JPS63231852A - Charged particle beam application device - Google Patents

Charged particle beam application device

Info

Publication number
JPS63231852A
JPS63231852A JP6375887A JP6375887A JPS63231852A JP S63231852 A JPS63231852 A JP S63231852A JP 6375887 A JP6375887 A JP 6375887A JP 6375887 A JP6375887 A JP 6375887A JP S63231852 A JPS63231852 A JP S63231852A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
magnetic field
electric field
accelerating voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6375887A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kuroda
勝広 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6375887A priority Critical patent/JPS63231852A/en
Publication of JPS63231852A publication Critical patent/JPS63231852A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To select the accelerating voltage without adjusting the electric field and magnetic field every time by controlling a specific energy filter based on the predetermined relationship between the strength of the electric field and magnetic field and the accelerating voltage of a charged particle beam. CONSTITUTION:A deflection type Wien filter 10 constituted so that the electric field and the magnetic field cross at a right angle is provided to reduce the energy width of an electron beam 8. The relationship between the electric field E, magnetic field B, and charged particle beam accelerating voltage is determined in advance and calculated by an arithmetic unit 50 and outputted to amplifiers 56, 57 amplifying the inputs to a high-voltage power supply 40 and the filter 10. Accordingly, the optional voltage V can be selected without adjusting the electric field E and magnetic field B every time the voltage is changed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、荷電粒子線応用装置に係り、特にエネルギー
フィルタや質量分離器に好適な自動制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a charged particle beam application device, and particularly to an automatic control device suitable for an energy filter or a mass separator.

〔従来の技術〕[Conventional technology]

従来、走査形電子顕微鏡の分解能を向上するために、試
料を対物レンズの中に配置して低収差化をはかった第3
図に示す電子光学系が用いられている。(日本電子顕微
鏡学会、第40回学術講演会予稿集、p211)このよ
うな光学系を用いても、特に低加速電圧では色収差によ
り分解能が低下する欠点がある。
Conventionally, in order to improve the resolution of a scanning electron microscope, a third lens was used in which the sample was placed inside the objective lens to reduce aberrations.
The electron optical system shown in the figure is used. (Japan Society for Electron Microscopy, Proceedings of the 40th Academic Conference, p. 211) Even when such an optical system is used, there is a drawback that the resolution is reduced due to chromatic aberration, especially at low acceleration voltages.

この問題を解決するためには、電子線のエネルギー幅を
小さくして色収差を小さくする必要がある。そこで、エ
ネルギーフィルタを用いた電子光学系をすでに考案した
。この電子光学系を第2図に示す。ここで、フィルタ1
0としては電界と磁界を直行させた所謂ウィーンフィル
タが適している。しかし、この従来例では加速電圧を変
化させたときのフィルタの調整に関してはなんら開示さ
れていなかった。
In order to solve this problem, it is necessary to reduce the energy width of the electron beam to reduce chromatic aberration. Therefore, we have already devised an electron optical system using an energy filter. This electron optical system is shown in FIG. Here, filter 1
A so-called Wien filter in which the electric field and the magnetic field are orthogonal to each other is suitable as the zero. However, this conventional example does not disclose anything about adjusting the filter when changing the accelerating voltage.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の如く、従来技術では、電界と磁界を直行させたウ
ィーンフィルタ型のエネルギーフィルタや質量分離器に
おいて、加速電圧を変化させるとそのたびに電界や磁界
の強さを調整する必要があるという問題があった。
As mentioned above, in the conventional technology, in a Wien filter-type energy filter or mass separator in which electric and magnetic fields are perpendicular to each other, there is a problem in that it is necessary to adjust the strength of the electric and magnetic fields each time the accelerating voltage is changed. was there.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するためには、加速電圧と電界や磁界
との強さの関係を明確にし、それを装置構成に組み込ん
でおけば、このようにすれば加速電圧を変化させても、
そのたびに電界や磁界の強さを調整する必要がなくなり
、自動的に電界や磁界の強さを調整できる。
In order to solve the above problem, the relationship between the accelerating voltage and the strength of the electric field or magnetic field should be clarified and incorporated into the device configuration.In this way, even if the accelerating voltage is changed,
There is no need to adjust the strength of the electric and magnetic fields each time, and the strength of the electric and magnetic fields can be adjusted automatically.

〔作用〕[Effect]

ウィーンフィルタとは、所望のエネルギ(V)をもつ荷
電粒子線は直進させ、■よりへ■異なるエネルギーの荷
電粒子線は偏向して曲げられるようにしたものである。
A Wien filter is a device in which a charged particle beam with a desired energy (V) is allowed to travel straight, and a charged particle beam with a different energy is deflected and bent.

このときの電界Eと磁界Bの強さの関係は E=に1HB            ・・・(1)で
表わせる。ここで、k = r−7m(e:電荷。
The relationship between the strength of the electric field E and the magnetic field B at this time can be expressed as E=1HB (1). Here, k = r-7m (e: charge.

m:荷電粒子の質量)は定数である。所望のエネルギー
よりへV異なる荷電粒子線81は絞り11のエツジにく
るようにすれば、荷電粒子線は完全にカットできる。こ
の絞り11の半径をrとすると、電界Eは次式を執たす
ようにすればよい。
m: mass of charged particle) is a constant. If the charged particle beam 81, which differs by V from the desired energy, is placed at the edge of the aperture 11, the charged particle beam can be completely cut off. If the radius of this diaphragm 11 is r, then the electric field E may satisfy the following equation.

E = k 2V 2/ A V          
 −(2)ここで、kz =r/QLは定数でありQは
電界Eの作用長の半値幅、Lはフィルタ10の偏向支点
20と絞り11間の距離である。このとき磁界Bは(1
)、(2)式より B = k s VT/ A V          
 −(3)で表わせ、k8は定数である。
E = k2V2/ A V
-(2) Here, kz = r/QL is a constant, Q is the half width of the action length of the electric field E, and L is the distance between the deflection fulcrum 20 of the filter 10 and the aperture 11. At this time, the magnetic field B is (1
), from equation (2), B = k s VT/AV
−(3) where k8 is a constant.

一方、電界Eは静電偏向器の印加電圧Uに比例し、磁界
Bは磁界偏向器のコイル電流工に比例する。すなわち、 U=に4V”/ΔV                
−(4)I = k F、VT/ A V      
       −(5)と同等である。ここに、k4t
 k5は定数である。
On the other hand, the electric field E is proportional to the applied voltage U of the electrostatic deflector, and the magnetic field B is proportional to the coil current of the magnetic field deflector. That is, U=4V”/ΔV
−(4) I = k F, VT/AV
- Equivalent to (5). Here, k4t
k5 is a constant.

従って、このような関係を装置構成に組み込めば上記問
題点は解決する。
Therefore, if such a relationship is incorporated into the device configuration, the above problems can be solved.

〔実施例〕〔Example〕

以下、本発明を走査型電子顕微鏡に適用した一実施例を
第1図により説明する。
An embodiment in which the present invention is applied to a scanning electron microscope will be described below with reference to FIG.

FE電子銃1より出た電子線8は、加速レンズ2により
所望の電圧に加速される。電子線8はコンデンサレンズ
3を通過した後、ウィーンフィルター10により電子線
のエネルギー分離が行われ、所望のエネルギー幅の電子
線のみが絞り11を通過する。この電子線は対物レンズ
6により、試料7面上に結像される。試料7の表面で発
生した二次電子9は検出器5で検出され、映像信号とな
る。
An electron beam 8 emitted from the FE electron gun 1 is accelerated to a desired voltage by an accelerating lens 2. After the electron beam 8 passes through the condenser lens 3, the energy of the electron beam is separated by the Wien filter 10, and only the electron beam with a desired energy width passes through the aperture 11. This electron beam is imaged onto the surface of the sample 7 by the objective lens 6. Secondary electrons 9 generated on the surface of the sample 7 are detected by the detector 5 and become a video signal.

ここで、電子線8の加速電圧を決める高圧電源40の出
力は電子銃1.に印加されている。同時に、この電源の
内部にある電圧を決めている部分(たとえば、検出抵抗
)からの信号は、ΔV決定器51、二乗器52と平方根
器53に入力される。
Here, the output of the high voltage power supply 40 that determines the acceleration voltage of the electron beam 8 is the electron gun 1. is applied to. At the same time, a signal from a voltage determining part (for example, a detection resistor) inside the power supply is input to a ΔV determiner 51, a squarer 52, and a square rooter 53.

このΔV決定器51と二乗器52との出力は第1演算器
54に入力されて、(4)式に相当する演算が行われる
。この出力は増幅器56を通して所望の電界Eを作る印
加電圧Uとなる。さらに、第1演算器54と平方根器5
3との出力は、第2演算器55に入力されて(1)式に
相当する演算が行われる。この出力は増幅器57を通し
て所望の磁界Bを作るコイル電流Iとなる。
The outputs of the ΔV determiner 51 and the squarer 52 are input to the first arithmetic unit 54, and an arithmetic operation corresponding to equation (4) is performed. This output becomes an applied voltage U that creates a desired electric field E through an amplifier 56. Furthermore, the first arithmetic unit 54 and the square root unit 5
The output of 3 is input to the second arithmetic unit 55, and an arithmetic operation corresponding to equation (1) is performed. This output becomes a coil current I that creates a desired magnetic field B through an amplifier 57.

以下のように構成して、(4)や(1)式のに4. k
zに相当する第1演算器54や第2演算器55、ならび
に増幅器56や増幅器57の増幅率を特定の加速電圧に
おいてあらかじめ調整しておく。このとき、加速電圧を
変更しても〔作用〕で説明したように所望の印加電圧U
とコイル電流Iが自動的に与えられ、数調整する必要が
なくなる。また、Δ■決定器51−は、加速電圧に連動
して変化させるように構成したが、加速電圧にかかわら
ず一定の場合には一定の信号を出せばよいし、へV決定
器51を省略することもできる。
4. Configure as below to form equations (4) and (1). k
The amplification factors of the first arithmetic unit 54, the second arithmetic unit 55, and the amplifier 56 and the amplifier 57 corresponding to z are adjusted in advance at a specific acceleration voltage. At this time, even if the accelerating voltage is changed, the desired applied voltage U can be maintained as explained in [Operation].
and coil current I are automatically given, eliminating the need to adjust the numbers. In addition, the Δ■ determiner 51- is configured to change in conjunction with the acceleration voltage, but if the acceleration voltage is constant regardless of the acceleration voltage, it is sufficient to output a constant signal, and the V determiner 51 is omitted. You can also.

本発明において、所望の印加電圧Uとコイル電流■をい
ろいろな演算器51〜55で構成したが、これらをまと
めた演算器50で構成し、複数個の加速電圧で印加電圧
TJとコイル電流Iをあらかじめ求めておき、使用する
加速電圧に対するUや■を内挿して行なうこともできる
。また、本実施例において磁界Bは電磁石を用いたが、
永久磁石を用いても行える。このとき、Bは固定なので
、(1)式を満足するように電界Eすなわち印加電圧U
を決めるような構成にすればよい。
In the present invention, the desired applied voltage U and coil current I are configured by various calculation units 51 to 55, but it is configured by a calculation unit 50 that combines these, and the applied voltage TJ and coil current I are calculated by a plurality of accelerating voltages. It is also possible to calculate this in advance and interpolate U and ■ for the acceleration voltage to be used. Furthermore, although an electromagnet was used for the magnetic field B in this example,
This can also be done using a permanent magnet. At this time, since B is fixed, the electric field E, that is, the applied voltage U
The configuration should be such that it determines the

要は、加速電圧が変化しても、(j)式を常に満足する
ように加速電圧と連動して電界Eや磁界Bが変化できる
ように構成すれば、どのように構成しても本発明の目的
は達成できる。
The point is that even if the accelerating voltage changes, as long as the electric field E and the magnetic field B can be changed in conjunction with the accelerating voltage so that equation (j) is always satisfied, the present invention can be applied in any configuration. objective can be achieved.

本発明において、加速電圧が変化したときにレンズ3や
6の自動調整に関しては省略したが、これらも同時に行
うこともできる。また、試料7は対物レンズ6の内部に
配置し、二次電子検出器5を対物レンズ6の電子銃側に
配置したが、この配置に関しては第1図の実施例に限る
ものではないことはいうまでもない。またレンズの種類
(磁界形、静電形)や個数、電子銃の種類も本実施例に
限ることなく本発明を用いることができる。
In the present invention, automatic adjustment of the lenses 3 and 6 when the accelerating voltage changes is omitted, but these can also be performed at the same time. Furthermore, although the sample 7 was placed inside the objective lens 6 and the secondary electron detector 5 was placed on the electron gun side of the objective lens 6, this arrangement is not limited to the embodiment shown in FIG. Needless to say. Further, the type (magnetic field type, electrostatic type) and number of lenses and the type of electron gun are not limited to those in this embodiment, and the present invention can be used.

本発明は、電子線のエネルギーフィルタに関して述べた
。しかし、この応用にかぎることなく、例えば電子銃を
イオン銃で置き換えた装置で、イオン線の質量分離フィ
ルタとしてウィーンフィルタを用いたときにも同様に行
える。すなわち、荷電粒子線の応用装置一般に使用でき
る。
The present invention has been described with respect to an energy filter for electron beams. However, this application is not limited to this, and can also be applied similarly when a Wien filter is used as a mass separation filter for ion beams in a device in which the electron gun is replaced with an ion gun, for example. That is, it can be used in general charged particle beam application devices.

〔発明の効果〕〔Effect of the invention〕

以上に述べたごとく1本発明によれば、加速型圧を変化
させてもその都度電界や磁界の調整をする必要がないの
で、任意に加速電圧を選ぶことができる荷電粒子線の応
用装置の提供が可能になる。
As described above, according to the present invention, there is no need to adjust the electric field or magnetic field each time the accelerating pressure is changed, so that the charged particle beam application device can arbitrarily select the accelerating voltage. It becomes possible to provide

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す走査形電子顕微鏡の
基本構成図、第2図は、すでに考案した走査形電子顕微
鏡の基本構成図、第3図は、高分解能化を図った従来の
走査形電子顕微鏡の基本構成図。 1・・・電界放射形電子銃、2・・・加速レンズ、3・
・・コンデンサレンズ、4・・・偏向器、5・・・二次
電子検出器、6・・・対物レンズ、7・・・試料、8・
・・電子線、9・・・二次電子、]−o・・・ウィーン
フィルタ、11・・・絞り、20・・・偏向支点、4o
・・・高圧電源、50・・・演算器、51・・・Δ■決
定器、52・・・二乗器、53・・・平方根器、54・
・・第]−演算器、55・・・第2演算器、56.57
・・・増幅器、8o・・所望のエネルギーをもつ電子線
、81.82・・・所望のエネルギー以外の電子線。
Fig. 1 is a basic configuration diagram of a scanning electron microscope showing an embodiment of the present invention, Fig. 2 is a basic configuration diagram of a scanning electron microscope already devised, and Fig. 3 is a diagram of a scanning electron microscope with high resolution. Basic configuration diagram of a conventional scanning electron microscope. 1... Field emission type electron gun, 2... Accelerating lens, 3...
... Condenser lens, 4... Deflector, 5... Secondary electron detector, 6... Objective lens, 7... Sample, 8...
...Electron beam, 9...Secondary electron, ]-o...Wien filter, 11...Aperture, 20...Deflection fulcrum, 4o
. . . High voltage power supply, 50 .
. . .]-operation unit, 55 . . . 2nd operation unit, 56.57
...Amplifier, 8o...Electron beam with desired energy, 81.82...Electron beam with energy other than desired.

Claims (1)

【特許請求の範囲】 1、荷電粒子源、荷電粒子源より出た荷電粒子線を細く
絞るレンズ手段、上記粒子線を試料面上で二次元的に走
査する走査手段、および電界と磁界とが直交するように
構成された偏向形エネルギーフィルタ手段とを具備した
荷電粒子線応用装置において、荷電粒子線の加速電圧の
変化に連動して上記電界もしくは磁界もしくは両者の強
さを変化させたことを特徴とする荷電粒子線応用装置。 2、上記電界の強さと磁界の強さとの比を、加速電圧の
平方根に比例して変化させたことを特徴とする第1項記
載の荷電粒子線応用装置。 3、電界の強さを加速電圧の二乗に比例して変化させた
ことを特徴とする第1項もしくは第2項記載の荷電粒子
線応用装置。 4、磁界の強さを加速電圧の1.5乗に比例して変化さ
せたことを特徴とする第1項及至第3項記載の荷電粒子
線応用装置。 5、エネルギーフィルタのフィルタ感度を加速電圧の変
化に連動して変化させたことを特徴とする第1項から第
4項のいずれかに記載の荷電粒子線応用装置。 6、あらかじめ複数個の加速電圧に対して電界や磁界の
強さを求めておき、所望の加速電圧に対しての電界や磁
界の強さを上記求めた値より内挿して求めることを特徴
とする第1項記載の荷電粒子線応用装置。
[Claims] 1. A charged particle source, a lens means for narrowing the charged particle beam emitted from the charged particle source, a scanning means for two-dimensionally scanning the particle beam on a sample surface, and an electric field and a magnetic field. In a charged particle beam application device equipped with deflection type energy filter means configured to be orthogonal to each other, the strength of the electric field or the magnetic field, or both, is changed in conjunction with a change in the accelerating voltage of the charged particle beam. Features of charged particle beam application equipment. 2. The charged particle beam application device according to item 1, wherein the ratio between the electric field strength and the magnetic field strength is changed in proportion to the square root of the accelerating voltage. 3. The charged particle beam application device according to item 1 or 2, characterized in that the strength of the electric field is changed in proportion to the square of the accelerating voltage. 4. The charged particle beam application device according to items 1 to 3, characterized in that the strength of the magnetic field is changed in proportion to the 1.5th power of the accelerating voltage. 5. The charged particle beam application device according to any one of items 1 to 4, characterized in that the filter sensitivity of the energy filter is changed in conjunction with changes in the accelerating voltage. 6. The electric field and magnetic field strengths are determined in advance for a plurality of accelerating voltages, and the electric field and magnetic field strengths for the desired accelerating voltage are determined by interpolation from the values determined above. The charged particle beam application device according to item 1.
JP6375887A 1987-03-20 1987-03-20 Charged particle beam application device Pending JPS63231852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6375887A JPS63231852A (en) 1987-03-20 1987-03-20 Charged particle beam application device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6375887A JPS63231852A (en) 1987-03-20 1987-03-20 Charged particle beam application device

Publications (1)

Publication Number Publication Date
JPS63231852A true JPS63231852A (en) 1988-09-27

Family

ID=13238612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6375887A Pending JPS63231852A (en) 1987-03-20 1987-03-20 Charged particle beam application device

Country Status (1)

Country Link
JP (1) JPS63231852A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300775A (en) * 1992-02-12 1994-04-05 U.S. Philips Corporation Method of selecting a spatial energy spread within an electron beam, and an electron beam apparatus suitable for carrying out such a method
JP2009164054A (en) * 2008-01-09 2009-07-23 Hitachi High-Technologies Corp Charged-particle beam orbital correction machine and charged-particle beam apparatus
US7890703B2 (en) 2005-12-22 2011-02-15 International Business Machines Corporation Cache injection using semi-synchronous memory copy operation
KR20210046541A (en) 2019-10-18 2021-04-28 가부시키가이샤 히다치 하이테크 사이언스 Focused ion beam apparatus and method for controlling the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300775A (en) * 1992-02-12 1994-04-05 U.S. Philips Corporation Method of selecting a spatial energy spread within an electron beam, and an electron beam apparatus suitable for carrying out such a method
US7890703B2 (en) 2005-12-22 2011-02-15 International Business Machines Corporation Cache injection using semi-synchronous memory copy operation
JP2009164054A (en) * 2008-01-09 2009-07-23 Hitachi High-Technologies Corp Charged-particle beam orbital correction machine and charged-particle beam apparatus
KR20210046541A (en) 2019-10-18 2021-04-28 가부시키가이샤 히다치 하이테크 사이언스 Focused ion beam apparatus and method for controlling the same
US11257655B2 (en) 2019-10-18 2022-02-22 Hitachi High-Tech Science Corporation Focused ion beam apparatus, and control method for focused ion beam apparatus

Similar Documents

Publication Publication Date Title
US7355174B2 (en) Charged particle beam emitting device and method for adjusting the optical axis
JP3932894B2 (en) Electron beam equipment
JP4176149B2 (en) Correction device for correcting chromatic aberration of particle optical equipment
JP2001511303A (en) Correction device for spherical aberration correction in particle-optical apparatus
JPH0233843A (en) Scanning electronic microscope
JP4286913B2 (en) Correction device for correcting chromatic aberration in particle optical equipment
US7411192B2 (en) Focused ion beam apparatus and focused ion beam irradiation method
JP2001222969A (en) Converged ion beam column including energy filter
JPS61208736A (en) Scan particle microscope
WO2019187118A1 (en) Charged-particle beam application device
EP1100111A1 (en) Deflection arrangement for separating two particle beams
JP2001510624A (en) Operation method of particle optical device
US6232601B1 (en) Dynamically compensated objective lens-detection device and method
JPS63231852A (en) Charged particle beam application device
US6653632B2 (en) Scanning-type instrument utilizing charged-particle beam and method of controlling same
JPH01319236A (en) Field emission electron gun
JP2000228162A (en) Electron beam device
JPH025337A (en) Charged particle beam device and sample observing method thereby
WO1999026272A1 (en) Particle beam device
US6717141B1 (en) Reduction of aberrations produced by Wien filter in a scanning electron microscope and the like
JP3649008B2 (en) Electron beam equipment
JP7515021B2 (en) Charged particle beam device and method for demagnetizing magnetic lens
WO2022269757A1 (en) Charged particle beam device and method for demagnetizing magnetic lens
JPH0260042A (en) Driving power source of ion beam application unit
JPH0537398Y2 (en)