JPS63231193A - Method and device for separating gas - Google Patents

Method and device for separating gas

Info

Publication number
JPS63231193A
JPS63231193A JP62060995A JP6099587A JPS63231193A JP S63231193 A JPS63231193 A JP S63231193A JP 62060995 A JP62060995 A JP 62060995A JP 6099587 A JP6099587 A JP 6099587A JP S63231193 A JPS63231193 A JP S63231193A
Authority
JP
Japan
Prior art keywords
gas
boiling point
raw material
temperature
liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62060995A
Other languages
Japanese (ja)
Other versions
JPH079349B2 (en
Inventor
茂雄 渡辺
岡林 芳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Techno Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Techno Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Techno Engineering Co Ltd
Priority to JP62060995A priority Critical patent/JPH079349B2/en
Publication of JPS63231193A publication Critical patent/JPS63231193A/en
Publication of JPH079349B2 publication Critical patent/JPH079349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/0605Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
    • F25J3/062Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/0635Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/0655Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/40Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/02Control in general, load changes, different modes ("runs"), measurements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガス分離方法及び装置に係り、特に水素を主
成分とする原料ガスから深冷分離により水素を高純度に
分離して回収するのに好適なガス分路方法及び装置に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a gas separation method and apparatus, and particularly to a method and apparatus for separating and recovering hydrogen to high purity from a raw material gas containing hydrogen as a main component by cryogenic separation. The present invention relates to a gas shunting method and apparatus suitable for.

〔従来の技術〕[Conventional technology]

ベンゼンプラント、キシレンプラント等のガスは、水素
を主成分とし、該水素より高沸点成分であるメタン、エ
タン、プロパン等の炭化水素を含んでおり、このような
ガスを原料ガスとして深冷分離により水素は分離されて
回収されている。つまり、第2図で原料ガスは、該原料
ガスから凝縮、液化され膨張して蒸発した成分と不HW
+成分とが有する寒冷で冷却される。具体には、第2図
で、原料ガスは、導管11より約40 kg/am2G
の圧力で入り、吸着ユニット1に送られる。吸着ユニッ
トlにて原料ガス中に含まれる低温固化成分(水分、ベ
ンゼン等)を活成炭、合成ゼオライト、ゲル等により吸
着除去後保冷槽25に送られる。
Gas from benzene plants, xylene plants, etc. is mainly composed of hydrogen and contains hydrocarbons such as methane, ethane, and propane, which have higher boiling points than hydrogen. Hydrogen is separated and recovered. In other words, in Fig. 2, the raw material gas consists of components condensed, liquefied, expanded, and evaporated from the raw material gas, and non-HW.
It is cooled by the coldness of the + component. Specifically, in FIG. 2, the source gas is supplied from the conduit 11 at a rate of about 40 kg/am2G.
enters at a pressure of , and is sent to the adsorption unit 1. In the adsorption unit 1, low-temperature solidification components (moisture, benzene, etc.) contained in the raw material gas are adsorbed and removed using activated carbon, synthetic zeolite, gel, etc., and then sent to the cold storage tank 25.

保冷槽25内では熱交換器2.3にて低温の戻りガス(
以下、製品水素ガス台オフガスと称す)により約−15
0℃程度まで冷却、一部液化され導管13より低温分離
器4に入る。ここで未凝縮ガスは水素純度90%以上と
なり、製品水素ガスとして導管14より熱交換器3.2
を経て原料ガスを冷却させると同時に常温まで回復され
たのち。
In the cold storage tank 25, the low temperature return gas (
(hereinafter referred to as the product hydrogen gas stand off gas) approximately -15
It is cooled to about 0°C, partially liquefied, and enters the low-temperature separator 4 through the conduit 13. Here, the uncondensed gas has a hydrogen purity of 90% or more, and is passed through the conduit 14 to the heat exchanger 3.2 as a product hydrogen gas.
After the raw material gas is cooled down and at the same time recovered to room temperature.

製品として供給される。一方、低温分離器4にて分離さ
れた液化留分は、微量の水素及びメタン以上の水素より
高沸点成分である炭素水素を主成分のオフガスとなり、
導管20を経て液面mff1弁5により3 kg/cm
2G近くまで膨張される。オフガスは膨張により低圧と
なるため温度(飽和)が低温分離器4での温度(約−1
50℃)より更に低下し、原料ガスを所定の温度まで下
げる寒冷源となり、熱交換器3,2を経て常温まで温度
回復されたのち導管22より送出され、燃料ガスに使用
される。
Supplied as a product. On the other hand, the liquefied fraction separated in the low-temperature separator 4 becomes an off-gas mainly composed of trace amounts of hydrogen and carbon-hydrogen, which is a higher boiling point component than hydrogen than methane.
3 kg/cm via the conduit 20 and the liquid level mff1 valve 5
Expanded to nearly 2G. The off-gas becomes low pressure due to expansion, so its temperature (saturation) is lower than the temperature at low temperature separator 4 (approximately -1
50° C.), and serves as a cold source that lowers the raw material gas to a predetermined temperature. After the temperature is recovered to room temperature through heat exchangers 3 and 2, it is sent out through the conduit 22 and used as fuel gas.

なお、製品水素ガスの一部は吸着ユニット1に送られ吸
着剤の再生ガスとして利用されたのち、再び導管18.
19により製品水素ガスとして供給される。
Note that a part of the product hydrogen gas is sent to the adsorption unit 1 and used as regeneration gas for the adsorbent, and then sent to the conduit 18.
19 as a product hydrogen gas.

尚、この種の技術として関連するものには、例えば、特
公昭48−16425号等が挙げられる。
Incidentally, related techniques of this type include, for example, Japanese Patent Publication No. 48-16425.

(発明が解決しようとする間顕点〕 上記従来技術によれば、設計条件の流量及び組成をベー
スに製品水素ガス純度・回収率及び41!9器仕様を設
計するため、原料ガス流量の変動時にも安定して高純度
の製品水素ガスを供給するという点について配慮がされ
ていなかった。
(The key point to be solved by the invention) According to the above-mentioned conventional technology, the product hydrogen gas purity/recovery rate and the 41!9 device specifications are designed based on the flow rate and composition of the design conditions, so fluctuations in the raw material gas flow rate At times, no consideration was given to the stable supply of high-purity product hydrogen gas.

このため、原料ガス量の増量時には熱交換器の熱負荷が
設計ベースの熱負荷に比べ大きくなるが。
Therefore, when the amount of raw material gas is increased, the heat load on the heat exchanger becomes larger than the design-based heat load.

設計条件と比較して低温側の戻りオフガス温度は!へ発
圧力が一定であり、その飽和温度自体はあまり変化しな
いため、熱交換器冷端側の温度差が大きくなり原料ガス
を所定の温度まで冷却できなくなり製品水素ガス濃度が
低下してしまう問題があった・ 逆に、原料ガスの減量時には熱交換器の熱負荷が設計ベ
ースに比べ小さくなり、上記と逆に冷端温度差が小さく
なるため、原料ガスは所定の温度以下に冷却されすぎ製
品水素ガス純度は良くなるが、液化留分が多くなるため
回収率が低下する問題があった。
What is the return off-gas temperature on the low temperature side compared to the design conditions? Since the heating pressure is constant and the saturation temperature itself does not change much, the temperature difference on the cold end side of the heat exchanger becomes large, making it impossible to cool the raw material gas to the specified temperature, resulting in a decrease in the product hydrogen gas concentration. On the other hand, when the raw material gas is reduced, the heat load on the heat exchanger becomes smaller than the design base, and contrary to the above, the cold end temperature difference becomes smaller, so the raw gas is cooled too much below the specified temperature. Although the product hydrogen gas purity improves, there is a problem in that the recovery rate decreases because the liquefied fraction increases.

本発明の目的は、原料ガス流量の変動による製品ガス純
度並びに回収率の低下を防止できるガス分離方法及び装
置を提供することにある。
An object of the present invention is to provide a gas separation method and apparatus that can prevent a decrease in product gas purity and recovery rate due to fluctuations in raw material gas flow rate.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、ガス分離方法を、低沸点ガスと該低沸点ガ
スよりも沸点が高いガスとでなる原料ガスを該原料ガス
から凝縮、液化され膨張して蒸発した成分と不凝縮成分
とが有する寒冷で冷却する工程と、前記不凝縮成分中の
前記低沸点ガスe度を検出する工程と、前記低沸点ガス
の検出濃度に応じて前記凝縮、液化成分の膨張圧力を調
節する工程とを有する方法とし、ガス分離装置を、低沸
点ガスと該低沸点ガスよりも沸点が高いガスとでなる原
料ガスを該原料ガスから凝縮、液化され膨張して蒸発し
た成分と不凝縮成分とが有する寒冷で冷却する手段と、
前記凝縮、液化成分と前記不凝縮成分とを分離する手段
と、該気液分離手段か′らの前記凝縮、液化成分を膨張
させ蒸発させる手段と、分離された前記不凝縮成分中の
前記低沸点ガス濃度を検出する手段と、前記低沸点ガス
の検出濃度に応じて前記膨張手段での前記凝縮、液化成
分の膨張圧力を調節する手段とを具備したものとするこ
とにより、達成される。
The above object is to provide a gas separation method in which a raw material gas consisting of a low boiling point gas and a gas having a higher boiling point than the low boiling point gas is condensed from the raw material gas, and a component that is liquefied, expanded and evaporated, and a non-condensable component. A step of cooling with cold water, a step of detecting the e degree of the low boiling point gas in the non-condensable component, and a step of adjusting the expansion pressure of the condensed and liquefied component according to the detected concentration of the low boiling point gas. A gas separation device is used to condense a raw material gas consisting of a low boiling point gas and a gas with a boiling point higher than the low boiling point gas, and to liquefy the raw material gas, which is liquefied, expanded and evaporated, and the non-condensable component. means for cooling the
means for separating the condensed and liquefied components from the non-condensable components; means for expanding and evaporating the condensed and liquefied components from the gas-liquid separation means; This is achieved by comprising means for detecting the concentration of the boiling point gas, and means for adjusting the expansion pressure of the condensed and liquefied component in the expansion means in accordance with the detected concentration of the low boiling point gas.

〔作   用〕[For production]

原料ガス流量が所定流量より増量した場合、冷却手段で
原料ガスから凝縮、液化され膨張して蒸発した成分と不
IM、縮成分とが有する寒冷により冷却された原料ガス
の温度は、冷却手段での所定冷却温度より高くなる。こ
のため、不凝縮成分中の低沸点成分の含有量が多くなり
、製品ガスの純度が所定純度よりも低下する。そこで、
低沸点ガス濃度検出手段で不凝縮成分中の低沸点ガスの
濃度が検出される。検出された低沸点ガス濃度は、製品
ガスの所定純度つまり所定の低沸点ガス濃度と比較され
、濃度低下度合いに応じて膨張圧力調節手段での凝縮、
液化成分の膨張圧力が、この場合、膨張して蒸発した成
分の温度が、冷却手段での原料ガスの冷却温度が所定冷
却温度となるような温度となるように調節される。これ
により、原料ガス流量が所定流J14−より増剤:した
場合でも、冷却手段で原料ガスから凝縮、液化され膨張
して蒸発した成分と不凝縮成分とが有する寒冷により冷
却された原料ガスの温度は、所定冷却温度となり、製品
ガスの純度は、所定純度になる。逆に、原料ガス流量が
所定流量より裁縫した場合は、冷却手段で原料ガスから
凝縮、液化され膨張して蒸発した成分と不凝縮成分とが
有する寒冷により冷却された原料カスの温度は、冷却手
段での所定冷却温度より低くなる。このため、製品ガス
の純度は所定純度よりも向上するが液化留分が多くなり
回収率が低下する。そこで、低沸点ガス濃度検出手段で
不凝縮成分中の低沸点ガスの濃度が検出される。
When the raw material gas flow rate increases from a predetermined flow rate, the temperature of the raw material gas cooled by the cooling of the components that are condensed, liquefied, expanded, and evaporated from the raw material gas, and the non-IM and condensed components is lowered by the cooling means. becomes higher than the predetermined cooling temperature. Therefore, the content of low boiling point components in the non-condensable components increases, and the purity of the product gas decreases below a predetermined purity. Therefore,
The low boiling point gas concentration detection means detects the concentration of the low boiling point gas in the non-condensable components. The detected low boiling point gas concentration is compared with a predetermined purity of the product gas, that is, a predetermined low boiling point gas concentration, and depending on the degree of concentration reduction, condensation is performed by the expansion pressure regulating means.
The expansion pressure of the liquefied component, in this case, is adjusted so that the temperature of the expanded and evaporated component is such that the cooling temperature of the raw material gas in the cooling means becomes a predetermined cooling temperature. As a result, even when the raw material gas flow rate is increased from the predetermined flow rate J14-, the raw material gas is cooled by the cooling of the components that are condensed, liquefied, expanded, and evaporated from the raw material gas by the cooling means and the non-condensable components. The temperature becomes a predetermined cooling temperature, and the purity of the product gas becomes a predetermined purity. On the other hand, when the flow rate of the raw material gas is lower than the predetermined flow rate, the temperature of the raw material waste cooled by the cooling of the components that are condensed, liquefied, expanded, and evaporated from the raw material gas by the cooling means and the non-condensable components is lower than that of the cooling unit. lower than the predetermined cooling temperature in the means. Therefore, although the purity of the product gas is improved over a predetermined purity, the liquefied fraction increases and the recovery rate decreases. Therefore, the concentration of the low boiling point gas in the non-condensable components is detected by the low boiling point gas concentration detection means.

検出された低沸点ガスの濃度は、製品ガスの所定純度つ
まり所定の低沸点ガス濃度と比較され、濃度向上度合い
に応じて膨張圧力調節手段での凝縮、液化成分の膨張圧
力が、この場合、膨張して蒸発した成分の温度か、冷却
手段での原料ガスの冷却11J度が所定冷却温度となる
ような温度となるように調節される。これにより、原料
ガス流量が所定流量より減量した場合でも、冷却手段で
原料ガスから凝縮、液化され膨張して蒸発した成分と不
凝縮成分とが有する寒冷により冷却された原料ガスの温
度は、所定冷却温度となり、製品ガスの純度は、所定純
度となると共に、回収率の低下が防止される。
The detected concentration of the low boiling point gas is compared with a predetermined purity of the product gas, that is, a predetermined low boiling point gas concentration, and depending on the degree of concentration improvement, the expansion pressure of the condensation and liquefaction components in the expansion pressure regulating means is adjusted to: The temperature of the expanded and evaporated component is adjusted to such a temperature that 11 J degrees of cooling of the raw material gas by the cooling means becomes a predetermined cooling temperature. As a result, even if the flow rate of the raw material gas decreases below a predetermined flow rate, the temperature of the raw material gas cooled by the coldness of the components condensed, liquefied, expanded, and evaporated from the raw material gas by the cooling means and the non-condensable components remains at the predetermined level. The cooling temperature is reached, the purity of the product gas becomes a predetermined purity, and a decrease in recovery rate is prevented.

〔実 施 例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図で、保冷槽25には、熱交換器2,3、低温分離
器4、自動弁5か内設されている。熱交換器2,3は、
三流路を有するタイプである。8交換器2の一つの流路
入口には、導管12の出口側が連結されている。熱交換
器2の一つの流路出口と熱交換器3の一つの流路入口、
熱交換器2の他のフAC路人口と熱交換器3の他の流路
出口、熱交換器2の更に他の流路入口と熱交換器3の更
に他の流路出口はそれぞれ導管で連結されている。熱交
換器3の一つのIL路出口には、導管13の入口側が連
結されている。導管13の出口側は、低温分#′器4に
、この場合、ガス層と連通して連結されている。専管2
0の入口側は、低温分離器4の底部に、この場合、液層
と連通して連結されている6導管20の出口側は、自動
弁5に連結されている。導管21の入口側は、自動弁5
に連結され、その出口側は、熱交換器3の他の流路入口
に連結されている。熱交換器2の他の流路出口には、導
管23がJ!!!結され、導管23には、圧力調節弁6
が設けられている。導管23には、圧力調節弁6の削節
側で圧力調節計10が設けられている。導管140入口
側は、低温性#、器4の頂部に、この場合、ガス層と連
通して連結されている。導管14の出「1側は、熱交換
器3の更に他の流路入口に連結されている。導管15の
入口側は、熱交換器2の更に他の流路出口に連結されて
いる。低温分離器4のガス層の低沸点ガスの濃度、例え
ば、水素ガスの濃度を検出する水素分析計8が設けられ
、水素分析計8には調節計9が取付けられている。
In FIG. 1, a cold storage tank 25 includes heat exchangers 2 and 3, a low temperature separator 4, and an automatic valve 5. The heat exchangers 2 and 3 are
This is a type with three flow paths. The outlet side of the conduit 12 is connected to the inlet of one flow path of the 8 exchanger 2 . one flow path outlet of heat exchanger 2 and one flow path inlet of heat exchanger 3;
The other AC passage ports of the heat exchanger 2, the other passage outlets of the heat exchanger 3, the further passage inlets of the heat exchanger 2, and the further passage outlets of the heat exchanger 3 are each conduits. connected. The inlet side of the conduit 13 is connected to one IL path outlet of the heat exchanger 3 . The outlet side of the conduit 13 is connected to the cold fractionator 4, in this case in communication with the gas layer. Exclusive 2
The inlet side of the 6 conduit 20 is connected to the bottom of the cryogenic separator 4, in this case in communication with the liquid layer, and the outlet side of the 6 conduit 20 is connected to the automatic valve 5. The inlet side of the conduit 21 is equipped with an automatic valve 5.
The outlet side thereof is connected to the other flow path inlet of the heat exchanger 3. At the other outlet of the heat exchanger 2, a conduit 23 is connected to J! ! ! A pressure regulating valve 6 is connected to the conduit 23.
is provided. A pressure regulator 10 is provided in the conduit 23 on the cutting side of the pressure regulating valve 6 . The inlet side of the conduit 140 is connected to the top of the cryogenic vessel 4, in this case in communication with the gas layer. The outlet 1 side of the conduit 14 is connected to the inlet of yet another flow path of the heat exchanger 3. The inlet side of the conduit 15 is connected to the outlet of yet another flow path of the heat exchanger 2. A hydrogen analyzer 8 is provided to detect the concentration of a low boiling point gas in the gas layer of the low temperature separator 4, for example, the concentration of hydrogen gas, and a controller 9 is attached to the hydrogen analyzer 8.

調節計9は、圧力調節計10に電気的に接続され、圧力
調節計10には、圧力調節弁6が電気的に接続されてい
る。
The controller 9 is electrically connected to a pressure regulator 10, and the pressure regulator 10 is electrically connected to the pressure regulating valve 6.

第1図で、原料ガスは導管11より約40kg/cm2
Gの圧力にて供給され、吸着ユニット1を経て保冷槽2
5に送られる0次に、熱交換器2.3により低温の戻り
ガスである製品水素ガス及びオフガスにより冷却される
In Figure 1, the source gas is approximately 40 kg/cm2 from the conduit 11.
It is supplied at a pressure of G and passes through the adsorption unit 1 to the cold storage tank 2
5 is then cooled by a heat exchanger 2.3 using product hydrogen gas and off-gas as low-temperature return gas.

この原料ガス流量が変動して熱交換器2.3に過大な負
荷がかかると熱交換器2,3の熱負荷が大きくなるが、
仏画及びオフガスの膨張温度が一定のため、原料ガスは
所定の温度より高くなり製品水素ガス純度が低下してし
まう。
If the raw material gas flow rate fluctuates and an excessive load is placed on the heat exchangers 2.3, the heat load on the heat exchangers 2 and 3 increases.
Since the expansion temperatures of the Buddhist painting and the off-gas are constant, the raw material gas becomes higher than a predetermined temperature and the purity of the product hydrogen gas decreases.

この場合、液面調節弁5にて3 kg/cm2G近くま
で膨張していたオフガスは、低温分離器4に設置された
水素分析計8の設定値よりも低下するため調節計9の働
きにより圧力調節計10の設定値は変更され、これによ
り圧力調節弁6が徐開され蒸発圧力が低く調整される。
In this case, the off-gas, which had expanded to nearly 3 kg/cm2G at the liquid level control valve 5, becomes lower than the set value of the hydrogen analyzer 8 installed in the low-temperature separator 4, so the pressure is reduced by the action of the controller 9. The set value of the controller 10 is changed, whereby the pressure regulating valve 6 is gradually opened and the evaporation pressure is adjusted to be low.

つまり、蒸発圧力は圧力調節計10にて制御されるが、
原料ガス流量の変動により水素分析計8及び調節計9に
より段階的に圧力調節計10の設定値を変更させ、必要
に応じて圧力調整される。オフガス量は液面調節弁5に
て自動的に調整されており、かつ液面調節弁5−法王が
高いため圧力調節弁6の制御による液面調節弁5の二次
側圧力変化の影響は受けない。
In other words, although the evaporation pressure is controlled by the pressure regulator 10,
The set value of the pressure regulator 10 is changed stepwise by the hydrogen analyzer 8 and controller 9 according to fluctuations in the raw material gas flow rate, and the pressure is adjusted as necessary. The amount of off-gas is automatically adjusted by the liquid level control valve 5, and since the liquid level control valve 5 is high, the influence of the change in the pressure on the secondary side of the liquid level control valve 5 due to the control of the pressure control valve 6 is I don't accept it.

このようにして、オフガスの流量を制御するのではなく
蒸発圧力を制御し、その蒸発温度を低くすることにより
熱交換器3の冷端側の温度差を大きくして原料ガスを所
定の温度に保ち製品水素ガス濃度を一定に保つことがで
きる。
In this way, the evaporation pressure is controlled rather than the off-gas flow rate, and by lowering the evaporation temperature, the temperature difference on the cold end side of the heat exchanger 3 is increased, and the raw material gas is brought to a predetermined temperature. The product hydrogen gas concentration can be kept constant.

逆に、熱交2,3に過小の負荷がかかった場合は上記と
逆の制御により調整される。
Conversely, if too small a load is applied to the heat exchangers 2 and 3, the control is performed in the opposite manner to the above.

本実施例によれば、原料ガス流量が変動しても自動的に
原料ガスを所定の冷却温度に保ち製品水素ガスの純度を
安定して保つことができると共に、回収率の低下を防止
できる。
According to this embodiment, even if the raw material gas flow rate fluctuates, the raw material gas can be automatically kept at a predetermined cooling temperature, the purity of the product hydrogen gas can be stably maintained, and a decrease in the recovery rate can be prevented.

尚、上記実施例では、低温分離器のガス層の水素濃度を
直接検出して蒸発圧力を調節するようにしているが、@
終段熱交換器出口での温度は、低温分離器のガス層の水
素濃度と対応しているため、最終段熱交換器出口での温
度を検出することで低温分離器のガス層の水素濃度を検
出し、これにより蒸発圧力を調節するようにしても良い
。また、」−記実施例では、熱交換器を2段としている
が。
In the above embodiment, the hydrogen concentration in the gas layer of the low-temperature separator is directly detected to adjust the evaporation pressure.
The temperature at the exit of the final stage heat exchanger corresponds to the hydrogen concentration in the gas layer of the low temperature separator, so by detecting the temperature at the exit of the final stage heat exchanger, the hydrogen concentration in the gas layer of the low temperature separator can be determined. may be detected, and the evaporation pressure may be adjusted accordingly. Furthermore, in the embodiment described in "-", the heat exchanger is provided in two stages.

本発明は、これに特に限定されるものではない。The present invention is not particularly limited to this.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、原料ガス流量の変動によらず、冷却手
段での原料ガスの冷却温度を所定冷却温度に調節できる
ので、原料ガス流量の変動による製品ガス純度並びに回
収率の低下を防止できるという効果がある。
According to the present invention, the cooling temperature of the raw material gas in the cooling means can be adjusted to a predetermined cooling temperature regardless of fluctuations in the raw material gas flow rate, so it is possible to prevent product gas purity and recovery rate from decreasing due to fluctuations in the raw material gas flow rate. There is an effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例のガス分+S装置の系統図
、m2図は、従来のガス分離装置例の系統図である。
FIG. 1 is a system diagram of a gas component + S device according to an embodiment of the present invention, and FIG. m2 is a system diagram of an example of a conventional gas separation device.

Claims (1)

【特許請求の範囲】 1、低沸点ガスと該低沸点ガスよりも沸点が高いガスと
でなる原料ガスを該原料ガスから凝縮、液化され膨張し
て蒸発した成分と不凝縮成分とが有する寒冷で冷却する
工程と、前記不凝縮成分中の前記低沸点ガス濃度を検出
する工程と、前記低沸点ガスの検出濃度に応じて前記凝
縮、液化成分の膨張圧力を調節する工程とを有すること
を特徴とするガス分離方法。 2、低沸点ガスと該低沸点ガスよりも沸点が高いガスと
でなる原料ガスを該原料ガスから凝縮、液化され膨張し
て蒸発した成分と不凝縮成分とが有する寒冷で冷却する
手段と、前記凝縮、液化成分と前記不凝縮成分とを分離
する手段と、該気液分離手段からの前記凝縮、液化成分
を膨張させ蒸発させる手段と、分離された前記不凝縮成
分中の前記低沸点ガス濃度を検出する手段と、前記低沸
点ガスの検出濃度に応じて前記膨張手段での前記凝縮、
液化成分の膨張圧力を調節する手段とを具備したことを
特徴とするガス分離装置。
[Claims] 1. A source gas consisting of a low boiling point gas and a gas with a boiling point higher than the low boiling point gas is condensed from the source gas, and refrigeration is caused by the liquefied, expanded and evaporated component and the non-condensable component. , a step of detecting the concentration of the low boiling point gas in the non-condensable component, and a step of adjusting the expansion pressure of the condensed and liquefied component according to the detected concentration of the low boiling point gas. Characteristic gas separation method. 2. means for cooling a raw material gas consisting of a low boiling point gas and a gas with a boiling point higher than the low boiling point gas with the refrigeration possessed by the components that are condensed, liquefied, expanded and evaporated from the raw material gas and the non-condensable components; means for separating the condensed and liquefied component from the non-condensable component; means for expanding and evaporating the condensed and liquefied component from the gas-liquid separation means; and the low-boiling point gas in the separated non-condensable component. means for detecting the concentration; and the condensation in the expansion means depending on the detected concentration of the low boiling point gas;
1. A gas separation device comprising means for adjusting the expansion pressure of a liquefied component.
JP62060995A 1987-03-18 1987-03-18 Gas separation method and device Expired - Lifetime JPH079349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62060995A JPH079349B2 (en) 1987-03-18 1987-03-18 Gas separation method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62060995A JPH079349B2 (en) 1987-03-18 1987-03-18 Gas separation method and device

Publications (2)

Publication Number Publication Date
JPS63231193A true JPS63231193A (en) 1988-09-27
JPH079349B2 JPH079349B2 (en) 1995-02-01

Family

ID=13158521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62060995A Expired - Lifetime JPH079349B2 (en) 1987-03-18 1987-03-18 Gas separation method and device

Country Status (1)

Country Link
JP (1) JPH079349B2 (en)

Also Published As

Publication number Publication date
JPH079349B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
US3218816A (en) Process for cooling a gas mixture to a low temperature
KR101522853B1 (en) Iso-pressure open refrigeration ngl recovery
AU713411B2 (en) Method and apparatus for controlling condensation of gaseous hydrocarbon stream
US3373574A (en) Recovery of c hydrocarbons from gas mixtures containing hydrogen
US20200386475A1 (en) Method to recover lpg and condensates from refineries fuel gas streams
JPS62217090A (en) Separation of gassy mixture
US4597788A (en) Process for recovering ethane, propane and heavier hydrocarbons from a natural gas stream
US3626705A (en) Low temperature separation of gaseous mixtures employing solidification
US3148966A (en) Automatic controls for the liquefaction and separation of gases
JP4194325B2 (en) Method and apparatus for reducing calorific value of high calorific value LNG
US2240925A (en) Rectification of gaseous mixtures
JPS63231193A (en) Method and device for separating gas
US4443238A (en) Recovery of hydrogen and other components from refinery gas streams by partial condensation using preliminary reflux condensation
US3257812A (en) Dissociated ammonia separation plant having an adsorber in a liquid refrigerant bath
US4767428A (en) Nitrogen removal system
KR101271050B1 (en) Apparatus and method for heat exchanging with condensate
JPH079348B2 (en) Gas separator
JPS6375476A (en) Low-temperature gas separator
KR20210038351A (en) High-purity oxygen production apparatus
JP3072563B2 (en) Method and apparatus for collecting high-purity liquefied nitrogen
JPH03255876A (en) Methane separation apparatus and method
JP2550205B2 (en) Air separation method and device
JPH01111189A (en) Gas separator
JPH0784982B2 (en) Gas separator
JPH01269891A (en) Gas separating device