JPS63231859A - Electrode structure - Google Patents

Electrode structure

Info

Publication number
JPS63231859A
JPS63231859A JP62064916A JP6491687A JPS63231859A JP S63231859 A JPS63231859 A JP S63231859A JP 62064916 A JP62064916 A JP 62064916A JP 6491687 A JP6491687 A JP 6491687A JP S63231859 A JPS63231859 A JP S63231859A
Authority
JP
Japan
Prior art keywords
electrode
electrode structure
energy
oxide film
analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62064916A
Other languages
Japanese (ja)
Inventor
Riichi Kikuchi
菊池 理一
Toyoji Uchiyama
豊司 内山
Shosuke Hirata
招佑 平田
Takanori Koshikawa
孝範 越川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP62064916A priority Critical patent/JPS63231859A/en
Publication of JPS63231859A publication Critical patent/JPS63231859A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To prevent an oxide film from being formed, increase the mechanical strength of the electrode surface, and improve the precision of the energy analysis by applying the titanium nitride processing to the surface of an electrode easy to form the oxide film such as an aluminum electrode. CONSTITUTION:An electrode structure 13 is arranged in the casing 12 of a toroidal energy analyzer main body 11, and the casing 12 is fixed by an insulating fitting means 14. The electrode structure 13 is constituted of a pair of electrode blocks 21, 22 made of aluminum and forms a beam proceeding gap 20 as a toroidal space. A titanium nitride layer 30 is formed on the surface facing the beam proceeding gap 20 of the blocks 21, 22. Accordingly, no insulating oxide film is generated on its surface, the mechanical strength of the electrode surface is increased, the deterioration of the voltage resistance caused by fine flaws at the time of handling is prevented, and the precision of the energy analysis is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電極構造に関し、特に、例えば中エネルギーR
BS装置の如く、数百KeVまでのエネルギーのイオン
のエネルギー測定用のエネルギー分析器に用いて最適な
電極構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to electrode structures, particularly for example for medium energy R
This invention relates to an optimal electrode structure for use in an energy analyzer for measuring the energy of ions with energies up to several hundred KeV, such as a BS device.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

エネルギー分析器としては例えば、トロイダル・エネル
ギー、アナライザーが知られているが、これは超高真空
容器内に置かれ且つ、被測定試料を中心として、ターン
テーブル上で精度高く1回転することを要求される装置
である。従って、従来はトロイダル、エネルギー、アナ
ライザーの電極は七の重景を軽くする要求のためにアル
ミニウム(Al)製が用いられていた、しかしAt電極
表面は酸化層ができやすく、酸化層は絶縁物であるため
、酸化層表面に電荷がたまシ、測定に誤差を発生する。
For example, a toroidal energy analyzer is known as an energy analyzer, but this is placed in an ultra-high vacuum container and requires highly accurate rotation on a turntable around the sample to be measured. It is a device that can be used. Therefore, toroidal, energy, and analyzer electrodes have conventionally been made of aluminum (Al) due to the need to reduce the weight of the seven-dimensional structure. Therefore, charges accumulate on the surface of the oxide layer, causing errors in measurement.

それを防ぐため従来は金(Au)メッキを行い酸化層の
できることを防止している。しかし。
To prevent this, conventionally gold (Au) plating has been applied to prevent the formation of an oxide layer. but.

AI 、 Au共に硬度が低く、アナライザー組立時、
或は電極のクリーニング時に電極表面に微細なスクラッ
チきずができ、エネルギー測定の精度を低下させ又電極
間の放電の原因となっている。
Both AI and Au have low hardness, so when assembling the analyzer,
Alternatively, fine scratches are formed on the electrode surface during electrode cleaning, reducing the accuracy of energy measurement and causing electrical discharge between the electrodes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記の問題に鑑みてなされ、電極表面の酸化を
防止し、機械的強度(硬度)を向上させ。
The present invention was made in view of the above problems, and prevents oxidation of the electrode surface and improves mechanical strength (hardness).

超高真空で用いても問題のない電極構造を提供する事を
目的とする。
The purpose is to provide an electrode structure that can be used in ultra-high vacuum without any problems.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、表面に窒化チタン(TIN)の層を形成さ
せたことを特徴とする電極構造によって達成される。
The above object is achieved by an electrode structure characterized in that a layer of titanium nitride (TIN) is formed on the surface.

〔作 用〕[For production]

TINは電導性であり、電極材料として問題はない。ま
た、その表面に絶縁層が生ずることを防止する。
TIN is conductive and poses no problem as an electrode material. It also prevents the formation of an insulating layer on its surface.

TiNは非常に硬度が高く、表面の機械的強度を向上さ
せる。また、TiNは超高真空用材として高い性能をも
っている。
TiN has very high hardness and improves the mechanical strength of the surface. Furthermore, TiN has high performance as a material for ultra-high vacuum.

以上によシ、従来の電極構造の欠点は除去される。According to the above, the drawbacks of the conventional electrode structure are eliminated.

〔実施例〕〔Example〕

以下1本発明の実施例によるトロイダル・エネルギー、
アナライザについて図面を参照して説明する。
The following 1 toroidal energy according to an embodiment of the present invention,
The analyzer will be explained with reference to the drawings.

第1図は全体としての本アナライザを示すが。FIG. 1 shows the present analyzer as a whole.

真空槽(1)内には回転テーブル(2)が軸受(3)に
支承されて回転自在に配設され、駆動軸(4)によって
回転駆動される。回転テーブル(2)の上にはアナライ
ザ本体回が固定されておシ、これに試料(6)が対向し
ている。試料(6)は真空槽(1)の土壁部に固定され
た5軸又は6軸のゴニオメータ(7)の駆動軸(9)の
下端部に取シ付けられている。真空槽(1)に連るイオ
ン加速器よシイオンビーム(8)が側壁部の孔(5)を
介して水平に(回転テーブル(2)の上面に平行K)試
料(6)へと投射され、これから反跳するビーム顛がア
ナライザ本体αη内へと導入されるようになっている。
A rotary table (2) is rotatably disposed within the vacuum chamber (1) and supported by a bearing (3), and is rotationally driven by a drive shaft (4). An analyzer main body is fixed on a rotary table (2), and a sample (6) is opposed to it. The sample (6) is attached to the lower end of the drive shaft (9) of a 5- or 6-axis goniometer (7) fixed to the earthen wall of the vacuum chamber (1). An ion beam (8) from the ion accelerator connected to the vacuum chamber (1) is projected horizontally (parallel to the top surface of the rotary table (2)) onto the sample (6) through the hole (5) in the side wall. , the beam recoil from this is introduced into the analyzer body αη.

試料(6)はゴニオメータ(7)によシ入射イオンビー
ム(8)に対して任意の角度位置に駆動されることがで
きる。
The sample (6) can be driven to any angular position with respect to the incident ion beam (8) by the goniometer (7).

アナライザ本体Q漫のケーシング(2)内の下方空間に
は本発明に係わる電極構造(至)が配設され、これは絶
縁性を有する取付手段αΦによシケーシング(6)に固
定されている。電極構造0の上方にはスIJ 。
The electrode structure (to) according to the present invention is arranged in the lower space in the casing (2) of the analyzer body Q, and is fixed to the casing (6) by an insulating mounting means αΦ. . Above the electrode structure 0 is a strip IJ.

ト板取付板(ト)が固定され、これにスリy ) (1
6m)を有するスリット板(イ)が取シ付けられている
。更に、この上方にはシールド用電極板αηが固定され
、これにもスリッ) (t7m)が形成されている。こ
の上方にマルチチャンネルアナライザ(財)が取シ付け
られている。
The plate mounting plate (G) is fixed, and the slider (1)
A slit plate (a) having a length of 6 m) is attached. Furthermore, a shielding electrode plate αη is fixed above this, and a slit (t7m) is also formed on this. A multichannel analyzer is installed above this.

ケーシング(6)の下方側面部にはビーム進入用スリッ
ト叫が形成され、これに電極構造(2)のビーム進行ギ
ャップ翰の進入側端部が第3図に示すように整合してい
る。電極構造(至)はアルミニウム製の一対の電極ブロ
ック(211(221から成)、これらの間にトロイダ
ル形状の空間としてのビーム進行ギャップ(イ)を形成
させている。このギャップ(ホ)は第2図及び第4図か
ら明らかなようにドーナツの一部の周面形状を呈してい
る。一対の電極ブロック(211)は例えば±20KV
の直流電圧が印加される。
A beam entrance slit is formed in the lower side surface of the casing (6), and the entrance end of the beam advancing gap of the electrode structure (2) is aligned with this slit as shown in FIG. The electrode structure (to) is a pair of aluminum electrode blocks (211 (consisting of 221)), and a beam advancement gap (a) as a toroidal space is formed between them. As is clear from Figures 2 and 4, it has the shape of a portion of a donut.The pair of electrode blocks (211) has a voltage of ±20KV, for example.
DC voltage is applied.

ビー券肇ヤップ(ホ)から出たビームはスリット(16
1)(1711)を通ってマルチチャンネル・アナライ
ザ(至)に達し、これによシそのエネルギーが分析され
るようになっている。
The beam coming out from the bee ticket Zhao Yap (ho) is a slit (16
1) (1711) and reaches a multi-channel analyzer (to), by which its energy is analyzed.

各電極ブロック+211+221のビーム進行ギャップ
四と対向する表面には第5図に示すように表面に窒化チ
タン(TiN)の層叩が形成されている(一方の電極プ
ロツク(211について図示するが、他方の電極ブロッ
クのについても同様である)。
As shown in FIG. 5, a layer of titanium nitride (TiN) is formed on the surface of each electrode block +211+221 facing the beam progression gap 4 (one electrode block (211) is shown in the figure, but the other (The same applies to the electrode block).

本実施例は以上のように構成されるのであるが、その分
析作用については従来と同様であるので説明を省略し、
その効果についてのみ説明する。
The present embodiment is constructed as described above, but its analysis operation is the same as the conventional one, so the explanation will be omitted.
Only the effect will be explained.

即ち、TiNは電導性であシ、電極材料としては問題が
ない。lたその表面に絶縁層が出来る事を防止す冷ので
、従来のように絶縁層が電界を乱す事によシ、エネルギ
ー分析の精度を低下させる事が無く、精度良くエネルギ
ーの分析をする事が出来る。
That is, TiN is electrically conductive and poses no problem as an electrode material. In addition, since the cooling temperature prevents the formation of an insulating layer on the surface, the accuracy of energy analysis does not decrease due to the insulating layer disturbing the electric field as in the past, and energy analysis can be performed with high precision. I can do it.

また、TINは非常に硬度が高く、電極表面の機械的強
度を非常に高めるものである。従って従来のように電極
のクリーニング時やアナライザ組立時に微細なスクラッ
チ傷を生ずるという事が無く、滑らかな表面を維持する
事が出来るのでやはシ従来のように電界強度が傷などに
よシ乱されてエネルギー分析の精度を低下させるという
事及び電極間に高電圧を印加した場合、スクラッチ傷等
による耐電圧性の低下を防止する。精度良くエネルギー
の分析を行うことができると共に、測定可能なイオンエ
ネルギー範囲を拡大させることが可能となる。
Furthermore, TIN has extremely high hardness and greatly increases the mechanical strength of the electrode surface. Therefore, unlike conventional methods, minute scratches do not occur when cleaning the electrodes or assembling the analyzer, and a smooth surface can be maintained. This prevents deterioration of voltage resistance due to scratches, etc. when a high voltage is applied between the electrodes. It becomes possible to perform energy analysis with high accuracy and to expand the measurable ion energy range.

またTiNは超高真空用材料として高い性能を有するも
のであるので、超高真空中で長時間に旦って測定を行っ
たとしても、その性能を保持する事が出来、やはシ精度
の高い分析を保証するものである。
Furthermore, since TiN has high performance as a material for ultra-high vacuum, it can maintain its performance even if measurements are made in ultra-high vacuum for a long time, and it also improves accuracy. This guarantees a high level of analysis.

以上、本発明の実施例について説明したが、勿一般にア
ルミニウム電極のようにその表面に酸化物被膜を形成す
る材料を用いた電極に於ては、酸化物表面はチャージア
ップする事があシ、そのために電極付近の電場が乱され
る拳が多い。このような電極表面に本発明のTiNの表
面処理を行う事によシ酸化物の被膜の形成が防止される
。また従来の金メッキ等にくらべて硬度が高いために精
密に加工された電極の保護も同時に出来るという利点を
有するので、本発明は以上の実施例のトロイダルアナラ
イザの電極構造のみならず一般の精密測定機等の電極構
造に適用して同様な効果を得る事が出来る。
The embodiments of the present invention have been described above, but in general, in electrodes using materials that form an oxide film on the surface, such as aluminum electrodes, the oxide surface may be charged up. For this reason, the electric field near the electrode is often disturbed. By performing the TiN surface treatment of the present invention on such an electrode surface, formation of a silicon oxide film can be prevented. In addition, since it has higher hardness than conventional gold plating, etc., it has the advantage that it can protect precisely processed electrodes at the same time.The present invention is applicable not only to the electrode structure of the toroidal analyzer of the above embodiment, but also to general precision measurement. A similar effect can be obtained by applying it to the electrode structure of a machine, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例によるトロイダル・エネルギー
・アナライザの全体を示す部分破断圧面図、第2図は第
1図におけるエネルギーアナライザ本体の断面甲、第3
図は同部分破断圧面図、第4図は第2図におけるIV−
IV線方向断面図、及び第5図は第2図における電極構
造における一部の部分拡大断面図である。 なお図において、
FIG. 1 is a partially broken pressure surface view showing the entire toroidal energy analyzer according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of the energy analyzer main body in FIG.
The figure is a fracture pressure surface diagram of the same part, and Figure 4 is IV- in Figure 2.
A sectional view in the direction of line IV and FIG. 5 are partially enlarged sectional views of the electrode structure in FIG. 2. In the figure,

Claims (1)

【特許請求の範囲】[Claims] 表面に窒化チタン(TiN)の層を形成させたことを特
徴とする電極構造。
An electrode structure characterized by forming a layer of titanium nitride (TiN) on the surface.
JP62064916A 1987-03-18 1987-03-18 Electrode structure Pending JPS63231859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62064916A JPS63231859A (en) 1987-03-18 1987-03-18 Electrode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62064916A JPS63231859A (en) 1987-03-18 1987-03-18 Electrode structure

Publications (1)

Publication Number Publication Date
JPS63231859A true JPS63231859A (en) 1988-09-27

Family

ID=13271848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62064916A Pending JPS63231859A (en) 1987-03-18 1987-03-18 Electrode structure

Country Status (1)

Country Link
JP (1) JPS63231859A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522335A (en) * 2009-03-27 2012-09-20 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド Flight source heating time

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527831A (en) * 1975-07-09 1977-01-21 Shinko Seiki Process for forming very hard coating on aluminum or aluminum alloy
JPS63939A (en) * 1986-06-19 1988-01-05 Nec Corp Collector of traveling wave tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527831A (en) * 1975-07-09 1977-01-21 Shinko Seiki Process for forming very hard coating on aluminum or aluminum alloy
JPS63939A (en) * 1986-06-19 1988-01-05 Nec Corp Collector of traveling wave tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522335A (en) * 2009-03-27 2012-09-20 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド Flight source heating time

Similar Documents

Publication Publication Date Title
US4524275A (en) Multiple collector mass spectrometers
EP3686587B1 (en) Sample support body
EP3686590B1 (en) Laser desorption/ionization method and mass spectrometry method
JPS63231859A (en) Electrode structure
JPH01134844A (en) Mutlipole lens
WO1989004959A1 (en) Reference electrode
DE102016210304B3 (en) Measuring chamber for a compact geniometer in an X-ray spectrometer
US6663791B1 (en) Detection method of coating film thickness and ion implantation equipment using this method
EP3686585A1 (en) Sample support body
JPS6182653A (en) Quadrupole mass spectrometer
JPS62287950A (en) Electrostatic attracting device
US2967240A (en) Method of detecting and eliminating flaws in solid material of high molecular order
US4851672A (en) Specimen mount for secondary ion mass spectrometry and other sensitive particle beam analysis methods and method for the operation thereof
JPH079460B2 (en) Monitor for particle beam measurement
SU851547A1 (en) Mass-spectrometer
JPH03241850A (en) Surface charge measuring device
SU527640A1 (en) Fiber Length Suspension Analyzer
Rollefson Stray Electrostatic Fields
Gay et al. A non-destructive X-ray method for the determination of the thickness of surface layers
JPS61183464A (en) Sputtering device
JPS63195263A (en) Sputtering device
Hiley et al. A study of the effects of internal discharges on solid dielectrics using a scanning electron microscope
EP3686589A1 (en) Laser desorption/ionization method and mass spectrometry method
JPS6090758U (en) ionization chamber
JP2001027623A (en) Electronic spectrometer