JPS63231709A - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPS63231709A
JPS63231709A JP6662887A JP6662887A JPS63231709A JP S63231709 A JPS63231709 A JP S63231709A JP 6662887 A JP6662887 A JP 6662887A JP 6662887 A JP6662887 A JP 6662887A JP S63231709 A JPS63231709 A JP S63231709A
Authority
JP
Japan
Prior art keywords
thin films
cracks
thin film
magnetic head
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6662887A
Other languages
Japanese (ja)
Inventor
Yoshiaki Shimizu
良昭 清水
Hiroyuki Okuda
裕之 奥田
Takao Yamano
山野 孝雄
Kazuo Ino
伊野 一夫
Kozo Ishihara
宏三 石原
Takashi Ogura
隆 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6662887A priority Critical patent/JPS63231709A/en
Publication of JPS63231709A publication Critical patent/JPS63231709A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce eddy current loss and to prevent a dummy gap from being formed by forming ferromagnetic metallic thin films on the joined surfaces of magnetic core half bodies and making them abut on each other, and forming cracks in the thin films in a film thickness direction. CONSTITUTION:The fine cracks 17 (17a and 17b) perpendicular to gap formation surfaces 16 are formed in the ferromagnetic metallic thin films 13a and 13b with high saturation magnetic flux density which are arranged nearby the gap 12 of a couple of magnetic core half bodies 11a and 11b. Thin films 13 (13a and 13b) are vapor-deposited on planes forming the core half bodies first and then the planes become concave because of their coefficients of thermal expansion. Grooves are formed in those two planes, which are put opposite each other; and glass 15 is charged and the planes are pressed and heated to form the cracks 17. Those cracks decrease the electric resistance of the thin films 13 and then the eddy current loss is reduced, so that a high recording reproduction output is obtained in a high frequency range.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は磁気ヘッドに関するものであシ、特に高抗磁力
のメタルテープに対応するために磁気コアのギャップ近
傍部に高飽和磁束密度の強磁性金属薄膜を配置した所謂
複合型の磁気ヘッドに関する。
Detailed Description of the Invention (a) Field of Industrial Application The present invention relates to a magnetic head. In particular, in order to cope with a metal tape having a high coercive force, a high saturation magnetic flux density is applied to the vicinity of the gap of the magnetic core. The present invention relates to a so-called composite magnetic head in which a ferromagnetic metal thin film is arranged.

呻)従来の技術 近年、8ミリVTR(ビデオテープレコーダ)やDAT
 (デジタルオーディオテープレコーダ)等の磁気記録
再生装置においては、記録信号の高密度化が進められて
おシ、この高密度記録に対応して高残留磁束密度、高抗
磁力のメタルテープが使用されるようになっている。そ
して、この高抗磁力のメタルテープに対応する磁気ヘッ
ドとしてはギャップ近傍部をフェライトよシも飽和磁化
の大きな強磁性金属薄膜(センダスト、アモルファス合
金等)で構成した所謂複合型の磁気ヘッドが提案されて
いる。
Conventional technology In recent years, 8mm VTR (video tape recorder) and DAT
In magnetic recording and reproducing devices such as digital audio tape recorders (digital audio tape recorders), the recording signal density has been increasing, and metal tapes with high residual magnetic flux density and high coercive force are being used to accommodate this high density recording. It has become so. As a magnetic head compatible with this high coercive force metal tape, a so-called composite magnetic head was proposed in which the gap area is made of a ferromagnetic metal thin film (sendust, amorphous alloy, etc.) with a higher saturation magnetization than ferrite. has been done.

第7図はこの従来の磁気ヘッドのテープ摺接面を示す平
面図である。この図から判るようにフェライトコア(1
)と強磁性金属薄膜(2)との接合面(3)はギャップ
形成面(4)に平行でない。これは前記接合面(3)が
擬似ギャップとして動作するのを防止するためである。
FIG. 7 is a plan view showing the tape sliding surface of this conventional magnetic head. As you can see from this figure, the ferrite core (1
) and the ferromagnetic metal thin film (2) (3) is not parallel to the gap forming surface (4). This is to prevent the joint surface (3) from operating as a pseudo gap.

しかし乍ら、最近では第7図に示した磁気ヘッドよりも
製造が容易である第8図に示すような7ヱライトコア(
5)と強磁性金属薄膜(6)との接合面(7)がギャッ
プ形成面(8)に平行である磁気ヘッドに訃いても、特
願昭61−237669号に示されているようにガラス
溶着の際の圧力を小さくすることによって前記接合部(
7)が擬似ギャップとして動作するのを防止した磁気ヘ
ッドが提案されている。
However, recently, a 7-elite core (as shown in Fig. 8), which is easier to manufacture than the magnetic head shown in Fig. 7, has been developed.
5) and the ferromagnetic metal thin film (6) is parallel to the gap forming surface (8). By reducing the pressure during welding, the joint (
7) A magnetic head has been proposed in which the magnetic head is prevented from operating as a pseudo gap.

−万、上述のような磁気ヘッドにおいては渦電流損失の
増加が重要な問題である。そして斜面型の磁気ヘッドの
場合、特開昭60−32107号公報(C)11 B5
/127 )では第9図に示すように強磁性金属薄膜(
9)を8102等の高硬度絶縁膜f111介して積層形
成することにより渦電流損失の増加を防止している。
-Increasing eddy current loss is an important problem in magnetic heads such as those described above. In the case of a slope type magnetic head, Japanese Patent Laid-Open No. 60-32107 (C) 11 B5
/127), the ferromagnetic metal thin film (
9) is laminated with a high hardness insulating film f111 such as 8102 interposed therebetween to prevent an increase in eddy current loss.

ところが、第8図に示すような平行型の磁気ヘッドの場
合、上述と同様に強磁性金属薄膜を高硬度絶縁膜を介し
て積層形成しても強磁性金属薄膜を成膜する面とギャッ
プ形成面とが平行であることから、磁束の通る方向と積
層面とは略直交し。
However, in the case of a parallel type magnetic head as shown in FIG. 8, even if ferromagnetic metal thin films are laminated with a high-hardness insulating film interposed therebetween in the same manner as described above, there is a difference between the surface on which the ferromagnetic metal thin films are deposited and the gap formation. Since the planes are parallel, the direction in which the magnetic flux passes is approximately perpendicular to the lamination plane.

渦電流損失を低減することは出来なかった。しかも、前
記高硬度絶縁膜が擬似ギャップとして動作する虞れがあ
った。
It was not possible to reduce eddy current loss. Moreover, there is a possibility that the high hardness insulating film may act as a pseudo gap.

(ハ)発明が解決しようとする問題点 本発明は上記従来例の欠点に鑑みなされたものであり、
斜面型、平行型どちらの複合型の磁気〜ラドにおいても
、渦電流損失の低減を可能とし、しかも擬似ギャップが
生じるのを防止した磁気ヘッドを提供することを目的と
するものである。
(c) Problems to be solved by the invention The present invention has been made in view of the drawbacks of the above-mentioned conventional examples.
The object of the present invention is to provide a magnetic head that can reduce eddy current loss and prevent the generation of pseudo gaps in both slope type and parallel type composite magnetic to rad systems.

に)問題点を解決するための手段 強磁性酸化物よシなる一対の磁気コア半体の接合面に強
磁性金属薄膜を形成し、該強磁性金属薄膜同士を衝き合
わせて磁気ギャップを構成してなる複合型の磁気ヘッド
において、前記強磁性金属薄膜に膜厚方向の割れ目を形
成する。
2) Means for solving the problem A ferromagnetic metal thin film is formed on the joint surface of a pair of magnetic core halves made of ferromagnetic oxide, and the ferromagnetic metal thin films are brought into contact to form a magnetic gap. In the composite magnetic head, cracks are formed in the ferromagnetic metal thin film in the film thickness direction.

律)作 用 上記構成に依れば1強磁性金属薄膜は割れ目によシミ気
抵抗が増加して渦電流損失が減少し、しかも前記割れ目
はギャップ形成面と平行でないため擬似ギャップとして
動作しない。
According to the above configuration, the ferromagnetic metal thin film increases the stain resistance at the cracks and reduces the eddy current loss, and since the cracks are not parallel to the gap forming surface, they do not operate as a pseudo gap.

(へ)実施例 以下1図面を参照しつつ本発明の一実施例を詳細に説明
する。
(F) Embodiment An embodiment of the present invention will be described in detail below with reference to one drawing.

第1図は本実施例の複合型の磁気〜ラドの外観を示す斜
視図、第2因はそのテープ摺接面を示す平面図である。
FIG. 1 is a perspective view showing the external appearance of the composite magnetic-RAD device of this embodiment, and the second factor is a plan view showing its tape sliding surface.

この磁気ヘッドはMn−Zn7エライト等の強磁性酸化
物からなる一対の磁気コア半体(11a)(111))
の哄気ギャップσ2近傍部に飽和磁束密度の大きいセン
ダスト等の強磁性金属薄膜(13fL)(131))を
配置し、トラック幅規制溝(141(141内に…」記
磁気コア半体(11&)(11b)を接合するガラスt
ts [151を充填している。前記磁気コア半体(1
11(111))と前記強磁性金属薄膜(13a)(i
3b)との接合面(19PL)(191))は前記ギャ
ップa’a形成面(16!L)(161))と平行であ
る。前記強磁性金属薄膜(16IL)(131))は前
記磁気ギ’ryグ(121形成面(16&)(16t+
)と直交する方向(膜厚方向)に形成された幅1μm弱
の割れ目(17a)(17b)により分断されている。
This magnetic head has a pair of magnetic core halves (11a) (111) made of ferromagnetic oxide such as Mn-Zn7 elite.
A ferromagnetic metal thin film (13fL) (131) such as Sendust with a high saturation magnetic flux density is arranged near the magnetic gap σ2 of the magnetic core half body (11& ) (11b)
ts [151 is filled. The magnetic core half (1
11 (111)) and the ferromagnetic metal thin film (13a) (i
3b) (19PL) (191)) is parallel to the gap a'a forming surface (16!L) (161)). The ferromagnetic metal thin film (16IL) (131)) is attached to the magnetic gear (121 forming surface (16&) (16t+).
) are divided by cracks (17a) and (17b) with a width of a little less than 1 μm formed in a direction (film thickness direction) perpendicular to the film thickness direction.

尚、前g8割れ目(17a)(17”)は強磁性酸化物
基板のガラス接合時に生じる。
Incidentally, the front g8 crack (17a) (17'') is generated when the ferromagnetic oxide substrate is bonded to glass.

次に、第1図に示す磁気ヘッドの製造方法、特に強磁性
酸化物基板に強磁性金属薄膜を被着する工程と1強磁性
酸化物基板をガラス接合する工程とについて説明する。
Next, a method for manufacturing the magnetic head shown in FIG. 1 will be described, particularly the step of depositing a ferromagnetic metal thin film on a ferromagnetic oxide substrate and the step of glass bonding one ferromagnetic oxide substrate.

1)先ずMn−Zn系フェライトよりなる平板状の強磁
性酸化物基板■の上面(2&)に2極RFマグネトロン
型スパツタリング装置を用いて強磁性金属薄膜(13a
)を被着する。この時のスパッタリング条件は、基板−
ターゲット間距離が74−、投入電力が500W、Ar
ガスノカス圧が3XiQ−”10rrである。この条件
下でスパッタリングを終えるとその時の温度降下によシ
前記強磁性酸化物基板■より熱膨張係数の大きい強磁性
金属薄膜(13a)は引っ張り応力を持つ。
1) First, a ferromagnetic metal thin film (13a
). The sputtering conditions at this time were as follows:
Distance between targets is 74-, input power is 500W, Ar
The gas pressure is 3XiQ-10rr. When sputtering is finished under these conditions, the ferromagnetic metal thin film (13a), which has a larger coefficient of thermal expansion than the ferromagnetic oxide substrate (1), has tensile stress due to the temperature drop at that time. .

このため、前記基板■は第3因に示すように前記薄膜(
13a)が形成された上面(20a)が凹面となるよう
に反る。そして、第4図に示すようにこの強磁性酸化物
基板■の上面(20&)に溝1211加工を行いギャッ
プ形成面(16a)を形成する。
Therefore, as shown in the third factor, the substrate (2) has the thin film (
The upper surface (20a) on which 13a) is formed is curved to become a concave surface. Then, as shown in FIG. 4, a groove 1211 is processed on the upper surface (20&) of this ferromagnetic oxide substrate 2 to form a gap forming surface (16a).

次に、第4図に示した基板を2枚用意し、その一方の上
面(20a)に前記溝(2Dと直交する巻線溝(ハ)を
加工して第1基板(24&)を作成し、他方の上面(2
01L)に前記溝(211と直交する巻線溝[有]及び
ガラス棒挿入溝(至)を加工して第2基板(241))
を作成する。そして、第5図に示すようにこの第1.第
2基板(241L )(24b )のお互いのギャップ
形成面(16!L)(16k))を対向させ、前記ガラ
ス棒挿入溝c2蓼にガラス棒@を挿入する。そして前記
第1.第2基板(243)(241))の両側から圧力
Fを加え乍ら2時間程かけて800℃まで昇温して5〜
10分放置し、前記ガラス棒(ホ)を溶かして前記第1
.第2基板(24!’ )(24b )をガラス接合す
る。この時、前記強磁性金属薄膜(1381(13’b
)には前記ギャップ形成面(161!L)(161))
と直交する方向(膜厚方間)に割れ目(17&)(17
11)が生じる。
Next, two substrates shown in FIG. 4 are prepared, and a first substrate (24&) is created by forming the groove (winding groove (c) perpendicular to 2D) on the upper surface (20a) of one of them. , the other top surface (2
01L) to form a winding groove [with] and a glass rod insertion groove (to) perpendicular to the groove (211) to form the second substrate (241).
Create. Then, as shown in FIG. The gap forming surfaces (16!L) (16k) of the second substrates (241L) (24b) are opposed to each other, and a glass rod is inserted into the glass rod insertion groove c2. And the first one above. While applying pressure F from both sides of the second substrate (243) (241)), the temperature was raised to 800°C over about 2 hours.
Leave it for 10 minutes to melt the glass rod (E) and dissolve the first glass rod (E).
.. The second substrates (24!') (24b) are glass-bonded. At this time, the ferromagnetic metal thin film (1381 (13'b
) has the gap forming surface (161!L) (161))
A crack (17 &) (17
11) occurs.

そして、以後は周知の技術である切断、研磨加工によっ
て第1図に示す複合型の磁気ヘッドを形成する。
Thereafter, the composite magnetic head shown in FIG. 1 is formed by cutting and polishing using well-known techniques.

11)まり、前述のスパッタ装置の基板−ターゲット間
距離を72.、、に変更して強磁性酸化物基板に強磁性
金属薄膜の被着を行った場合、酊j記基板は削紀薄膜を
形成した面が生肝凸面となるように反る。このようにタ
ーゲット−基板間距離を短くした場合、スパッタリング
エネルギーが大きくなるためターゲットからの被着粒子
数が多く、シかもArガス等が被膜に混入するため、該
被膜は広がろうとする。そして、この広がろうとする力
が前述の熱膨張係数の差による引つ俣9応力より太きい
ため、前述したように前記強磁性酸化物基板はその上面
が凸面となるように反る。
11) Therefore, the distance between the substrate and the target of the above-mentioned sputtering apparatus is set to 72. When a ferromagnetic metal thin film is deposited on a ferromagnetic oxide substrate by changing to . When the distance between the target and the substrate is shortened in this way, the sputtering energy increases, so the number of adhering particles from the target increases, and Ar gas or the like may also be mixed into the film, so that the film tends to spread. Since this spreading force is greater than the stress caused by the above-mentioned difference in thermal expansion coefficients, the ferromagnetic oxide substrate warps so that its upper surface becomes convex, as described above.

セして、この凸面に反った第1.第2基板を両側から圧
力を加え乍ら昇温してガラス接合するとuIJ記薄膜に
はギャップ形成面と直交するように割れ目が発生する。
This convexly curved first. When the second substrate is glass-bonded by increasing the temperature while applying pressure from both sides, a crack is generated in the uIJ thin film perpendicular to the gap forming plane.

こnは薄膜形成時点では前記薄膜に広がろうとする力が
生じていてもその力が小さいために、ガラス接合時の昇
温によシ薄膜は高密度化が進んで体積は縮少し、また成
膜時に薄膜に混入したArガス等が除去され、前記薄膜
を形成した面が凹面となるためである。但し、こnは1
)で製造した磁気ヘッドに比して1割れ目の数は少なく
5割れ目の幅も小さい。
This is because even if there is a force that tries to spread the thin film at the time of forming the thin film, that force is small, so as the temperature rises during glass bonding, the thin film becomes denser and its volume shrinks. This is because Ar gas and the like mixed into the thin film during film formation are removed, and the surface on which the thin film is formed becomes a concave surface. However, this n is 1
) The number of the first cracks is smaller and the width of the fifth crack is smaller than that of the magnetic head manufactured by the above method.

以上のように、1)薄膜形成時に既に薄膜に引つ張シ応
力を発生させておくか、それとも11)ガラス接合時の
昇温によって薄膜に引つ張シ応用が発生する程度の広が
ろうとする力を薄膜形成時に発生させておくことによっ
て強磁性金属薄膜に割れ目を形成することが出来る。
As mentioned above, either 1) tensile stress is already generated in the thin film when forming the thin film, or 11) the tensile stress is spread to the extent that it occurs in the thin film due to the temperature rise during glass bonding. Cracks can be formed in a ferromagnetic metal thin film by generating this force during thin film formation.

第10図は強磁性金属薄膜に割れ目を備える本実施例の
磁気〜ラドと割れ目を備えない従来の磁気ヘッドとの再
生出力の周波数特性を示す図である。この図から判るよ
うに約5MH2以上の高周波域では割れ目(17a)(
171))を有する本実施例の磁気〜ラドの方が従来の
磁気ヘッドよシも高い再生出力を得ることが出来る。
FIG. 10 is a diagram showing the frequency characteristics of the reproduction output of the magnetic head of this embodiment in which the ferromagnetic metal thin film has a crack and the conventional magnetic head without a crack. As can be seen from this figure, cracks (17a) (
171)) of the present embodiment can obtain a higher reproduction output than the conventional magnetic head.

上述のような磁気ヘッドでは1強磁性金属薄膜(131
’)(131))の割れ目(17a)(17b)により
前記強磁性金属薄膜(131!L)(13b)の電気抵
抗が増加するため渦電流損失が誠少し、高周波信号の記
録、再生出力が向上する。また、前記割れ目(171L
)(171))の幅が1μm以上と大きくなると、該割
れ目(176)(171))には第1.第2基板の接合
時のガラスが充填され、前記強磁性金属薄膜(13!L
)(131))が補強され、しかも前記強磁性金属薄膜
(16a)(13t))の電気的な分離がより一階好ま
しい状態になり、渦電流損失の低減には効果大である。
In the above magnetic head, one ferromagnetic metal thin film (131
') (131)) cracks (17a) (17b) increase the electrical resistance of the ferromagnetic metal thin film (131!L) (13b), resulting in eddy current loss and high frequency signal recording and reproduction output. improves. In addition, the crack (171L
) (171)) becomes larger than 1 μm, the cracks (176) (171)) have the first . When the second substrate is bonded, the glass is filled and the ferromagnetic metal thin film (13!L
) (131)) is reinforced, and the electrical isolation of the ferromagnetic metal thin films (16a) (13t)) becomes even more favorable, which is highly effective in reducing eddy current loss.

また、第6図に示すように磁気ギャップazを介して対
向する強磁性金属薄膜(13a ) (131))に夫
々形成された割れ目(17!L)(171))の本数が
異なっていても、上述と同じ効果を得る。
Furthermore, as shown in FIG. 6, even if the number of cracks (17!L) (171)) formed in the ferromagnetic metal thin films (13a) (131)) facing each other across the magnetic gap az is different, , obtain the same effect as above.

尚、前述の場合、基板−ターゲット間距離によって基板
の反シ方を調整していたが、Arガスの圧力によっても
調整することが出来る。
In the above case, the orientation of the substrate was adjusted by the distance between the substrate and the target, but it can also be adjusted by the pressure of Ar gas.

(ト1 発明の効果 本発明に依れば、渦電流損失を低減させることにより高
周波領域で高い記録、再生出力を得ることが出来る磁気
ヘッドを提供し得る。・
(G1. Effects of the Invention According to the present invention, it is possible to provide a magnetic head that can obtain high recording and reproduction output in a high frequency region by reducing eddy current loss.-

【図面の簡単な説明】[Brief explanation of the drawing]

第1因乃至第6図は本発明に係り、第1図は磁気ヘッド
の外観を示す斜視図、第2図は前記磁気ヘッドのテープ
摺接面を示す平面図、第6図、第4図及び第5因は夫々
前記磁気ヘッドの製造方法を示す図、第6図は他の実施
例の磁気ヘッドのテープ摺接面を示す平面図である。第
7図、第8図及び第9図は夫々従来の磁気ヘッドのテー
プ摺接面を示す平面図である。第10図は磁気ヘッド再
生出力の周波数特性を示す図である。 CIl&)(111))・・・磁気コア半体、(13・
・・磁気ギャップ、(13a)(131))・・・強磁
性金属薄膜、(16a)(16’b)・・・ギャップ形
成面。 (17a ) (171:+ ) ・・・割れ目、 (
lE9・・・ガラス。
Figures 1 to 6 relate to the present invention; Figure 1 is a perspective view showing the external appearance of the magnetic head, Figure 2 is a plan view showing the tape sliding surface of the magnetic head, Figures 6 and 4. and the fifth factor are diagrams showing the method of manufacturing the magnetic head, respectively, and FIG. 6 is a plan view showing the tape sliding surface of the magnetic head of another embodiment. FIG. 7, FIG. 8, and FIG. 9 are plan views showing the tape sliding surface of a conventional magnetic head, respectively. FIG. 10 is a diagram showing the frequency characteristics of the magnetic head reproduction output. CIl &) (111))...Magnetic core half, (13.
...Magnetic gap, (13a) (131))...Ferromagnetic metal thin film, (16a) (16'b)...Gap forming surface. (17a) (171:+) ...Crack, (
lE9...Glass.

Claims (1)

【特許請求の範囲】[Claims] (1)強磁性酸化物よりなる一対の磁気コア半体の接合
面に強磁性金属薄膜を形成し、該強磁性金属薄膜同士を
衝き合わせて磁気ギャップを構成してなる複合型の磁気
ヘッドにおいて、前記強磁性金属薄膜に膜厚方向の割れ
目を形成してなる磁気ヘッド。
(1) In a composite magnetic head in which a ferromagnetic metal thin film is formed on the joint surfaces of a pair of magnetic core halves made of ferromagnetic oxide, and a magnetic gap is formed by abutting the ferromagnetic metal thin films against each other. , a magnetic head formed by forming cracks in the film thickness direction in the ferromagnetic metal thin film.
JP6662887A 1987-03-20 1987-03-20 Magnetic head Pending JPS63231709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6662887A JPS63231709A (en) 1987-03-20 1987-03-20 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6662887A JPS63231709A (en) 1987-03-20 1987-03-20 Magnetic head

Publications (1)

Publication Number Publication Date
JPS63231709A true JPS63231709A (en) 1988-09-27

Family

ID=13321347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6662887A Pending JPS63231709A (en) 1987-03-20 1987-03-20 Magnetic head

Country Status (1)

Country Link
JP (1) JPS63231709A (en)

Similar Documents

Publication Publication Date Title
JPH0772927B2 (en) Magnetic head
JPS63231709A (en) Magnetic head
JPS6220607B2 (en)
JPH02101609A (en) Magnetic head
JPS63167407A (en) Magnetic erasing head
JPS63285715A (en) Magnetic head
JPH01204206A (en) Magnetic head and its manufacture
JPH0448416A (en) Magnetic head
JPS59116918A (en) Magnetic head and production of magnetic head
KR950007905Y1 (en) Mixed magnetic head
JPS6251009A (en) Magnetic core and its production
JPH0467246B2 (en)
JPH04229407A (en) Magnetic head
JPS59203210A (en) Magnetic core and its production
JPS6050608A (en) Magnetic head and its production
JPH0156445B2 (en)
JPS61242311A (en) Production of magnetic head
JPS61280009A (en) Magnetic head
JPS62128013A (en) Magnetic head
JPH01303609A (en) Manufacture of magnetic head core
JPH03224111A (en) Floating type magnetic head
JPS63201905A (en) Composite type magnetic head and its manufacture
JPH01125706A (en) Magnetic head
JPH0349003A (en) Magnetic head
JPS61126611A (en) Production of magnetic head