JPS63232936A - Polishing method and abrasive tool - Google Patents

Polishing method and abrasive tool

Info

Publication number
JPS63232936A
JPS63232936A JP62062607A JP6260787A JPS63232936A JP S63232936 A JPS63232936 A JP S63232936A JP 62062607 A JP62062607 A JP 62062607A JP 6260787 A JP6260787 A JP 6260787A JP S63232936 A JPS63232936 A JP S63232936A
Authority
JP
Japan
Prior art keywords
polishing
polished
tool
abrasive
abrasive grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62062607A
Other languages
Japanese (ja)
Inventor
Toru Imanari
徹 今成
Osamu Oshima
修 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62062607A priority Critical patent/JPS63232936A/en
Publication of JPS63232936A publication Critical patent/JPS63232936A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To make a workpiece possible to be finished into good flat accuracy and surface roughness accuracy at high efficiency, by vibrating an abrasive tool, while making abrasive grains in an abradant collide with the work surface of an optical element from an oblique direction, and polishing it. CONSTITUTION:A tool active part 12d is reciprocatively moved in a V direction at amplitude (a) by vibration, and this amplitude (a) and a distance (b) are set so as not to come into contact with a polishing surface even in a position where the active part 12d is most approached to a workpiece 6. With this constitution, abrasive grains in an abradant 8 adjacent to the active part are accelerated to the workpiece 6 in the vibration direction, thus a work surface part D is polished. At this time, since a flow of the abradant is produced to go along the vibrating direction V, the abradant 8 inclusive of these abrasive grains once related to the polishing is moved to the outside of a polishing position, where by at the lower part of the tool active part 12d, a new abradant is fed to the polishing position from the right, so that polishing is performed in good efficiency.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は研磨方法及び研磨工具に関し、特に振動エネル
ギーを利用して研磨する研磨方法及び該研磨方法で用い
られる研磨工具に関する。この様な研磨は、たとえばレ
ンズ、プリズム及びミラー等の光学素子の研磨に用いら
れる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a polishing method and a polishing tool, and more particularly to a polishing method that uses vibrational energy for polishing, and a polishing tool used in the polishing method. Such polishing is used, for example, to polish optical elements such as lenses, prisms, and mirrors.

[従来の技術及びその問題点] 一〇Qに、レンズ、プリズム及びミラー等の光学素子は
、ガラス等の素材を所定の形状に整形した後に、機能面
即ち光が透過及び/または反射する面を研磨して表面粗
さを次第に小さくし且つ同時に所定の面精度とすること
により製造されている。
[Prior art and its problems] 10 Q. After shaping a material such as glass into a predetermined shape, optical elements such as lenses, prisms, and mirrors have a functional surface, that is, a surface that transmits and/or reflects light. It is manufactured by polishing to gradually reduce the surface roughness and at the same time achieve a predetermined surface accuracy.

研磨工程においては、遊離砥粒を用いた研磨方法が採用
されることが多い、遊離砥粒は適宜の液体中に分散せし
められた研磨剤の形態にて使用されることが多く、研磨
工具と被研磨物との間に該研磨剤を供給しながら被研磨
物に対し研磨工具を摺動させて研磨が行なわれる。
In the polishing process, a polishing method using free abrasive grains is often adopted. Free abrasive grains are often used in the form of an abrasive agent dispersed in an appropriate liquid, and are used in polishing tools. Polishing is performed by sliding a polishing tool against the workpiece while supplying the abrasive between the workpiece and the workpiece.

この様な研磨においては、所望の表面精度が得られる様
に研磨条件が適宜設定されるのであるが、場合により次
第に表面精度がくずれてくることがあり、この場合には
修正研磨が必要となる。
In this type of polishing, the polishing conditions are set appropriately to obtain the desired surface precision, but in some cases the surface precision may gradually deteriorate, and in this case, corrective polishing is required. .

被研磨面が非球面の場合は特にその傾向が大きい。This tendency is particularly strong when the surface to be polished is an aspherical surface.

即ち、光学素子としては、従来より一般にRfe面が平
面または球面のものが広く用いられているが、近年、次
第に光学的性能の向上や特殊な特性が要求されるにつれ
て平面及び球面以外の機能面(いわゆる非球面)を有す
る光学素子が製造される様になっている。非球面形状と
しては光軸のまわりに回転対称な面はもちろんのこと光
軸のまわりに回転非対称な面もある。この様な非球面形
状はたとえば数値制御による研削加工により創成され、
鎖部をその表面形状精度をできるだけくずさない様にし
て表面粗さを次第に小さくすべく研磨が行なわれる。従
って、非球面の研磨においては特に表面精度が低下しや
すいので修正研磨の必要性が高くなる。
In other words, as optical elements, those with a flat or spherical Rfe surface have generally been widely used, but in recent years, as optical performance has been gradually improved and special characteristics have been required, functional surfaces other than flat and spherical have been used. (so-called aspherical surfaces) are now being manufactured. Aspherical shapes include not only surfaces that are rotationally symmetrical around the optical axis but also surfaces that are rotationally asymmetrical around the optical axis. Such an aspherical shape is created, for example, by numerically controlled grinding.
Polishing is performed to gradually reduce the surface roughness of the chain portion while maintaining its surface shape accuracy as much as possible. Therefore, when polishing an aspherical surface, the surface precision is particularly likely to deteriorate, and the need for corrective polishing increases.

修正研磨は、従来、比較的小さな研磨工具を用いて被研
磨面を部分的に上記同様に研磨することにより行なわれ
ている。しかし、この方法では表面精度維持の観点から
被研磨物に対する研磨工具の相対的移動速度及び移動ス
トロークをあまり大きくすることができず、従って研磨
効率が低いという問題点がある。
Corrective polishing has conventionally been performed by partially polishing the surface to be polished in the same manner as described above using a relatively small polishing tool. However, this method has the problem that the relative movement speed and movement stroke of the polishing tool with respect to the object to be polished cannot be made very large from the viewpoint of maintaining surface precision, and therefore the polishing efficiency is low.

一方、効率良く研磨するための方法として、超音波加工
がある。超音波加工は、被研磨物と工具との間に砥粒を
介在させて工具に対し超音波振動を与え該工具を被加工
物に対し適宜の圧力で押圧しすることにより主として砥
粒による被研磨物の微小押し割りにより大きな効率にて
研磨を行なうものである。
On the other hand, ultrasonic processing is a method for efficient polishing. Ultrasonic machining mainly removes the damage caused by abrasive grains by interposing abrasive grains between the workpiece and the tool, applying ultrasonic vibration to the tool, and pressing the tool against the workpiece with appropriate pressure. Polishing is performed with great efficiency by micro-punching the polishing material.

しかしながら、この様な従来の超音波加工では良好な表
面形状精度及び表面粗さ精度を得ることができないとい
う難点がある。
However, such conventional ultrasonic machining has the disadvantage that good surface shape accuracy and surface roughness accuracy cannot be obtained.

そこで、本発明は良好な効率にて研磨を行ない、且つ被
研磨物を良好な表面精度及び良好な表面粗さ精度に仕上
げることを目的とする。
Therefore, an object of the present invention is to perform polishing with good efficiency and to finish a polished object with good surface precision and good surface roughness precision.

[問題点を解決するための手段] 本発明によれば、以上の如き目的は、 研磨砥粒を含む研磨剤を被研磨物と研磨工具との間に介
在させ、該工具を振動させて研磨剤中の研磨砥粒を被研
磨面に対し斜め方向から衝突させて研磨することを特徴
とする、研磨方法、により達成される。
[Means for Solving the Problems] According to the present invention, the above objects are as follows: An abrasive containing abrasive grains is interposed between an object to be polished and a polishing tool, and the tool is vibrated to perform polishing. This is achieved by a polishing method characterized in that polishing is performed by causing abrasive grains in a polishing agent to collide with the surface to be polished from an oblique direction.

また、本発明によれば、この様な研磨方法の実施に直接
使用される工具として、 研磨剤に対し作用する作用部と該作用部を一方向に振動
させる駆動手段とを有し、上記作用部が全体的基準形状
において少なくとも振動方向に対し斜めの部分を有する
ことを特徴とする、研磨工具、 が提供される。
Further, according to the present invention, a tool directly used for carrying out such a polishing method has an acting part that acts on the abrasive and a drive means that vibrates the acting part in one direction, and has the above-mentioned effect. An abrasive tool is provided, characterized in that the portion has at least a portion oblique to the vibration direction in its overall reference shape.

[実施例] 以下1図面を参照しながら本発明の具体的実施例を説明
する。
[Example] A specific example of the present invention will be described below with reference to one drawing.

第1図は本発明による研磨方法の第1の実施例の説明図
である。
FIG. 1 is an explanatory diagram of a first embodiment of the polishing method according to the present invention.

第1図において、2は研磨槽であり、該研磨槽中には被
研磨物支持台4が配置されている。該支持台上には被研
磨物6が固定支持されている0本実施例では、該被研磨
物は平行平面板状体であり、その表面は前加工により適
宜の表面粗さとされている。研磨槽z中には研磨剤8が
満たされている。該研磨剤はたとえば水中に所望の粒径
の酸化セリウム等の研磨砥粒を分散したものからなる。
In FIG. 1, reference numeral 2 denotes a polishing tank, and a polishing object support 4 is disposed in the polishing tank. In this embodiment, an object to be polished 6 is fixedly supported on the support base, and the object to be polished is a parallel plane plate-like object, the surface of which has been pre-processed to have an appropriate surface roughness. The polishing tank z is filled with polishing agent 8. The abrasive is made of, for example, abrasive grains such as cerium oxide having a desired particle size dispersed in water.

10は研磨剤循環手段であり、上記研磨槽2中の研磨剤
を研磨位置へ循環供給させるためのものであり、ポンプ
を含んでいる。
Reference numeral 10 denotes an abrasive circulation means for circulating and supplying the abrasive in the polishing tank 2 to the polishing position, and includes a pump.

12は研磨工具であり、該工具は保持部材14により保
持されており、該保持部材は研磨工具姿勢制御装置16
に接続されている。
Reference numeral 12 denotes a polishing tool, which is held by a holding member 14, which is connected to a polishing tool attitude control device 16.
It is connected to the.

上記研磨工具12は、PZT等の圧電材料からなる超音
波振動子を含む振動発生部12a、該振動子の振動駆動
のための超音波発振器12b、上記振動発生部12aに
接続されたホーン12c、及び該ホーンの先端に付設さ
れた作用部12dを含んでなる。上記超音波振動子の振
動方向は矢印■方向であり、これは被研磨物6の被研磨
面に対し角度Oだけ傾いた方向である。
The polishing tool 12 includes a vibration generating section 12a including an ultrasonic vibrator made of a piezoelectric material such as PZT, an ultrasonic oscillator 12b for driving vibration of the vibrator, a horn 12c connected to the vibration generating section 12a, and an action portion 12d attached to the tip of the horn. The vibration direction of the ultrasonic vibrator is the direction of the arrow {circle around (2)}, which is a direction inclined by an angle O with respect to the surface to be polished of the object 6 to be polished.

第2図(a)は上記研磨工具作用部12dの拡大図であ
り、第2図(b)はそのB視図である。
FIG. 2(a) is an enlarged view of the abrasive tool acting portion 12d, and FIG. 2(b) is a B view thereof.

作用部12dは振動方向と角度θだけ傾いた面Sに沿っ
た全体的基準形状をなし、更に、該振動方向■と角度α
をなす小領域20が多数形成された断面鋸歯状の段階形
状をなしている。該鋸歯のピッチは適宜定めることがで
きるが、研磨砥粒の粒径に応じて定めるのが好ましい、
角度αは0度から180度までの範囲で適宜設定できる
が、好ましくは90度の前後である。
The acting part 12d has an overall standard shape along a plane S inclined by an angle θ with respect to the vibration direction, and furthermore, the acting part 12d has an overall standard shape along a plane S inclined by an angle θ with respect to the vibration direction.
It has a stepped shape with a sawtooth cross section in which a large number of small regions 20 are formed. The pitch of the sawtooth can be determined as appropriate, but it is preferably determined according to the particle size of the abrasive grains.
The angle α can be appropriately set in the range from 0 degrees to 180 degrees, but is preferably around 90 degrees.

研磨時には研磨剤循環手段10を作動させて研磨剤8を
研磨位置へと供給させながら、超音波発振器12bを作
動させ、振動子を振動させる。これにより振動発生部1
2aの振動がホーン12cにより増幅されて所望の振幅
となり、作用部12dが所定の振幅で矢印V方向に振動
する。
During polishing, the abrasive circulating means 10 is operated to supply the abrasive 8 to the polishing position, and the ultrasonic oscillator 12b is operated to vibrate the vibrator. As a result, the vibration generating section 1
The vibration of the actuator 2a is amplified by the horn 12c to a desired amplitude, and the acting portion 12d vibrates in the direction of arrow V with a predetermined amplitude.

第3図は研府作用を説明するための図である。FIG. 3 is a diagram for explaining the Kenfu effect.

研磨工具の作用部12dは、その全体的基準形状面Sが
被研磨面と平行とされ且つ該被研磨面から距離すだけ隔
てられた位置に配置されている。
The working portion 12d of the polishing tool is arranged so that its overall standard shape surface S is parallel to the surface to be polished and is spaced apart from the surface by a distance.

この様な配置は上記姿勢制御装置16により設定される
。工具作用部12dは振動により振幅a(ストローク2
a)でV方向に破線位置と一点鎖線位誼との間を往復移
動する。数値a、bは作用部12dが最も被研磨物6に
接近した破線位置においても該研磨面に接触しない様に
設定される。
Such an arrangement is set by the attitude control device 16. The tool action part 12d has an amplitude a (stroke 2) due to vibration.
In a), it reciprocates in the V direction between the dashed line position and the dashed-dotted line position. The numerical values a and b are set so that the action portion 12d does not come into contact with the polishing surface even at the position indicated by the broken line where it is closest to the object 6 to be polished.

これにより、該作用部に隣接する研磨剤8中の研磨砥粒
は振動方向に被加工物6の方へと加速され、被研磨面に
衝突する。かくして、作用部12dに対応する被研磨面
部分りの研磨がなされる。
As a result, the abrasive grains in the abrasive 8 adjacent to the action portion are accelerated toward the workpiece 6 in the vibration direction and collide with the surface to be polished. In this way, the portion of the surface to be polished corresponding to the working portion 12d is polished.

この際、研磨剤の流れは振動方向Vに沿って生ずるため
、一旦研磨加工に関与した研磨砥粒を含む研磨剤は直ち
に研磨位置外(即ち部分りより左方側)へと移動する。
At this time, since the flow of the abrasive occurs along the vibration direction V, the abrasive containing the abrasive grains once involved in the polishing process immediately moves out of the polishing position (that is, to the left of the partial part).

そして、該工具作用部12dの下方には右方側から新規
研磨剤が研磨位置へと供給され、良好な効率にて研磨が
行なわれる。
Then, a new abrasive is supplied to the polishing position from the right side below the tool action portion 12d, and polishing is performed with good efficiency.

以上の様にして、ある部分の研磨が終了したら、次いで
工具姿勢制御装置16を水平方向へと移動させて同様に
研磨を行なう、この移動を連続的に行ないながら継続し
て研磨を行なってもよい。
When polishing of a certain part is completed in the above manner, the tool posture control device 16 is then moved horizontally and polishing is performed in the same manner. good.

尚、上記研磨において、被研磨物6が比較的硬い材料か
らなる場合には上記振幅a及び角度θを比較的大きくし
、被研磨物6が比較的軟い材料からなる場合には上記振
幅a及び角度θを比較的小さくする。また、所望の表面
粗さが比較的小さい場合には、研磨砥粒を適宜設定する
ことの他に、上記振幅a及び角度0を比較的小さくする
In the above polishing, when the object to be polished 6 is made of a relatively hard material, the amplitude a and the angle θ are made relatively large, and when the object to be polished 6 is made of a relatively soft material, the amplitude a is made relatively large. and the angle θ is made relatively small. Further, when the desired surface roughness is relatively small, in addition to appropriately setting the polishing abrasive grains, the above-mentioned amplitude a and angle 0 are made relatively small.

第4図及び第5図はそれぞれ本発明による研磨方法の第
2の実施例及び第3の実施例の説明図である。これらの
図において、上記第1〜3図におけると同様の部材には
同一の符号が付されている。
FIGS. 4 and 5 are explanatory diagrams of a second embodiment and a third embodiment of the polishing method according to the present invention, respectively. In these figures, the same members as in FIGS. 1 to 3 above are given the same reference numerals.

上記第1実施例では被研磨物6の被研磨面の形状が平面
である場合が示されているが、第2実施例では被研磨面
が凸面の場合が示されており、第3実施例では被研磨面
が凹面である場合が示されている。これらの実施例にお
いては、工具作用部12dの全体的基準形状面Sが被研
磨面形状に対応した球面形状とされている。即ち、tj
IJ4図の場合には被研磨面の曲率半径をRとして面S
の曲率半径が(R+b)であり、第5図の場合には被研
磨面の曲率半径をRとして面Sの曲率半径が(R−b)
である。
In the first embodiment, the shape of the surface to be polished of the object to be polished 6 is flat, but in the second embodiment, the surface to be polished is convex. In this example, the surface to be polished is a concave surface. In these embodiments, the overall reference shape surface S of the tool acting portion 12d is made into a spherical shape corresponding to the shape of the surface to be polished. That is, tj
In the case of diagram IJ4, the radius of curvature of the surface to be polished is R, and the surface S
The radius of curvature of the surface S is (R+b), and in the case of FIG.
It is.

これらの場合には、研心位詮移動のため被研磨物6及び
/または研磨工具12を移動させる際の移動が球面に沿
った移動である点で上記第1実施例と異なるが、その他
の研磨動作は第1実施例と同様である。
These cases differ from the first embodiment in that the object to be polished 6 and/or the polishing tool 12 are moved along a spherical surface in order to move the grinding center position, but there are other differences. The polishing operation is the same as in the first embodiment.

第6図(a)は本発明による研磨方法の第4の実施例の
説明図であり、第6図(b)はそのB親図である。
FIG. 6(a) is an explanatory diagram of a fourth embodiment of the polishing method according to the present invention, and FIG. 6(b) is its B parent diagram.

本実施例では、研磨工具作用部12dが振動方向Vを軸
とした回転対称体である球面形状とされている0作用部
12dには振動方向に適宜の深さの多数の小孔22が形
成されている1本実施例の場合も上記第1〜3実施例の
場合と同様の研磨動作がなされる。
In this embodiment, the polishing tool acting portion 12d has a spherical shape that is rotationally symmetrical with respect to the vibration direction V. A large number of small holes 22 with appropriate depths are formed in the vibration direction. In the case of this embodiment, the same polishing operation as in the first to third embodiments described above is performed.

本実施例によれば、被研磨物6の被研磨面形状に自在に
適合して所望の研磨を行なうことが可能である。この場
合には、工具と被研磨物6との相対的移動を被研磨面形
状に応じた適宜の様式で行なえばよい。
According to this embodiment, it is possible to perform desired polishing while freely adapting to the shape of the surface to be polished of the object 6 to be polished. In this case, the relative movement between the tool and the object 6 to be polished may be performed in an appropriate manner depending on the shape of the surface to be polished.

また1本実施例では、研磨工具12を振動方向のまわり
に適宜の速度で回転させながら研磨を行なうこともでき
る。これにより研磨剤8の流動が更に高められ、研磨位
置への新規砥粒の供給が更に良好となる。
Furthermore, in this embodiment, polishing can be performed while rotating the polishing tool 12 around the vibration direction at an appropriate speed. This further enhances the flow of the abrasive 8 and further improves the supply of new abrasive grains to the polishing position.

第7図は本実施例において工具12を非回転状態で使用
した場合の被研磨面の研磨除去効率分布(a)と本実施
例において工具12を回転状態で使用した場合の被研磨
面の研磨除去効率分布(b)との比較を示すものである
0図示される様に、非回転状態の場合には比較的狭い領
域が高い効率で研磨され、その周辺部では研磨効率は急
激に低下する。これに対し、回転状態の場合には非回転
状態の場合に比し比較的広い範囲で良好な研磨効率を得
ることができる。従って、目的に応じて回転の有無を適
宜法めればよい。
FIG. 7 shows the polishing removal efficiency distribution (a) of the polished surface when the tool 12 is used in a non-rotating state in this embodiment, and the polishing removal efficiency distribution (a) of the polished surface when the tool 12 is used in a rotating state in this embodiment. Comparison with removal efficiency distribution (b) 0 As shown in the figure, in the non-rotating state, a relatively narrow area is polished with high efficiency, and the polishing efficiency rapidly decreases in the surrounding area. . On the other hand, in a rotating state, good polishing efficiency can be obtained over a relatively wider range than in a non-rotating state. Therefore, the presence or absence of rotation may be determined as appropriate depending on the purpose.

本発明において、研磨剤中に含まれる研磨砥粒の粒径は
、所望の表面粗さの程度に応じて適宜法めることができ
、光学面を得るための微小粒径から艷消し面程度更には
研削面と称される表面粗さを得るための粒径までのどの
様なものでもよい。
In the present invention, the particle size of the abrasive grains contained in the abrasive can be determined as appropriate depending on the desired degree of surface roughness, ranging from a minute particle size for obtaining an optical surface to a degree of a faded surface. Furthermore, any grain size may be used to obtain a surface roughness called a ground surface.

[発明の効果] 以上の様な本発明によれば、研磨工具を被研磨物に対し
実質上移動させることなしに、良好な効率にて研磨を行
ない、且つ被研磨物を良好な表面精度及び良好な表面粗
さ精度に仕上げることができ、特に被研磨物の部分的研
磨に好適である。
[Effects of the Invention] According to the present invention as described above, polishing can be performed with good efficiency without substantially moving the polishing tool relative to the workpiece, and the workpiece can be polished with good surface precision and It can be finished with good surface roughness accuracy and is particularly suitable for partial polishing of objects to be polished.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による研磨方法の説明図である。 第2図(a)は研磨工具作用部の拡大図であり、第2図
(b)はそのB親図である。 第3図は研磨作用を説明するための図である。 第4図及び第5図はいずれも本発明による研磨方法の説
明図である。 第6図(a)は本発明による研磨方法の説明図であり、
第6図(b)はそのB親図である。 第7図は被研磨面の研磨除去効率分布を示す図である。 2:研磨槽、      6:被研磨物、8:研磨剤、
      12:研磨工具、12a:振動発生部、 
 12b:発振器、12c:ホーン、    12d:
作用部。 代理人  弁理士  山 下 積 平 第1図 第3図 り 第4μl   第5図
FIG. 1 is an explanatory diagram of the polishing method according to the present invention. FIG. 2(a) is an enlarged view of the polishing tool action section, and FIG. 2(b) is its B parent view. FIG. 3 is a diagram for explaining the polishing action. 4 and 5 are both explanatory diagrams of the polishing method according to the present invention. FIG. 6(a) is an explanatory diagram of the polishing method according to the present invention,
FIG. 6(b) is its B parent diagram. FIG. 7 is a diagram showing the polishing removal efficiency distribution of the surface to be polished. 2: polishing tank, 6: object to be polished, 8: polishing agent,
12: Polishing tool, 12a: Vibration generating part,
12b: Oscillator, 12c: Horn, 12d:
Working part. Agent Patent Attorney Seki Yamashita Figure 1 Figure 3 Figure 4 μl Figure 5

Claims (6)

【特許請求の範囲】[Claims] (1)研磨砥粒を含む研磨剤を被研磨物と研磨工具との
間に介在させ、該工具を振動させて研磨剤中の研磨砥粒
を被研磨面に対し斜め方向から衝突させて研磨すること
を特徴とする、研磨方法。
(1) An abrasive containing abrasive grains is interposed between the object to be polished and a polishing tool, and the tool is vibrated to cause the abrasive grains in the abrasive to collide with the surface to be polished from an oblique direction. A polishing method characterized by:
(2)研磨工具を被研磨面に対し斜め方向に振動させる
、特許請求の範囲第1項の研磨方法。
(2) The polishing method according to claim 1, wherein the polishing tool is vibrated obliquely with respect to the surface to be polished.
(3)研磨剤に対し作用する作用部と該作用部を一方向
に振動させる駆動手段とを有し、上記作用部が全体的基
準形状において少なくとも振動方向に対し斜めの部分を
有することを特徴とする、研磨工具。
(3) It has a working part that acts on the abrasive and a driving means that vibrates the working part in one direction, and the working part has at least a part oblique to the vibration direction in the overall standard shape. and polishing tools.
(4)作用部が全体的基準形状に対して斜めの複数の小
領域を有する、特許請求の範囲第3項の研磨工具。
(4) The polishing tool according to claim 3, wherein the action portion has a plurality of small areas oblique with respect to the overall standard shape.
(5)作用部が振動方向のまわりに回転対称な全体的基
準形状をなす、特許請求の範囲第3項の研磨工具。
(5) The polishing tool according to claim 3, wherein the operating portion has an overall reference shape that is rotationally symmetrical around the vibration direction.
(6)作用部を振動方向のまわりに回転させる駆動手段
を有する、特許請求の範囲第5項の研磨工具。
(6) The polishing tool according to claim 5, further comprising a drive means for rotating the action portion around the vibration direction.
JP62062607A 1987-03-19 1987-03-19 Polishing method and abrasive tool Pending JPS63232936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62062607A JPS63232936A (en) 1987-03-19 1987-03-19 Polishing method and abrasive tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62062607A JPS63232936A (en) 1987-03-19 1987-03-19 Polishing method and abrasive tool

Publications (1)

Publication Number Publication Date
JPS63232936A true JPS63232936A (en) 1988-09-28

Family

ID=13205169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62062607A Pending JPS63232936A (en) 1987-03-19 1987-03-19 Polishing method and abrasive tool

Country Status (1)

Country Link
JP (1) JPS63232936A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018487A (en) * 2006-07-12 2008-01-31 Pentax Corp Polishing method and polishing device
JP2013248712A (en) * 2012-05-31 2013-12-12 Olympus Corp Apparatus and method for manufacturing optical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018487A (en) * 2006-07-12 2008-01-31 Pentax Corp Polishing method and polishing device
JP2013248712A (en) * 2012-05-31 2013-12-12 Olympus Corp Apparatus and method for manufacturing optical element

Similar Documents

Publication Publication Date Title
KR101212117B1 (en) Oscillating Grinding Machine
US20240123567A1 (en) Double-sided polishing method for optical lens
JP4576255B2 (en) Tool whetstone shape creation method
US20220097194A1 (en) Magnetic field-assisted vibratory finishing device for minute structure and finishing method
JPH08192348A (en) Grinding and polishing method and device therefor
JPS63232936A (en) Polishing method and abrasive tool
JPH05329762A (en) Method and device for polishing curved surface
JP7016568B1 (en) Fresnel lens mold manufacturing method, processing equipment and cutting tools
US6139407A (en) Method for processing using beam of magnetic line of force, apparatus for carrying out said method, and carriage member for hard disk drive processed by said method
JP4183892B2 (en) Polishing tool and polishing apparatus using the polishing tool
JPS61125759A (en) Grinding method for non-spherical surface
JPH0624692B2 (en) Precision groove grinding method by compound vibration of grindstone
JPH07164288A (en) Ultrasonic vibration grinding method, ultrasonic vibration grinding tool, and ultrasonic vibration grinding device
JP2000158313A (en) Lens machining method and device
JPH09309001A (en) Cutting work for soft elastic material
JPH07299709A (en) Lens polishing method and device thereof
JPH1158194A (en) Ultrasonic plane grinding work device
JPH05171B2 (en)
JPS63232930A (en) Polishing method
JP2003053647A (en) Method and device for grinding and polishing optical element
US7150676B2 (en) Dual motion polishing tool
JPH0624691B2 (en) Precision Surface Polishing Method for Work Surface by Complex Vibration of Grinding Wheel
JP2006192511A (en) Wave removal polishing method
JPH06270058A (en) Grinding device
RU2146599C1 (en) Grinding wheel fastening device