JPS63233343A - Pressure sensor for detecting liquid level - Google Patents

Pressure sensor for detecting liquid level

Info

Publication number
JPS63233343A
JPS63233343A JP6663987A JP6663987A JPS63233343A JP S63233343 A JPS63233343 A JP S63233343A JP 6663987 A JP6663987 A JP 6663987A JP 6663987 A JP6663987 A JP 6663987A JP S63233343 A JPS63233343 A JP S63233343A
Authority
JP
Japan
Prior art keywords
pressure
projection
diaphragm
electrode plate
conductive rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6663987A
Other languages
Japanese (ja)
Inventor
Masami Suzuki
正美 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6663987A priority Critical patent/JPS63233343A/en
Publication of JPS63233343A publication Critical patent/JPS63233343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To reduce cost and to enhance accuracy, by constituting the title sensor so that electrode plate is pressed by a press shaft moving with the expansion of a diaphragm through a projection. CONSTITUTION:When a diaphragm receives the pressure from a pressure introducing pipe 19, the diaphragm 20 expands and a press shaft 22 moves to press one electrode plate 23 from above through a projection 27. The resistance value of pressure-sensitive conductive rubber 26 changes corresponding to the pressing force of said shaft 22 and a microcomputer 9 obtains the output accompanying the change in the resistance value. Herein, since one electrode plate 23 is pressed through the projection 27 and the area of the end surface of the press shaft 22 is made larger than that of the leading end of the projection 27, even when the position of the press shaft 22 is slightly shifted from the positions of electrode plates 23, 24 at an assembling time, so far as the press shaft 22 is brought into contact with the projection 27, the press position of the press shaft 22 to the electrode plate 23 becomes the place provide with the projection 27. By this method, cost is reduced and accuracy can be enhanced.

Description

【発明の詳細な説明】 (イ〉 産業上の利用分野 本発明は、洗濯機等に使用される液位検知用圧力センサ
ーに関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Industrial Application Field The present invention relates to a pressure sensor for detecting liquid level used in washing machines and the like.

(ロ) 従来の技術 一般的な洗濯機を第13rMに基づいて説明する。(b) Conventional technology A general washing machine will be explained based on the 13th rM.

(1)は機枠、(2)は機枠(1)の上部後方に設けら
れた操作部、(3)は機枠(1)に内設された外槽、(
4)は外槽(3)に内股され、周囲に脱水孔(5)・・
・を有する内槽、(6)は内槽(4)の底部に配設きれ
た大径山型の回転翼、(7)は駆動モータであり、内槽
(4)及び回転翼(6)に動力伝達機構(8)を介して
連結され、洗濯時には回転翼(6)を回転浮せ、脱水時
には内槽(4)、回転翼(6)共に高速回転させる。(
9)は外槽(3)の底部に設けた排水口、(10)は排
水電磁弁、(11)は排水ホース、(12)は給水路(
13)中に設けた給水電磁弁である。そして、(14)
は外槽(3〉の底部−角に設けたエアートラップであり
、操作部く2)内の圧力スイッチ〈15)に圧力ホース
(16)を介して連結している。
(1) is the machine frame, (2) is the operation section provided at the upper rear of the machine frame (1), (3) is the outer tank installed inside the machine frame (1), (
4) is placed inside the outer tank (3), and there are dehydration holes (5) around it.
(6) is a large-diameter mountain-shaped rotor blade disposed at the bottom of the inner tank (4), (7) is a drive motor, and the inner tank (4) and the rotor blade (6) The rotary blade (6) is rotated and floated during washing, and both the inner tank (4) and the rotary blade (6) are rotated at high speed during dehydration. (
9) is the drain port installed at the bottom of the outer tank (3), (10) is the drain solenoid valve, (11) is the drain hose, and (12) is the water supply channel (
13) Water supply solenoid valve installed inside. And (14)
is an air trap provided at the bottom corner of the outer tank (3), and is connected to the pressure switch (15) in the operating section (2) via a pressure hose (16).

前記圧力スイッチ(15)は、例えば実公昭45−11
868号公報に示されるものであり、前記エアートラッ
プ(14)内の空気圧を受け、規定圧力を受圧した時に
接点が切替るものである。
The pressure switch (15) is, for example,
This is disclosed in Japanese Patent No. 868, and receives the air pressure in the air trap (14), and the contact switches when a specified pressure is received.

然しなから、このような圧力スイッチ(15)は前記規
定圧力をせいぜい3.4段階にしか決めることができず
、従って、水位も段階的にしか検知できない、しかも、
これは操作者が予め所望の水位を設定しなければならな
いので、例えば電子制御式全自動洗濯機のように洗濯物
の量を自動的に検知し、それに応じて水位を自動的に設
定するものに対して適用できない。
However, such a pressure switch (15) can only determine the specified pressure in 3.4 steps at most, and therefore can only detect the water level in steps.
This requires the operator to set the desired water level in advance, so for example, an electronically controlled fully automatic washing machine that automatically detects the amount of laundry and automatically sets the water level accordingly. cannot be applied to

そこで、この圧力スイッチ(15)に代わって半導体圧
力センサーを使用したものが特開昭60−242882
号公報に示されている。この半導体圧力センサーは、シ
リコンの薄膜が圧力によりその抵抗値を変化させること
を利用して、該抵抗値を電圧に変換することにより1内
の水位を検知しようとするものである。
Therefore, a device using a semiconductor pressure sensor instead of this pressure switch (15) was disclosed in Japanese Patent Application Laid-open No. 60-242888.
It is shown in the publication No. This semiconductor pressure sensor uses the fact that a silicon thin film changes its resistance value due to pressure, and attempts to detect the water level inside the sensor by converting the resistance value into voltage.

然しながら、このようにシリコンを使用するものは、周
囲の温度によって特性が異なり、製品として使用するた
めには、温度補償が必要であり、そのための回路を考慮
するとコスト的に高価なものとなる。
However, devices that use silicon in this way have different characteristics depending on the surrounding temperature, and in order to be used as a product, temperature compensation is required, and the cost becomes expensive when the circuit for this is taken into account.

(ハ)発明が解決しようとする問題点 本発明は、感圧導電性ゴムを利用した液位検知用センサ
ーであって、低コスト且つ高精度なものを提供すること
を目的とする。
(c) Problems to be Solved by the Invention An object of the present invention is to provide a liquid level detection sensor using pressure-sensitive conductive rubber, which is low in cost and highly accurate.

(ニ) 問題点を解決するための手段 本発明の液位検知用圧力センサーは、圧力導入部を有す
るセンサーケースと、該センサーケース内を1次側と2
次側とに区画するよう配設され1、前記圧力導入部から
の圧力に応動して膨張・収縮するダイヤフラムと、該ダ
イヤフラムの2次側に装着されたプレートと、該プレー
トに設けられた押圧軸と、前記感圧導電性ゴムを挾持し
た一対の電極板とを備え、前記一方の電極板の上面に突
起を設け、前記一対の電極板を、前記突起が前記押圧軸
の端面に対向する゛よう前記センサーケース内に配設し
たものである。
(d) Means for solving the problems The pressure sensor for liquid level detection of the present invention includes a sensor case having a pressure introduction part, and a primary side and a secondary side inside the sensor case.
a diaphragm disposed so as to be partitioned into a next side and a diaphragm that expands and contracts in response to pressure from the pressure introducing section; a plate attached to the secondary side of the diaphragm; and a press provided on the plate. a shaft, and a pair of electrode plates sandwiching the pressure-sensitive conductive rubber; a projection is provided on the upper surface of one of the electrode plates; the pair of electrode plates is arranged such that the projection faces the end surface of the pressing shaft; The sensor is disposed inside the sensor case.

(ホ)作用 即ち、ダイヤフラムの膨張に伴なって移動する押圧軸で
、突起を介してxi板(感圧導電性ゴム)を押圧するの
で、感圧導電性ゴムの押圧ポイントが常に一定で、押圧
軸が少々左右にずれても、この抑圧ポイントが狂うこと
がない。
(E) Action: The pressing shaft that moves with the expansion of the diaphragm presses the xi plate (pressure-sensitive conductive rubber) through the protrusion, so the pressing point of the pressure-sensitive conductive rubber is always constant; Even if the pressure axis shifts slightly to the left or right, this suppression point will not go out of order.

くべ)実施例 本発明の実施例を各図面に基づいて説明する。Kube) Example Embodiments of the present invention will be described based on the drawings.

但し、従来例と同等の箇所は同符号を用い説明を省略す
る。
However, the same reference numerals will be used for the same parts as in the conventional example, and the explanation will be omitted.

第1閃及び第2図は、洗濯機の水位検知のために前記°
圧力スイッチ(15)に代えて使用する圧力センサー(
17)を示し、以下この圧力センサー(17)の構造を
説明する。
The first flash and the second figure are for water level detection of washing machine.
Pressure sensor (
17), and the structure of this pressure sensor (17) will be explained below.

(18)は前記圧力センサー(17)のケースであり、
圧力導入管(19)を有する上ケース(18a)と下ケ
ース(18b)とを互いに蝉子止めすることにより形成
される。 (20)は前記ケース(18)内を1次側(
圧力導入側)と2次側(下ケース側)とに区画するよう
前記上ケース(18a)に装着キれたダイヤフラムであ
り、前記圧力導入管(19)から導入きれる圧力に応じ
て膨張・収縮する。 (21)は前記ダイヤフラノ・(
20)の裏面(2次側)に装着された円形のプレートで
、ダイヤフラム(20)の受けた圧力を平均集約化する
ためのものであり、その中央部には、円柱状の押圧軸(
22)が突出形成されている。従って、前記ダイヤフラ
ム(20)が受ける圧力に応じて前記押圧軸(22)が
第1図中上下動する。
(18) is a case of the pressure sensor (17),
It is formed by locking together an upper case (18a) and a lower case (18b) having a pressure introduction pipe (19). (20) connects the inside of the case (18) to the primary side (
It is a diaphragm attached to the upper case (18a) so as to divide it into a secondary side (pressure introduction side) and a secondary side (lower case side), and expands and contracts according to the pressure that can be introduced from the pressure introduction pipe (19). do. (21) is the aforementioned diamond flannel (
It is a circular plate attached to the back surface (secondary side) of the diaphragm (20), and is used to average and centralize the pressure received by the diaphragm (20).In the center of the plate, there is a cylindrical pressure shaft (
22) is formed protrudingly. Therefore, the pressing shaft (22) moves up and down in FIG. 1 according to the pressure that the diaphragm (20) receives.

さて、(23)及び(24)は電極板であり、共に長方
形状を成し、一方が他方の半分程の長さであり、この一
方の電極板(23)の基端部(23a)を他方の電極板
(24)の端部(24a)に絶縁性の接着材(25)で
接着し、且つ、間には後述する感圧導電性ゴム(26)
を挾持している。更に、前記一方の電極板(23)の自
由端部(23b)上面には、その断面積が前記押圧軸(
22)の断面積よりも小さい円柱状の突起(27)が設
けられている。
Now, (23) and (24) are electrode plates, both of which have a rectangular shape, one being about half the length of the other, and the base end (23a) of this one electrode plate (23). It is adhered to the end (24a) of the other electrode plate (24) with an insulating adhesive (25), and there is a pressure-sensitive conductive rubber (26) to be described later in between.
is holding. Furthermore, the upper surface of the free end (23b) of the one electrode plate (23) has a cross-sectional area that is equal to the pressing shaft (23b).
A cylindrical projection (27) smaller than the cross-sectional area of 22) is provided.

そして、前記他方の電極板(24)を前記下ケース(1
8b)の内底面に螺子止め固定するわけであるが、この
際、前記突起(27)の端面が前記押圧軸(22)の端
面に、同志的に近接対向するような位置になるよう調整
しておく、尚、(28)及び(29)は前記一対の電極
板(23)(24)に夫々接続きれ、該一対の電極板(
23)(24)間の電圧を検出するだめの端子である。
Then, the other electrode plate (24) is attached to the lower case (1).
8b), and at this time, the end surface of the protrusion (27) is adjusted so that it is in a position close to and facing the end surface of the pressing shaft (22). Note that (28) and (29) can be connected to the pair of electrode plates (23) and (24), respectively, and
This is a terminal for detecting the voltage between 23 and 24.

ココで前記感圧導電性ゴム(26)は、シリコンゴムに
ゲラファイト粒子を混練成型した厚さ0.5〜IIのシ
ート状のもので、圧力を加えることにより加えられた圧
力に応じてゴムの厚さ方向の抵抗値が連続的に変化する
。前記感圧導電性ゴムは、従来例で述べた半導体圧力セ
ンサーと同じくシリコンを使用しているが、第4図に示
す通り、温度変化に対し出力がほとんど変化せず誤差が
5%以下であるので補償の必要はない。
Here, the pressure-sensitive conductive rubber (26) is a sheet-like material with a thickness of 0.5 to II made by kneading and molding gelaphite particles into silicone rubber. The resistance value in the thickness direction changes continuously. The pressure-sensitive conductive rubber uses silicon like the semiconductor pressure sensor described in the conventional example, but as shown in Figure 4, the output hardly changes with temperature changes and the error is less than 5%. Therefore, there is no need for compensation.

第5図は、感圧導電性ゴム(26)(例えば横浜工業ゴ
ム製C3−57型等)を第6図の如く一対の電極板(2
3)(24)間に挾んで上方から加圧した時の電極板(
23)(24)間の抵抗値の変化を示している。即ち、
加える圧力に応じて絶縁状態(10MΩ以上)から導電
状態(50Ω以下)へと漸次抵抗値が減少するもので、
抵抗値変化型感圧導電性ゴムと称している。
FIG. 5 shows a pressure-sensitive conductive rubber (26) (for example, Yokohama Industrial Rubber Co., Ltd. C3-57 type, etc.) attached to a pair of electrode plates (26) as shown in FIG.
3) Electrode plate when placed between (24) and pressurized from above (
It shows the change in resistance value between 23) and 24. That is,
The resistance value gradually decreases from an insulating state (10MΩ or more) to a conductive state (50Ω or less) depending on the applied pressure.
It is called resistance value change type pressure-sensitive conductive rubber.

因みに、第7図は、槽内の水位を変化きせた時の従来の
圧力スイッチ(15)のダイヤフラムに加わる圧力の変
化を示し、図より一般的にダイヤフラムには100g〜
400gの圧力が加わることが判る(勿論ダイヤフラム
の受圧面積によってこの圧力は多少異なる)。
Incidentally, Figure 7 shows the change in pressure applied to the diaphragm of a conventional pressure switch (15) when the water level in the tank is changed.
It can be seen that a pressure of 400 g is applied (of course, this pressure varies somewhat depending on the pressure receiving area of the diaphragm).

第8ryAに前記感圧導電性ゴム(26)を挟持した一
対の電極板(23)(24)間の電圧を検出するための
回路(28)の−例を示す、この回路によれば、第10
図Aの通り前記感圧導電性ゴムク26)に加わる圧力に
比例した回路出力Vaxが得られる。
An example of a circuit (28) for detecting the voltage between a pair of electrode plates (23) and (24) sandwiching the pressure-sensitive conductive rubber (26) is shown in the eighth ryA. 10
As shown in Figure A, a circuit output Vax proportional to the pressure applied to the pressure-sensitive conductive rubber 26) is obtained.

第9図は、マイクロコンピュータ(29)(以下マイフ
ンと称す)を中心とした洗濯機の制御機構をブロック図
化したものであり、前記マイコン(29)は周知の如<
 CPU、ROM、RAM、 シス5−ムバス等から構
成される。(30)は比較回路であり、前記マイコン(
29)が予めROM内に記憶していた基準値をD/A変
換回路(31)により変換して得た値と第8図に示す前
記圧力センサー電圧検出回路(28)の出力Voutと
を比較し、比較出力を前記マイコ>−(29)に送出す
る。前記基準値とは、槽内に規定水位まで給水した時に
出力辿れるV out (第1基*を圧)、規定水位ま
で給水後、所定時間前記回転翼を駆動した後水位の変化
が零であった時に出力されるV out (第2基準電
圧)、規定水位よりも少しだけ低い水位(−20m!l
)まで給水した時に出力されるV (UT (第3基準
電圧)のことであり、これらが個々に記憶されている。
FIG. 9 is a block diagram of the control mechanism of a washing machine centered on a microcomputer (29) (hereinafter referred to as "Maifun").
It consists of CPU, ROM, RAM, system bus, etc. (30) is a comparison circuit, and the microcomputer (
Compare the value obtained by converting the reference value previously stored in the ROM by the D/A conversion circuit (31) with the output Vout of the pressure sensor voltage detection circuit (28) shown in FIG. Then, the comparison output is sent to the microcontroller>-(29). The reference value is the V out (pressure of the first unit *) that can be traced when water is supplied to the specified water level in the tank, and the change in the water level is zero after the rotary blade is driven for a predetermined period of time after water is supplied to the specified water level. V out (second reference voltage) output when the water level is slightly lower than the specified water level (-20m!l)
) is the V (UT (third reference voltage)) that is output when water is supplied up to V (UT), and these are individually memorized.

尚、−見、前記第1基準電圧と第2基準電圧は同じ値で
あるが、本実施例に於ける感圧導電性ゴムには、クリー
プ現象(ffl性変形が一定応力のもとで時間と共に増
加する現象)が必ず発生し、従って、一定圧力く一位水
位〉の下では、時間の経過と共に感圧導電性ゴムの歪量
が増加し、第11図に示すような出力変化が生じる。そ
こで、前記第2及び第3基準電圧は、予めこのクリープ
による出力増加を考慮した値としている。また、第1基
準電圧は、水位零から給水により連続的に加圧きれ、ク
リープが発生する以前に設定水位に達するので、クリー
プを考慮する必要がない。
Although the first reference voltage and the second reference voltage are the same value, the pressure-sensitive conductive rubber in this example has a creep phenomenon (ffl deformation occurs over time under constant stress). Therefore, under a constant pressure and the first water level, the amount of strain in the pressure-sensitive conductive rubber increases with the passage of time, and the output changes as shown in Figure 11 occur. . Therefore, the second and third reference voltages are set to values that take into account the increase in output due to this creep. Further, since the first reference voltage is continuously pressurized by water supply from zero water level and reaches the set water level before creep occurs, there is no need to take creep into consideration.

(32)は各種操作キ一群から構成される入力操作キー
回路である。そして、前記マイコン(29)は、前記比
較回路〈30)や入力操作キー回路(32)からの情報
に基づいて、各種負荷駆動回路、即ち、給、排水電磁弁
駆動回路(33)(34)及び駆動モータ左右回転回路
(35)(36)等の動作を制御する。 (37)は前
記マイコン(29)からの信号を前記負荷駆動回路に中
継する出力バッファである。(38)はリセット信号発
生回路、(39)はマイコン(29)にクロック基準信
号を入力する発振回路である。
(32) is an input operation key circuit composed of a group of various operation keys. The microcomputer (29) controls various load drive circuits, namely supply and drainage solenoid valve drive circuits (33) and (34), based on information from the comparison circuit (30) and the input operation key circuit (32). and controls the operation of the drive motor left and right rotation circuits (35), (36), etc. (37) is an output buffer that relays the signal from the microcomputer (29) to the load drive circuit. (38) is a reset signal generation circuit, and (39) is an oscillation circuit that inputs a clock reference signal to the microcomputer (29).

斯かる構成に基づく動作を第12図のフローチャートに
従って説明する。
The operation based on such a configuration will be explained according to the flowchart of FIG. 12.

前記洗濯槽(4)内に洗濯物が投入された後、前記外槽
(3)内に給水が開始され、水位の上昇と共に前記ダイ
ヤフラム(20)が圧力導入管(19)からの圧力を受
けると、前記ダイヤフラム(20)が膨張し、前記押圧
軸(22)が移動して、前記突起(27)を介して前記
一方の電極板(23)を上方から押圧する。この押圧力
に応じて前記感圧導電性ゴム(26)の抵抗値が変化し
、前記マイコン(29)はこの抵抗値変化に伴なう前記
出力vCXJTを得る。
After the laundry is put into the washing tub (4), water supply to the outer tub (3) is started, and as the water level rises, the diaphragm (20) receives pressure from the pressure introduction pipe (19). Then, the diaphragm (20) expands, the pressing shaft (22) moves, and presses the one electrode plate (23) from above via the protrusion (27). The resistance value of the pressure-sensitive conductive rubber (26) changes in accordance with this pressing force, and the microcomputer (29) obtains the output vCXJT in accordance with this resistance value change.

ここで、例えば、前記突起り27)が無い場合、組立時
に前記押圧軸(22)と前記電極板(23)(24)の
位置がずれると、第3図の点線の如く前記押圧軸(22
)の前記一方のIE電極板23)に対する押圧位置がず
れることになる。即ち、前記感圧導電性ゴム(26)か
ら押圧位置までの距離!が変化することになり、との!
が変化すると、感圧導電性ゴム(26)の抵抗値はその
35!に比例して変化する。従って、この!が少しでも
変化すると、前記感圧導電性ゴム(26)の特性に多大
な影響を与えることになる(即ち、第10図B、Cの如
、くとなる)。
Here, for example, if there is no protrusion 27), if the positions of the pressing shaft (22) and the electrode plates (23, 24) shift during assembly, the pressing shaft (27)
) will be shifted from its pressing position with respect to the one IE electrode plate 23). That is, the distance from the pressure-sensitive conductive rubber (26) to the pressed position! will change, and!
changes, the resistance value of the pressure-sensitive conductive rubber (26) changes to 35! changes in proportion to. Therefore, this! If there is even a slight change in the pressure-sensitive conductive rubber (26), the characteristics of the pressure-sensitive conductive rubber (26) will be greatly affected (that is, the characteristics will change as shown in FIGS. 10B and 10C).

然るに、本実施例では、前記一方の電極板(23)を突
起〈27)を介して押圧するようにし、しかも押圧軸(
22)の端面の面積を前記突起(27)の先端の面積よ
りも大きくしたので、組立時に、前記押圧軸(22〉と
電極板(23)(24)の位置が少々ずれても、押圧軸
(22)が突起(27)に当接する限り、押圧軸(22
)の一方の電極板(23)に対する押圧位置はこの突起
(27)を設けた箇所となり、前記距81は常に一定で
ある。
However, in this embodiment, the one electrode plate (23) is pressed through the protrusion (27), and the pressing shaft (27) is pressed against the one electrode plate (23).
Since the area of the end surface of 22) is made larger than the area of the tip of the protrusion (27), even if the positions of the pressing shaft (22> and the electrode plates (23) and (24) are slightly shifted during assembly, the pressing shaft (22) is in contact with the protrusion (27), the pressing shaft (22)
) with respect to one electrode plate (23) is the location where this protrusion (27) is provided, and the distance 81 is always constant.

さて、前記出力VGJTは、比較回路(30)を通じて
前記マイコン(29)が記憶する各基準電圧値と比較さ
れる。まず、前記出力V(XJTを前記第1基準電圧と
比較しく5−1)、一致した時点で、槽内の水位が規定
水位に達したものと判断し、給水を停止する(S−2)
、次に、前記マイコン(29)は、前記回転翼(6)を
回転させて(S−3)、槽内の洗濯物を攪拌することに
より、洗濯物の繊維間に存在する空気を追い出す、この
攪拌作業を所定時間桁ない(S−4)、所定時間経過後
回転翼(6)を停止きせる(S−5)。この時点で、槽
内の水位は、前記洗濯物から追い出した空気の体積分だ
け低下しているはずであるから、水面が静まるのを待っ
て、この時の水位に見合った出力vCMを得、今度は前
記第3基準寛圧と比較する(S−6>、そして、この時
の出力7吋が、前記第3基準電圧以上であれば、水位低
下分は20mm以下であるので、洗濯に支障がないと判
断し、続けて回転g(6)の駆動を開始しく5−7)、
洗濯工程を実行するが、前記第3基準電圧未満であった
場合、水位低下分が20mを越え、洗濯作用に影響を与
えるので、規定水位まで復帰させるべく、槽内に再び給
水を行ない<5−8)、 L、かも、この間時間の経過
と共に感圧導電性ゴム(26)にクリープ現象が発生し
ているので、規定水位の検知を今度は前記第2基準電圧
と比較して行なう(S−9)、そして、出力Voutが
この第2基準電圧と−・致した時点で、給水を停止しく
S−10)、前記回転翼(6)を再駆動させる。
Now, the output VGJT is compared with each reference voltage value stored in the microcomputer (29) through a comparison circuit (30). First, when the output V (XJT is compared with the first reference voltage, 5-1) matches, it is determined that the water level in the tank has reached the specified water level, and the water supply is stopped (S-2).
Next, the microcomputer (29) rotates the rotary blade (6) (S-3) to agitate the laundry in the tub, thereby expelling air present between the fibers of the laundry. This stirring operation is continued for a predetermined period of time (S-4), and after the elapse of a predetermined period of time, the rotary blade (6) is stopped (S-5). At this point, the water level in the tank should have fallen by the volume of the air expelled from the laundry, so wait until the water surface calms down and obtain an output vCM commensurate with the water level at this time. Next, compare it with the third reference voltage (S-6>), and if the output of 7 inches at this time is higher than the third reference voltage, the water level drop is less than 20 mm, so there is no problem in washing. It is determined that there is no rotation, and then the drive of rotation g (6) is started 5-7).
When the washing process is carried out, if the voltage is less than the third reference voltage, the water level will drop by more than 20 m, which will affect the washing action, so water will be supplied into the tank again in order to return it to the specified water level. -8), L, since a creep phenomenon has occurred in the pressure-sensitive conductive rubber (26) with the passage of time, the specified water level is now detected by comparing it with the second reference voltage (S -9) Then, when the output Vout reaches the second reference voltage, the water supply is stopped (S-10), and the rotary blade (6) is driven again.

以上の動作は、本実施例の圧力センサーを給水動作に応
用したものであり、本実施例の如く、水位(液位)の変
化を時々刻々と計測することができるものにあっ工は、
その他排水制御や洗剤液の投入制御等広く応用すること
ができ、洗濯機の自動化を促進するものである。
The above operation is an application of the pressure sensor of this embodiment to the water supply operation.
It can also be widely applied to other functions such as drainage control and detergent solution injection control, promoting the automation of washing machines.

ここで、本実施例では、組立時、前記突起(27)を前
記押圧軸(22)に近接対向するように配置することで
、前記感圧導電性ゴム(26)に加わる圧力の初期値と
しては、前記一方の電極板(23)の重量のみである。
Here, in this embodiment, by arranging the protrusion (27) so as to closely face the pressing shaft (22) during assembly, the initial value of the pressure applied to the pressure-sensitive conductive rubber (26) is is only the weight of the one electrode plate (23).

従って、この一方の電極板(23)の重量を統一するこ
とにより、複数個の圧力センサーの初期感度の統一調整
作業を省くことができる。
Therefore, by unifying the weight of this one electrode plate (23), it is possible to eliminate the work of unifying and adjusting the initial sensitivities of a plurality of pressure sensors.

尚、前記突起(27)と押圧軸(22)との位置関係は
、上記のことを目的とするものであるから、両者が当接
状態であっても、前記押圧軸(22)が突起(27)に
初期圧力を加えない状態である限り、要旨を免税するこ
とはない。
The positional relationship between the projection (27) and the pressing shaft (22) is aimed at the above-mentioned purpose, so even if they are in contact, the pressing shaft (22) As long as no initial pressure is applied to 27), the abstract will not be exempt from tax.

(ト)発明の効果 本発明の液位検知用圧力センサーは、ダイヤフラムの膨
張に伴なって移動する押圧軸で、突起を介して電極板(
感圧導電性ゴム)を押圧するので、感圧導電性ゴムの押
圧ポイントが常に一定で、押圧軸が少々左右にずれても
、この押圧ポイントが狂うことがない、しかも、構造が
簡単な上に、温度保障や感度調整等の複雑な調整作業が
軽減される。
(G) Effects of the Invention The pressure sensor for liquid level detection of the present invention has a pressing shaft that moves as the diaphragm expands, and the electrode plate (
Since the pressure-sensitive conductive rubber is pressed, the pressing point of the pressure-sensitive conductive rubber is always constant, and even if the pressing axis shifts slightly to the left or right, this pressing point will not go out of order.Furthermore, the structure is simple. In addition, complicated adjustment work such as temperature guarantee and sensitivity adjustment is reduced.

従って、低コスト且つ高精度な圧力センサーを提供でき
る。
Therefore, a low cost and highly accurate pressure sensor can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の液位検知用圧力センサーの側断面図、
第2図(イ)は同p−p’断面図、同図(ロ)は同Q−
Q’断面図、第3図は押圧軸による電極板の押圧機構の
説明図、第4図は感圧導電性;iムの温度特性図、第5
図は同圧力変化に伴なう抵抗値特性図、第6図は第5図
特性を得るための測定原理図、第7図は従来の圧力スイ
ッチの特性図、第8図は感圧導電性ゴムの抵抗値変化を
出力変化として取出す、ための検出回路図、第9図は制
御機構のブロック回路図、第10図及び第11図は第8
図の検出回路により検出される感圧導電性ツムの圧力変
化及び時間変化に伴なう出力特性図、第12図は圧力セ
ンサーを採用した洗濯機の給水動作を示すフローチャー
ト、第13図は従来の圧力スイッチを採用した洗濯機の
要部断面せる内部機構図である。 り18)・・・センサーケース、(19)・・・圧力導
入管(圧力導入部)、 (20)・・・ダイヤフラム、
(21)・・・プレート、〈22)・・・押圧軸、(2
3)・・・一方の電極板、(24)・・・他方の電極板
、(26)・・・感圧導電性ゴム、(27)・・・突起
FIG. 1 is a side sectional view of the pressure sensor for liquid level detection of the present invention;
Figure 2 (a) is a cross-sectional view taken along line p-p', and figure (b) is a cross-sectional view taken along line Q-
Q' sectional view, Fig. 3 is an explanatory diagram of the pressing mechanism of the electrode plate by the pressing shaft, Fig. 4 is a temperature characteristic diagram of pressure-sensitive conductivity;
The figure is a resistance value characteristic diagram associated with the same pressure change, Figure 6 is a measurement principle diagram for obtaining the characteristics shown in Figure 5, Figure 7 is a characteristic diagram of a conventional pressure switch, and Figure 8 is a pressure-sensitive conductivity diagram. A detection circuit diagram for extracting the change in resistance value of the rubber as an output change. Figure 9 is a block circuit diagram of the control mechanism. Figures 10 and 11 are the circuit diagrams of the control mechanism.
Figure 12 is a flowchart showing the water supply operation of a washing machine that uses a pressure sensor, and Figure 13 is a conventional one. 1 is a cross-sectional view of the internal mechanism of a washing machine that employs the pressure switch of FIG. 18)...Sensor case, (19)...Pressure introduction pipe (pressure introduction part), (20)...Diaphragm,
(21)...Plate, <22)...Press shaft, (2
3)...one electrode plate, (24)...other electrode plate, (26)...pressure-sensitive conductive rubber, (27)...protrusion.

Claims (2)

【特許請求の範囲】[Claims] (1)液位の変動に伴なう圧力変化を、感圧導電性ゴム
の抵抗値変化に伴なう出力変化として検出するものであ
って、圧力導入部を有するセンサーケースと該センサー
ケース内を1次側と2次側とに区画するよう配設され前
記圧力導入部からの圧力に応動して膨張・収縮するダイ
ヤフラムと、該ダイヤフラムの2次側に装着されたプレ
ートと、該プレートに設けられた押圧軸と、前記感圧導
電性ゴムを挾持した一対の電極板とを備え、前記一方の
電極板の上面に突起を設け、前記一対の電極板を、前記
突起が前記押圧軸の端面に対向するよう前記センサーケ
ース内に配設したことを特徴とする液位圧力センサー。
(1) A sensor case that detects pressure changes due to fluctuations in liquid level as output changes due to changes in resistance of pressure-sensitive conductive rubber, and a sensor case with a pressure introduction part and an inside of the sensor case. a diaphragm arranged to divide the air into a primary side and a secondary side and expands and contracts in response to pressure from the pressure introducing section; a plate attached to the secondary side of the diaphragm; a pair of electrode plates sandwiching the pressure-sensitive conductive rubber; a protrusion is provided on the top surface of one of the electrode plates; A liquid level pressure sensor, characterized in that it is disposed within the sensor case so as to face an end face.
(2)前記押圧軸は、円筒形状を成し、その端面の面積
が前記突起の先端の面積よりも大きくなるようにしたこ
とを特徴とする特許請求の範囲第1項記載の液位検知用
圧力センサー。
(2) The liquid level detection device according to claim 1, wherein the pressing shaft has a cylindrical shape, and the area of the end face thereof is larger than the area of the tip of the projection. pressure sensor.
JP6663987A 1987-03-20 1987-03-20 Pressure sensor for detecting liquid level Pending JPS63233343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6663987A JPS63233343A (en) 1987-03-20 1987-03-20 Pressure sensor for detecting liquid level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6663987A JPS63233343A (en) 1987-03-20 1987-03-20 Pressure sensor for detecting liquid level

Publications (1)

Publication Number Publication Date
JPS63233343A true JPS63233343A (en) 1988-09-29

Family

ID=13321670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6663987A Pending JPS63233343A (en) 1987-03-20 1987-03-20 Pressure sensor for detecting liquid level

Country Status (1)

Country Link
JP (1) JPS63233343A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0683263A1 (en) * 1994-05-13 1995-11-22 CANDY S.p.A. Pneumatic sensor for safety device for blocking the water feed circuit of dishwashers, washing machines and the like

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0683263A1 (en) * 1994-05-13 1995-11-22 CANDY S.p.A. Pneumatic sensor for safety device for blocking the water feed circuit of dishwashers, washing machines and the like

Similar Documents

Publication Publication Date Title
CN101487730B (en) Water level detection method and apparatus for washing machine
JPS63233343A (en) Pressure sensor for detecting liquid level
US6307282B1 (en) Smart switch
US3319571A (en) Liquid level responsive apparatus
JPS63233344A (en) Pressure sensor for detecting liquid level
KR970043479A (en) Washing machine control method and method
JPH11258074A (en) Electrostatic capacity type dynamic amount detecting device
JP2000097748A (en) Capacitance type immersion pressure water level gage
JPS5936240Y2 (en) washing machine water supply device
JPH0437274Y2 (en)
KR100297051B1 (en) Laundry Resetup method in washing machine
KR0118787Y1 (en) Dish-washer
KR100208175B1 (en) The overflow preventing apparatus of a washing machine
KR910005091Y1 (en) Water Supply Detection Device of Dishwasher
JPH0375088A (en) Water level detecting device for washing machine or the like
KR100229721B1 (en) Waterlevel sensor structure of a washing machine
JPS55146014A (en) Detector for remaining amount of toner
SU1033211A1 (en) Device for measuring froth layer thickness and pulp level in flotation machine chambers
JP2777376B2 (en) Washing machine
JPS6264397A (en) Washing machine
KR960014277B1 (en) Water level control device of a washing machine
JPH084993A (en) Unit for determining satisfaction of steam trap
JPS5815894Y2 (en) Kansou Yuuriyou Kanchisouchi
JPH01218494A (en) Drum laundry dryer
JPH0632746B2 (en) Water level detector for washing machine