-20 1987-03-20 Detecting method for flaw by eddy current

Country Status (1)

Country Link
JP (1) JPS63233363A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350406A (en) * 2001-05-28 2002-12-04 Kawasaki Steel Corp Eddy current test equipment
JP2007225564A (en) * 2006-02-27 2007-09-06 Mitsubishi Heavy Ind Ltd Method and apparatus for evaluating eddy-current flaw detecting signal
JP2011075540A (en) * 2009-09-07 2011-04-14 Hitachi-Ge Nuclear Energy Ltd Eddy-current flaw detection method and reference pieces used for the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113146A (en) * 1983-11-24 1985-06-19 Kobe Steel Ltd Phase analyzing method of eddy current examination
JPS6236555A (en) * 1985-08-09 1987-02-17 Hitachi Ltd Eddy current inspection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113146A (en) * 1983-11-24 1985-06-19 Kobe Steel Ltd Phase analyzing method of eddy current examination
JPS6236555A (en) * 1985-08-09 1987-02-17 Hitachi Ltd Eddy current inspection

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350406A (en) * 2001-05-28 2002-12-04 Kawasaki Steel Corp Eddy current test equipment
JP4715034B2 (en) * 2001-05-28 2011-07-06 Jfeスチール株式会社 Eddy current flaw detector
JP2007225564A (en) * 2006-02-27 2007-09-06 Mitsubishi Heavy Ind Ltd Method and apparatus for evaluating eddy-current flaw detecting signal
JP2011075540A (en) * 2009-09-07 2011-04-14 Hitachi-Ge Nuclear Energy Ltd Eddy-current flaw detection method and reference pieces used for the same

Similar Documents

Publication Publication Date Title
WO2017008621A1 (en) Micro-magnetic detection method and device
CN110702783A (en) Array eddy current method for detecting thermal fatigue cracks of water-cooled wall tube
CN108692193A (en) A kind of Pulsed Eddy Current Testing System and method of small-caliber pipeline defect
JP2007225564A (en) Method and apparatus for evaluating eddy-current flaw detecting signal
US5055783A (en) Magnetic field strength indicator for use prior to a magnetic particle inspection procedure
CN106706759B (en) Method for evaluating defects of welding joint of P92 steel main steam pipeline of ultra-supercritical generator set
US5821747A (en) Method and apparatus for scanning a plurality of parallel pipes for flaws using tube-to-tube through transmissions
JPS63233363A (en) Detecting method for flaw by eddy current
JP6175091B2 (en) Eddy current inspection device and eddy current inspection method
JPH06501105A (en) How to inspect heat exchanger pipes inside a heat exchanger
Pearson et al. A study of MFL signals from a spectrum of defect geometries
JP2000314728A (en) Pulsed eddy current flaw detecting device
JP3705327B2 (en) Metal pipe internal damage inspection method
JP2007163263A (en) Eddy current flaw detection sensor
JP2798199B2 (en) Noise Removal Method in Eddy Current Testing
JPH05312787A (en) Method for determination for eddy current examination of piping
Goldfine et al. MWM®-Array Electromagnetic Techniques for Crack Sizing, Weld Assessment, Wall Loss/Thickness Measurement and Mechanical Damage Profilometry
US6563309B2 (en) Use of eddy current to non-destructively measure crack depth
Al-Qadeeb Tubing inspection using multiple NDT techniques
JPS62121347A (en) Defect inspecting method for thin pipe
JPS6241342B2 (en)
Tomizawa et al. Probabilistic evaluation of detection capability of eddy current testing to inspect pitting on a stainless steel clad using multiple signal features
JP3426748B2 (en) Eddy current detection test method
JP5520061B2 (en) Internal defect evaluation method by eddy current method
CN211553856U (en) Ring type eddy current testing probe