JPS63231154A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS63231154A
JPS63231154A JP6178287A JP6178287A JPS63231154A JP S63231154 A JPS63231154 A JP S63231154A JP 6178287 A JP6178287 A JP 6178287A JP 6178287 A JP6178287 A JP 6178287A JP S63231154 A JPS63231154 A JP S63231154A
Authority
JP
Japan
Prior art keywords
refrigerant
defrosting
cooler
valve
coolers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6178287A
Other languages
Japanese (ja)
Inventor
須藤 森義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakano Refrigerators Co Ltd
Original Assignee
Nakano Refrigerators Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakano Refrigerators Co Ltd filed Critical Nakano Refrigerators Co Ltd
Priority to JP6178287A priority Critical patent/JPS63231154A/en
Publication of JPS63231154A publication Critical patent/JPS63231154A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2347/00Details for preventing or removing deposits or corrosion
    • F25B2347/02Details of defrosting cycles
    • F25B2347/021Alternate defrosting

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ショーケース等に用いられる冷凍装置に係わ
り、特に複数基の冷却器を設け、冷7J]器の除霜を冷
却器1基ずつ交互または順次に行う冷凍装置に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a refrigeration system used for showcases, etc., and in particular, the present invention relates to a refrigeration system used for showcases, etc., and in particular, it is provided with a plurality of coolers, and the defrosting of the cooler 7J is performed by one cooler. This relates to a refrigeration system that performs operations alternately or sequentially.

(従来の技術〕 ショーケース等の冷却に用いられる冷凍装置は、冷IJ
l器に付着する霜を取除く除霜中に冷却空間内の温度が
上界しないように、冷却器を複数基設けて1基ずつ交互
または順次に除霜を行い、1基を除霜中に他の冷2Jl
器によって被冷却空間の温度を全冷却器による冷却中と
同等温度、またはそれより多少上昇する程度の温度に保
っている。
(Prior art) Refrigeration equipment used for cooling showcases, etc.
In order to prevent the temperature in the cooling space from rising during defrosting to remove frost adhering to the container, install multiple coolers and defrost one by one alternately or sequentially. to other cold 2Jl
The temperature of the space to be cooled is maintained at the same temperature as during cooling by the full cooler, or slightly higher than that temperature.

第4図乃至第6図は、オーブン型のショーケースの例を
示寸もので、ショーケース1の下部に配設された2台の
冷却i2a、2bで冷やされた冷気Cは、ショーケース
1の背後のダクト3を通り、吐出口4からエアカーテン
としてショーケース1下方に向けて整流され、吐出され
る。そして冷気吸込み口5からショーケース1底部を通
りファン6により冷却器2a、2bに送られる。
Figures 4 to 6 show examples of oven-type showcases. The air passes through a duct 3 behind the duct 3, and is rectified and discharged from a discharge port 4 toward the bottom of the showcase 1 as an air curtain. The cool air is then sent from the cold air suction port 5 through the bottom of the showcase 1 to the coolers 2a and 2b by the fan 6.

また前記両冷却器からダクトに至る通路には、該通路を
開閉するダンパ7が設けられている。
Further, a damper 7 is provided in the passage leading from both coolers to the duct to open and close the passage.

一方の冷却器2aを除霜する場合には、第5図に示すよ
うにダンパ7を回動して除霜中の冷却器2a側の通路3
aを塞ぎ、除霜中ではない冷却器2b側からの冷気のみ
をダク]へ3に送るようにし、また他方の冷却器2bを
除霜する場合には、第6図に示すようにダンパ7を回f
f1lJL、て除霜中の冷却器2b側の通路3bを塞ぐ
When defrosting one of the coolers 2a, the damper 7 is rotated as shown in FIG.
a, so that only cold air from the side of the cooler 2b that is not being defrosted is sent to the duct 3, and when defrosting the other cooler 2b, the damper 7 is closed as shown in FIG. times f
f1lJL, block the passage 3b on the side of the cooler 2b during defrosting.

また他の例として各冷却器にそれぞれ専用のファンモー
タを設けて、除霜中の冷却器に冷気を循環させるファン
モータを停止あるいは減速させ、他方のファン七−夕を
増速させるものもある。
Another example is a system in which each cooler is provided with a dedicated fan motor, and the fan motor that circulates cold air to the cooler during defrosting is stopped or decelerated, while the other fan speeds up. .

第7図及び第8図は、上記のショーケース等に用いられ
る冷凍装置の冷凍サイクルの一例であって、図の太線は
冷媒の流れを示している。
FIGS. 7 and 8 show an example of a refrigeration cycle of a refrigeration system used in the above-mentioned showcase, etc., and the bold lines in the figures indicate the flow of refrigerant.

冷凍装置8は、ショーケース等の内部側に設置される2
基の冷却器2a、2bど、外部側に設置され、該冷却器
2a、  2bに冷媒を供給する圧縮17!39、凝縮
器10、受液器11及びそれらを接続する配管と各種の
弁から構成されている。
The refrigeration device 8 is installed inside a showcase, etc. 2
The compressors 17 and 39, which are installed on the outside of the base coolers 2a and 2b, and supply refrigerant to the coolers 2a and 2b, the condenser 10, the liquid receiver 11, and the piping and various valves that connect them. It is configured.

通常の冷却運転の時は、第7図の太線に示すJ:うに、
弁12.13.14を問いて受液器11からの液冷媒を
逆止弁15a、15b、膨張弁16a、16bを通して
両冷却器2a、2bに供給し、蒸発させて寒冷を発生さ
せる。冷却器2a、 2b内で蒸発した冷媒は、弁13
.14を通って圧縮t19に吸引されて圧縮され、凝縮
器10、受液器11に送られ循環する。
During normal cooling operation, J: sea urchin shown in bold line in Figure 7,
The liquid refrigerant from the liquid receiver 11 is supplied to the coolers 2a, 2b through the check valves 15a, 15b and the expansion valves 16a, 16b by checking the valves 12, 13, 14, and is evaporated to generate cold. The refrigerant evaporated in the coolers 2a and 2b is transferred to the valve 13.
.. 14, is sucked into the compressor t19, is compressed, and is sent to the condenser 10 and receiver 11 for circulation.

通常運転から一方の冷却器2aの除霜に移る場合は、弁
17aを開いて弁12及び弁13を閉じる。即ち、第8
図に示すように、受液器11からの液冷媒は、膨張する
ことなく弁17aを通って冷却器2al、:導入され、
液冷媒の持つ顕然で冷却器2aの霜を取る。除霜後の液
冷媒は、弁13が閉じられているため、逆止弁18aを
通って他方の冷却器2b側の逆止弁15bと膨張弁16
bを通って冷!111器2bに入り蒸発し、弁14から
圧縮n9に至る。冷yJl器2bの除霜を行う場合は、
弁17bを間4Jで他の弁12.14.17aを閉じる
ことにより、冷媒は弁17b、冷却器2b、逆止弁18
k)、逆止弁15a、膨張弁16a、冷7JIi2aか
ら弁13を通り圧1?i R9に至る。
When moving from normal operation to defrosting one of the coolers 2a, the valve 17a is opened and the valves 12 and 13 are closed. That is, the eighth
As shown in the figure, the liquid refrigerant from the liquid receiver 11 is introduced into the cooler 2al through the valve 17a without expansion.
The coolant of the liquid refrigerant removes the frost from the cooler 2a. Since the valve 13 is closed, the liquid refrigerant after defrosting passes through the check valve 18a to the check valve 15b and expansion valve 16 on the other cooler 2b side.
Cold through b! It enters the 111 vessel 2b, evaporates, and reaches the compression n9 through the valve 14. When defrosting the cold yJl unit 2b,
By closing the other valves 12, 14, and 17a with a time interval of 4J, the refrigerant flows through the valve 17b, the cooler 2b, and the check valve 18.
k), check valve 15a, expansion valve 16a, cold 7JIi2a through valve 13 and pressure 1? i Reach R9.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上)本のものでtよ、冷Jul器の除霜に
液冷媒の顕熱を利用づるため、熱量が小さく、ショーケ
ース等の開口部に省エネルギーのためのカバーを取付け
た場合(夜間や休E1には取(=Jける例がほとんどで
ある)や、寒冷地や冬期等のショーケース等の周辺の温
度が低い場合には冷N1器の除霜を完全にできないこと
がある。また冷却器の除霜時間が長くなって他方の冷却
器1台のみで冷却する時間が良くなり、被冷却空間の温
度が上界しやすく、冷凍機の効率を十分に生かせずに電
気代がかかる。さらに複雑な配管と多(の弁を必蟹とし
、構造が複雑になってショーケース内にそれらを設置す
るための大きな空間が必要となり、ショ−ケースの商品
陣列容積が減少したり、またショーケースの保守笠が困
難であった。
However, since the sensible heat of the liquid refrigerant is used to defrost the refrigerator, the amount of heat is small. In most cases, it may not be possible to completely defrost the cold N1 container if the temperature around the showcase is low, such as in cold regions or during winter. As the defrosting time of the cooler becomes longer, the cooling time becomes longer with only one cooler, the temperature of the space to be cooled tends to reach an upper limit, and the efficiency of the refrigerator cannot be fully utilized, resulting in higher electricity bills. In addition, complicated piping and multiple valves are required, making the structure complex and requiring a large space to install them within the showcase, reducing the volume of product rows in the showcase and reducing the number of valves. Maintenance of the showcase shade was difficult.

また除霜終了後の冷却運転の立上がり時に、除霜の為に
暖められた冷!J1器に、循還する冷気が送られること
により暖められ、非冷却空間の温度を上背させてしまう
ことがあった。
Also, at the start of cooling operation after defrosting, the cold that is heated for defrosting! Circulating cold air was sent to the J1 unit to warm it up, sometimes raising the temperature in the non-cooled space.

さらに除霜に用いた液冷媒が膨張弁等で減圧、膨張しな
いまま急激に圧縮機に吸引され、いわゆる液ハンマと呼
ばれる状態を起こして、圧縮機を損傷する虞があった。
Furthermore, the liquid refrigerant used for defrosting is rapidly sucked into the compressor without being decompressed or expanded by an expansion valve or the like, causing a condition called liquid hammer, which may damage the compressor.

そこで本発明は、冷却器の除霜時間を短くして冷却効率
を向上させるとともに、除霜終了後の冷却運転の立上が
りをスムーズできる冷凍装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a refrigeration system that can improve cooling efficiency by shortening the defrosting time of a cooler and can smoothly start up a cooling operation after defrosting.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために、本発明は、冷凍サイクル
に複数基の冷却器を設け、該冷l!I器を交Hまたは順
次に除霜する冷凍装置において、前記冷凍サイクルに高
圧側過熱冷媒蒸気あるいは飽和冷媒蒸気を冷却器に供給
する除霜用熱源回路を設りるとともに、該除霜用熱源回
路に冷却器の除霜終了後の冷媒を回収する冷媒回収回路
を接続したことを特徴とする。
In order to achieve the above object, the present invention provides a refrigeration cycle with a plurality of coolers, and the cooling l! In a refrigeration system that defrosts an I-cooler in alternating current or sequential order, the refrigeration cycle is provided with a defrosting heat source circuit that supplies high-pressure side superheated refrigerant vapor or saturated refrigerant vapor to the cooler, and the defrosting heat source It is characterized in that a refrigerant recovery circuit is connected to the circuit to recover the refrigerant after the defrosting of the cooler is completed.

(作 用) 従って、冷却器の除霜に冷奴の凝縮潜熱を利用できるの
で、除霜熱源が大きくなって冷却器の除霜が短時間で済
み、被冷却空間の温度上界を抑えることができるととも
に、除霜のために暖められた冷却器内の冷媒を回収でき
るので、冷却器が冷えて冷却運転の立上がりをスムーズ
にできる。
(Function) Therefore, since the latent heat of condensation of the cold tofu can be used to defrost the cooler, the defrosting heat source becomes larger, the cooler can be defrosted in a shorter time, and the upper temperature limit of the space to be cooled can be suppressed. At the same time, the refrigerant inside the cooler that has been heated for defrosting can be recovered, allowing the cooler to cool down and start up the cooling operation more smoothly.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図乃至第3図に基づいて
説明する。
Hereinafter, one embodiment of the present invention will be described based on FIGS. 1 to 3.

冷凍装置20は、ショーケース等の被冷却空間内に設置
される2台の冷lJl器21a、21bと被冷却空間外
に設置され、該冷却器21a、21bに冷媒を供給する
圧縮機22、凝縮器23、受液器24及びそれらを接続
する配管と各種の弁から構成されている。
The refrigeration system 20 includes two cooling units 21a and 21b installed in a space to be cooled such as a showcase, a compressor 22 installed outside the space to be cooled and supplying refrigerant to the coolers 21a and 21b, It is composed of a condenser 23, a liquid receiver 24, piping connecting them, and various valves.

通常の冷却運転時には、第1図の太線で示すように、圧
縮別22で圧縮され高温・高圧となった冷媒ガスを凝縮
器23で放熱させ、大部分を液化して受液器24に送る
。液化した液冷媒は、受液器24から弁25を通り、さ
らに両冷却器218゜21b前の弁25a、26t)と
膨張弁27a、27bまたは冷媒流量制御弁を通って冷
却器21a。
During normal cooling operation, as shown by the thick line in Fig. 1, the refrigerant gas compressed by the compressor 22 to a high temperature and high pressure is radiated by the condenser 23, and most of it is liquefied and sent to the liquid receiver 24. . The liquefied liquid refrigerant passes from the liquid receiver 24 through the valve 25, and then passes through both the coolers 218 (front valves 25a, 26t) and the expansion valves 27a, 27b or the refrigerant flow control valve to the cooler 21a.

21bに導入され、蒸発して寒冷を発生させる。21b, where it evaporates and generates refrigeration.

蒸発した冷媒ガスは、三方弁28a、28bを通って圧
縮機22に戻り循環する。
The evaporated refrigerant gas is circulated back to the compressor 22 through the three-way valves 28a, 28b.

また圧縮122と受液器24を接続して、冷凍サイクル
内の圧力を調整するホットガスバイパス弁29が設けら
れており、受液器24内の圧力が低下した時に圧縮l1
122から冷媒ガスを受液器24に送り冷媒の圧力を適
当な値に保つ。
In addition, a hot gas bypass valve 29 is provided which connects the compressor 122 and the liquid receiver 24 to adjust the pressure within the refrigeration cycle.
Refrigerant gas is sent from 122 to receiver 24 to maintain the pressure of the refrigerant at an appropriate value.

さらに後述する除霜運転用として、両冷却器21a、2
1bの入口側の弁26a、26bと膨張弁27a、27
bを迂回して、冷媒を前記通常運転と逆方向にのみ流す
逆止弁3Qa、30bを備えたバイパス回路31a、3
1bど、除霜用熱源回路32及び冷媒回収回路33が設
けられている。
Furthermore, both coolers 21a and 2 are used for defrosting operation to be described later.
1b inlet side valves 26a, 26b and expansion valves 27a, 27
Bypass circuits 31a, 3 equipped with check valves 3Qa, 30b that bypass the refrigerant and flow the refrigerant only in the direction opposite to the normal operation.
1b, a defrosting heat source circuit 32 and a refrigerant recovery circuit 33 are provided.

前記除霜用熱源回路32は、受液器24の上部と山王方
弁28a、28bを接続して、冷却器21aまたは冷7
JI器21bの除霜時に受液器24の上部の高圧側過熱
冷媒蒸気あるいは飽和冷媒蒸気を冷却器21a、21b
に供給するするもので、中間に弁34が設りられている
。また前記冷媒回収回路33は、除霜用熱源回路32に
設けられた弁34から三方弁28a、28bに至る間の
配管35と前記圧縮様22の間を接続して、冷却器21
a、21bの除霜終了後に高圧側過熱冷媒蒸気あるいは
飽和冷媒蒸気、または両蒸気が凝縮した冷媒を回収する
もので、細管36と弁37が設けられている。
The defrosting heat source circuit 32 connects the upper part of the liquid receiver 24 and the Sanno valves 28a and 28b, and connects the cooler 21a or the cooling 7
When defrosting the JI device 21b, the high-pressure side superheated refrigerant vapor or saturated refrigerant vapor in the upper part of the liquid receiver 24 is transferred to the coolers 21a and 21b.
A valve 34 is provided in the middle. Further, the refrigerant recovery circuit 33 connects the compressor 22 to the piping 35 between the valve 34 provided in the defrosting heat source circuit 32 and the three-way valves 28a and 28b, and connects the compressor 22.
A thin tube 36 and a valve 37 are provided to recover the high-pressure side overheated refrigerant vapor, the saturated refrigerant vapor, or the refrigerant in which both vapors are condensed after the defrosting process is completed in a and 21b.

第2図の太線は、一方の冷却器21aの除霜を行う場合
を示すもので、弁25を閉じて減圧弁38の作用により
、冷IJl器21a、21b側の液冷媒の圧力を下げる
とともに、一方の三方弁28aを操作して受液器24内
上部の冷媒ガスを除霜用熱源回路32から三方弁28a
を通して冷ム1器21aの逆方向から供給する。
The thick line in FIG. 2 shows the case where one of the coolers 21a is defrosted, in which the valve 25 is closed and the pressure reducing valve 38 lowers the pressure of the liquid refrigerant on the cold IJl units 21a and 21b side. , operate one of the three-way valves 28a to transfer the refrigerant gas in the upper part of the liquid receiver 24 from the defrosting heat source circuit 32 to the three-way valve 28a.
It is supplied from the opposite direction of the cold comb 1 container 21a.

この冷媒ガスは、凝縮器23で凝縮しなかった飽和冷媒
蒸気、あるいは圧縮機22からホットガスバイパス弁2
9を通過して受液器24に入る高圧側過熱冷媒蒸気であ
り、従来用いられている液冷媒に比べて大きなエンタル
ピを有しており、類115間で除霜を終了させることが
できる。
This refrigerant gas is either saturated refrigerant vapor that has not been condensed in the condenser 23 or is transferred from the compressor 22 to the hot gas bypass valve 2.
The high-pressure side superheated refrigerant vapor passes through the liquid refrigerant 9 and enters the liquid receiver 24, and has a larger enthalpy than conventionally used liquid refrigerants, and can finish defrosting within the range 115.

冷月1器21a内で外面の霜を溶かして熱交換を行い凝
縮した液冷媒は、バイパス回路31aを通り、逆止弁3
0aから弁26bと膨張弁27bを通って他方の冷却器
21bに入り、蒸発して寒冷を発生し、一方の冷却器2
1aを除霜中でも被冷IJI空間の温度が上昇しないよ
うにしている。蒸発後の冷媒ガスは、前記通常運転時と
同様に使方の三方弁28bを経て圧縮機22に吸引され
る。
The liquid refrigerant that melts the frost on the outer surface and undergoes heat exchange in the Reigetsu 1 unit 21a and condenses passes through the bypass circuit 31a and is then passed through the check valve 3.
0a, passes through the valve 26b and the expansion valve 27b, enters the other cooler 21b, evaporates, generates cold, and cools the other cooler 21b.
Even when 1a is being defrosted, the temperature of the IJI space to be cooled does not rise. The refrigerant gas after evaporation is sucked into the compressor 22 through the three-way valve 28b in the same manner as in the normal operation.

また冷媒ガスが冷却器2Ia内で凝縮するため、受液器
24内の圧力が低下し、高圧側過熱冷媒蒸気が圧縮12
2からホットガスバイパス弁29を通過して受液器24
に導かれ、より効率良く除霜を行うことができる。
In addition, since the refrigerant gas condenses in the cooler 2Ia, the pressure in the receiver 24 decreases, and the superheated refrigerant vapor on the high pressure side is compressed 12
2 through the hot gas bypass valve 29 to the receiver 24
Defrosting can be performed more efficiently.

尚、弁26aは開放状態のままでも支障なく除霜を行う
ことができる。
Note that defrosting can be performed without any problem even if the valve 26a is left open.

除霜終了時には、冷却器21aの除霜に用いられた冷媒
が、大部分が液化し、一部がガスの状態のままで冷却器
2Ia内に存在しており、また冷却器21aは、除霜の
ために温αが上昇している。
At the end of defrosting, most of the refrigerant used for defrosting the cooler 21a is liquefied, and some remains in the gaseous state in the cooler 2Ia, and the cooler 21a is Temperature α is rising due to frost.

そこで、冷riI器21aの除霜終了時には、除霜用熱
源回路32の弁34を閑じ、弁25及び冷媒回収回路3
3の弁37を開く。また弁26aが開いている場合は、
弁26aも閉じる。
Therefore, when the defrosting of the cooler riI device 21a is completed, the valve 34 of the defrosting heat source circuit 32 is left open, and the valve 25 and the refrigerant recovery circuit 3 are left open.
3. Open valve 37. Also, if the valve 26a is open,
Valve 26a is also closed.

第3図は、上記の状態にお【プる冷媒の流れを承りもの
で、冷却用の冷媒は、受液器24から弁25及び弁26
bと膨張弁27bを通って冷7jl器21bに導入され
、蒸発して寒冷を発生し、三方弁28bを経て圧縮機2
2に吸入される。一方冷lJj器り1a内に残っている
冷媒は、三方弁28 a 、7Jsら前記除霜用熱源回
路32を逆に進み、冷媒回収回路33の細管36により
徐々に圧縮機22に吸引される。また同時に暖められて
いた冷741器21aも、雰囲気温度に徐々に冷却され
ていく。
FIG. 3 shows the flow of refrigerant to the above-mentioned state.
b and expansion valve 27b to the cold 7jl unit 21b, evaporate to generate cold, and pass through the three-way valve 28b to the compressor 2.
2 is inhaled. On the other hand, the refrigerant remaining in the cooling lJj chamber 1a flows backward through the defrosting heat source circuit 32 through the three-way valves 28a and 7Js, and is gradually sucked into the compressor 22 through the thin tube 36 of the refrigerant recovery circuit 33. . Furthermore, the cold 741 vessel 21a, which was being heated at the same time, is gradually cooled down to the ambient temperature.

そして適当な時間経過後あるいは温度センサ専の指令に
より、各弁を作動さけて第1図に示す通常の冷却1運転
に戻す。
Then, after an appropriate period of time has elapsed or by a command specific to the temperature sensor, each valve is turned off and the normal cooling 1 operation shown in FIG. 1 is returned to.

このように本発明の冷凍装置20にJ3いては、冷却1
器21aの除霜用の熱源として、熱量の多い高圧側過熱
冷媒蒸気あるいは飽和冷媒蒸気を用いるので、除霜時間
を従来の11b程度にまで短縮させることができ、1台
の冷却B21bのみでの運転時間が減少するので被冷却
空間の温度−tJ7を抑えるとともに、2台の冷却器2
1a、21bでの運転時間が長くでき、冷凍装置20の
効率を十分に発揮できて電気代等の運転経費の節減を図
れ、さらに、除霜用に用いた冷媒を回収してから冷却i
!S 21 aを冷却状態とするので、除霜時に液化し
た冷媒が回収時に冷却器21a内で蒸発し、除霜のため
に暖められていた冷u1器21aの渇1女を下げ、冷却
運転の立上がり時に循環する冷気を暖めることがなく、
液冷7J]空間の温度を上昇させることがなくなる。
In this way, in the refrigeration system 20 of the present invention, the cooling 1
Since the high-pressure side superheated refrigerant vapor or saturated refrigerant vapor, which has a large amount of heat, is used as the heat source for defrosting the cooling device 21a, the defrosting time can be shortened to about the conventional 11b, and only one cooling B21b is required. Since the operating time is reduced, the temperature of the space to be cooled -tJ7 can be suppressed, and two coolers 2
1a and 21b, the efficiency of the refrigeration system 20 can be fully utilized, and operating costs such as electricity costs can be reduced.Furthermore, the refrigerant used for defrosting can be recovered and then cooled.
! Since S21a is in the cooling state, the refrigerant liquefied during defrosting evaporates in the cooler 21a during recovery, lowering the thirst of the cooler 21a that was being heated for defrosting, and reducing the temperature of the cooling operation. The cold air that circulates during startup does not heat up.
Liquid cooling 7J] There is no need to increase the temperature of the space.

他方の冷却器21bを除霜する場合は、前記三方弁28
aに代えて他方の三方弁28bを作動させれば、上記冷
却器21aの除霜と同様の結束が得られる。
When defrosting the other cooler 21b, the three-way valve 28
If the other three-way valve 28b is operated in place of the three-way valve a, the same bonding as the defrosting of the cooler 21a can be obtained.

ざらに木゛実施例のごとく、除霜に用いた冷媒を冷媒回
収回路33の細管36で徐々に回収することにより、液
ハンマを起こすことがなくなり、圧縮機22の損傷を防
止できる。
As in the embodiment, by gradually recovering the refrigerant used for defrosting through the thin tube 36 of the refrigerant recovery circuit 33, liquid hammer does not occur and damage to the compressor 22 can be prevented.

また本実施例では、冷却器21a、21b付近の冷媒の
流れが単純化されて、配管や弁の配置スペースが小さく
て済むため、ショーケース内への設置が容易になるとと
もに、保守等の作業性も向上する。
In addition, in this embodiment, the flow of refrigerant near the coolers 21a and 21b is simplified, and the space required for installing piping and valves is small, making it easy to install in a showcase, and to facilitate maintenance and other work. Sexuality also improves.

尚、三方弁を用いずに通常・の弁を組合せて切替を行う
こともでき、逆止弁も同様に通常の弁を用いることがで
きる。また細管を用いずに弁等により冷媒を序々に回収
してもよい。
Note that switching can be performed by combining ordinary valves without using a three-way valve, and ordinary valves can be used as check valves as well. Alternatively, the refrigerant may be gradually recovered using a valve or the like without using a capillary.

またショーケースの大きさ等によっては、3器以上の冷
n1器を1組として配設し、順次に各冷却器を除霜する
こともできる。また冷凍サイクルに使用される各弁は、
通常電磁弁が用いられ、弁の開閉’(y除霜運転はタイ
マやコンピュータ等により制御される。
Also, depending on the size of the showcase, three or more coolers may be arranged as a set, and each cooler may be defrosted in sequence. In addition, each valve used in the refrigeration cycle is
Normally, a solenoid valve is used, and the defrosting operation is controlled by a timer, computer, etc.

〔発明の効果〕〔Effect of the invention〕

本発明は以上のように、冷凍サイクルに高圧側過熱冷媒
蒸気あるいは飽和冷媒蒸気を冷却器に供給する除霜用熱
源回路を設けるとともに、該除霜用熱源回路に冷fJl
器の除霜終了後の冷媒を回収する冷媒回収回路を接続し
たから、除霜用熱源回路によって除霜熱源が大きい高圧
側過熱冷媒蒸気あるいは飽和冷媒蒸気を冷却器の除霜に
用いることができて、冷7JI器の除霜が短時間でしか
も完全に行え、被冷却空間の温度上昇を小さくできると
ともに、冷媒回収回路により冷却器内の冷媒を冷却運転
前に回収できるので、除霜のために暖められた冷7J]
蒸を冷やすことができ、冷却運転の立上がりをスムーズ
にできる。
As described above, the present invention provides a defrosting heat source circuit that supplies high-pressure side superheated refrigerant vapor or saturated refrigerant vapor to a cooler in a refrigeration cycle, and provides a cooling fJl in the defrosting heat source circuit.
Since a refrigerant recovery circuit is connected to recover the refrigerant after the defrosting of the cooler is completed, the defrosting heat source circuit allows the high-pressure side superheated refrigerant vapor or saturated refrigerant vapor, which has a large defrosting heat source, to be used for defrosting the cooler. With this, the refrigerant can be completely defrosted in a short period of time, reducing the temperature rise in the space to be cooled, and the refrigerant recovery circuit can recover the refrigerant in the cooler before cooling operation, making it possible to defrost the cooler in a short time and completely. cold 7J warmed by]
The steam can be cooled and the start-up of the cooling operation can be made smoother.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明の一実施例を示すもので、第
1図は冷凍lナイクルの通常の冷fJ1運転時の冷媒の
流れを示す回路図、第2図は除霜運転時の冷媒の流れを
示ず回路図、第3図は除霜運転終7時の冷媒の流れを示
す回路図、第4図乃至第8図は従来例を示すもので、第
4図乃至第6図はショーケースの内部構造を示ず所面図
、第7図及び第8図は冷凍サイクルの回路図である。
Figures 1 to 3 show one embodiment of the present invention. Figure 1 is a circuit diagram showing the flow of refrigerant during normal cold fJ1 operation of the refrigerated l-Nicle, and Figure 2 is during defrosting operation. Figure 3 is a circuit diagram showing the flow of refrigerant at the end of the defrosting operation at 7 o'clock, and Figures 4 to 8 show conventional examples. The figure does not show the internal structure of the showcase, but is a top view, and FIGS. 7 and 8 are circuit diagrams of the refrigeration cycle.

Claims (1)

【特許請求の範囲】[Claims] 1、冷凍サイクルに複数基の冷却器を設け、該冷却器を
交互または順次に除霜する冷凍装置において、前記冷凍
サイクルに高圧側過熱冷媒蒸気あるいは飽和冷媒蒸気を
冷却器に供給する除霜用熱源回路を設けるとともに、該
除霜用熱源回路に冷却器の除霜終了後の冷媒を回収する
冷媒回収回路を接続したことを特徴とする冷凍装置。
1. In a refrigeration system that includes a plurality of coolers in a refrigeration cycle and defrosts the coolers alternately or sequentially, a defrosting device that supplies high-pressure side superheated refrigerant vapor or saturated refrigerant vapor to the cooler in the refrigeration cycle. A refrigeration system comprising a heat source circuit and a refrigerant recovery circuit for recovering refrigerant after defrosting of a cooler is connected to the defrosting heat source circuit.
JP6178287A 1987-03-17 1987-03-17 Refrigerator Pending JPS63231154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6178287A JPS63231154A (en) 1987-03-17 1987-03-17 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6178287A JPS63231154A (en) 1987-03-17 1987-03-17 Refrigerator

Publications (1)

Publication Number Publication Date
JPS63231154A true JPS63231154A (en) 1988-09-27

Family

ID=13181002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6178287A Pending JPS63231154A (en) 1987-03-17 1987-03-17 Refrigerator

Country Status (1)

Country Link
JP (1) JPS63231154A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070917A1 (en) * 2009-12-10 2011-06-16 三菱重工業株式会社 Air conditioner and method for detecting amount of refrigerant in air conditioner
CN105509384A (en) * 2015-12-17 2016-04-20 珠海格力电器股份有限公司 Defrosting method of multi-split air conditioning system and multi-split air conditioning system
WO2020161839A1 (en) * 2019-02-06 2020-08-13 三菱電機株式会社 Refrigeration device
JPWO2020044386A1 (en) * 2018-08-27 2021-08-10 三菱電機株式会社 Refrigeration equipment and heat source side unit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070917A1 (en) * 2009-12-10 2011-06-16 三菱重工業株式会社 Air conditioner and method for detecting amount of refrigerant in air conditioner
JP2011122766A (en) * 2009-12-10 2011-06-23 Mitsubishi Heavy Ind Ltd Air conditioner and method for detecting refrigerant content of air conditioner
CN102472538A (en) * 2009-12-10 2012-05-23 三菱重工业株式会社 Air conditioner and method for detecting amount of refrigerant in air conditioner
CN102472538B (en) * 2009-12-10 2014-07-23 三菱重工业株式会社 Air conditioner and method for detecting amount of refrigerant in air conditioner
CN105509384A (en) * 2015-12-17 2016-04-20 珠海格力电器股份有限公司 Defrosting method of multi-split air conditioning system and multi-split air conditioning system
CN105509384B (en) * 2015-12-17 2017-12-29 珠海格力电器股份有限公司 The Defrost method and air conditioning multi-couple machine system of air conditioning multi-couple machine system
JPWO2020044386A1 (en) * 2018-08-27 2021-08-10 三菱電機株式会社 Refrigeration equipment and heat source side unit
WO2020161839A1 (en) * 2019-02-06 2020-08-13 三菱電機株式会社 Refrigeration device
JPWO2020161839A1 (en) * 2019-02-06 2021-09-09 三菱電機株式会社 Refrigeration equipment

Similar Documents

Publication Publication Date Title
KR101192346B1 (en) Heat pump type speed heating apparatus
US6094925A (en) Crossover warm liquid defrost refrigeration system
US6170270B1 (en) Refrigeration system using liquid-to-liquid heat transfer for warm liquid defrost
KR0153546B1 (en) Heat storage type airconditioner and defrosting method
KR101155497B1 (en) Heat pump type speed heating apparatus
JP3882056B2 (en) Refrigeration air conditioner
CN101365917A (en) Defrost system
KR101619016B1 (en) Refrigeration apparatus having defrosting cycle by hot gas
JPS63231154A (en) Refrigerator
WO2002066908A1 (en) System and method in which co2 is used for defrost and as refrigerant during stand-still
JP2000180026A (en) Refrigerating unit for refrigerator
JP3871207B2 (en) Refrigeration system combining absorption and compression
JP3781340B2 (en) Thermal storage refrigeration air conditioner
JPH10311614A (en) Heat storage type cooling device
JPH07269983A (en) Air conditioner for shop
JP2000240980A (en) Refrigerator/air conditioner
JP2002243350A (en) Refrigerating system
JPH0989444A (en) Cooling device of open show case
KR101212686B1 (en) Heat pump type speed heating apparatus
CN112856889B (en) Refrigerator and control method thereof
JP4348765B2 (en) Dual refrigeration equipment
KR100210055B1 (en) Defrost use refrigerant structure of refrigerator
JPH0829011A (en) Heat pump system
JP2001012843A (en) Method of defrosting for brine cooling system
JPH06105145B2 (en) Refrigeration equipment