JPS63230966A - Photochemical prime mover device - Google Patents

Photochemical prime mover device

Info

Publication number
JPS63230966A
JPS63230966A JP6245887A JP6245887A JPS63230966A JP S63230966 A JPS63230966 A JP S63230966A JP 6245887 A JP6245887 A JP 6245887A JP 6245887 A JP6245887 A JP 6245887A JP S63230966 A JPS63230966 A JP S63230966A
Authority
JP
Japan
Prior art keywords
pressure container
turbine
working gas
photochemical
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6245887A
Other languages
Japanese (ja)
Inventor
Hiromasa Hayashi
宏優 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP6245887A priority Critical patent/JPS63230966A/en
Publication of JPS63230966A publication Critical patent/JPS63230966A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To enhance the available factor of solar energy and to miniaturize a photochemical prime mover device by storing working gas which is adapted to expand during photochemical reaction with solar energy, in a high pressure container, and by connecting the outlet side of the high pressure container to the inlet side of a turbine. CONSTITUTION:Working gas having such a property that it expands during photochemical reaction upon applied solar energy S is stored in a high pressure container 1. Working gas is fed into the high pressure container 1 by means of a compressor 2. The outlet side of the high pressure container 1 is connected to the inlet side of a turbine 4 having a load 5. The outlet side of the turbine 4 is connected to a negative pressure container 7 which is in turn connected to the compressor 7 for negative feed-back. Thus, it is possible to enhance the available factor of solar energy and to miniaturize the photochemical prime mover device.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、太陽光のエネルギを利用した光化学原動装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a photochemical driving device that utilizes the energy of sunlight.

(従来の技術及び問題点) 天然エネルギのクリーン利用の一環として、太陽光は永
年着目をあびて種々の装置が提案されてきている。
(Prior Art and Problems) As part of the clean use of natural energy, sunlight has attracted attention for many years, and various devices have been proposed.

例えば、太陽光の熱エネルギを利用した集光式等の太陽
熱発電や光電変換を利用した太陽電池発電等が研究・開
発されている。
For example, research and development are being conducted on concentrating solar thermal power generation using the thermal energy of sunlight, solar cell power generation using photoelectric conversion, and the like.

しかしながら、太陽光を利用した発電における最大の問
題点は、太陽エネルギの受光単位面積当たりのエネルギ
密度が極めて小さいことである。
However, the biggest problem with power generation using sunlight is that the energy density per unit area of receiving solar energy is extremely low.

したがって、上記太陽光を利用した従来の発電装置にお
いて十分なる電力を得るためには、上記太陽熱発電にあ
っても、また太陽電池発電にあっても、その装置はきわ
めて大きな受光面を要し、装置が大型化して設備費の増
大とその設備のための広大な敷地とを要求され、さらに
はその保守費が多大なものとなっており、本格的な実用
化にはいたっていない。
Therefore, in order to obtain sufficient power with the conventional power generation device using sunlight, whether it is solar thermal power generation or solar battery power generation, the device requires an extremely large light-receiving surface. As the device becomes larger, equipment costs increase and a vast area is required for the equipment, and furthermore, the maintenance cost becomes large, so it has not been put into full-scale practical use.

(問題点を解決するための手段及び作用)そこで本発明
は、上記従来装置の問題点を解決し、受光単位面積当た
りの太陽光エネルギの利用率を向上させて、小型ながら
多くのエネルギを抽出できる光化学原動装置を提供する
ことをその目的とするものである。
(Means and effects for solving the problems) Therefore, the present invention solves the problems of the conventional device described above, improves the utilization rate of solar energy per unit light receiving area, and extracts a lot of energy despite being small. The purpose is to provide a photochemical driving device that can

本発明は、上記目的のために、 太陽光を受光する高圧容器内に、太陽光で光化学反応し
て膨張する作動ガスを収容し、上記高圧容器の出口側を
、負荷を有するタービンの入力側に接続し、タービンの
出力側から排出せられる上記作動ガスを上記高圧容器の
入口側に帰還せしめる、 ことにより構成される。
To achieve the above object, the present invention accommodates a working gas that expands through a photochemical reaction with sunlight in a high-pressure container that receives sunlight, and connects the outlet side of the high-pressure container to the input side of a turbine having a load. The working gas discharged from the output side of the turbine is returned to the inlet side of the high pressure vessel.

以上のごとくの構成になる本発明によるならば、高圧容
器内にあって太陽光を受光した作動ガスは光学反応を起
こして分解によりまたそれと共に熱による温度上昇によ
りその体積が膨張せんとするが高圧容器内にあって膨張
できないためその圧力が上昇する。
According to the present invention configured as described above, the working gas that is in the high-pressure container and receives sunlight causes an optical reaction and its volume does not expand due to decomposition and also due to the temperature increase due to heat. Since it is inside a high-pressure container and cannot expand, its pressure increases.

この高圧化された作動ガスは、タービンの入口側に導か
れて、ここで膨張しながら負荷を存するタービンを回転
駆動することとなる。勿論負荷は直接機械的エネルギと
してもまた発電エネルギとすることもできる。
This highly pressurized working gas is guided to the inlet side of the turbine, where it expands and rotates the turbine carrying the load. Of course, the load can also be direct mechanical energy or generated energy.

上記膨張した作動ガスは、タービンの出力側から適宜高
圧容器へ帰還して、上記サイクルを繰り返すこととなる
。上記作動ガスの光化学反応による高圧化は、高圧容器
内での初期の圧力が高い程その効率は上昇するので、上
記高圧容器への帰還の際の作動ガスは高くなっている方
が望ましい。
The expanded working gas is appropriately returned to the high pressure vessel from the output side of the turbine, and the above cycle is repeated. The higher the initial pressure in the high-pressure vessel, the higher the efficiency of increasing the pressure of the working gas through the photochemical reaction, so it is desirable that the working gas be at a higher temperature when returning to the high-pressure vessel.

帰還に際しての初期圧の印加は、圧縮機によって高圧ガ
ス状態でなされでもよいし、一旦液化された後再び気化
して高圧状態のガスとしてなされてもよい。
The initial pressure upon return may be applied in a high-pressure gas state by a compressor, or the material may be liquefied and then vaporized again to form a high-pressure gas.

上記作動ガスとして使用可能なものは種々存在するが、
その例をいくつか挙げると、No(J、NO□。
There are various types of working gases that can be used as the above working gas.
Some examples are No(J, NO□.

1120、 NII+、 C114,C3Ha等である
。これらの光化学反応はそれぞれ以下のごと(に行われ
る。
1120, NII+, C114, C3Ha, etc. These photochemical reactions are carried out as follows.

N0C1+hν → NO+Cj2 2NO□+hν → 2NO+ 0t HzO+hν →■2+0 NH3+hν → Nil  + 11ICH4+hν
 → CHz + Hz C3H@ + hν −c、o、+ 11゜ここでhは
ブランク定数であり、またνは太陽光のうちでの各ガス
が光化学反応するそれぞれ異なる振動数を示すもので、
hνが太陽光のエネルギとなる。
N0C1+hν → NO+Cj2 2NO□+hν → 2NO+ 0t HzO+hν →■2+0 NH3+hν → Nil + 11ICH4+hν
→ CHz + Hz C3H@ + hν -c, o, + 11゜Here, h is a blank constant, and ν indicates the different frequencies at which each gas in the sunlight undergoes a photochemical reaction,
hν is the energy of sunlight.

(実施例) 以下、添付図面にもとづいて本発明の実施例装置を説明
する。
(Example) Hereinafter, an example device of the present invention will be described based on the accompanying drawings.

第1図は本発明の第一実施例装置の概要構成図である。FIG. 1 is a schematic diagram of a device according to a first embodiment of the present invention.

同図において、1は高圧容器で、内部には太陽光Sを受
けて光化学反応し膨張する性質の作動ガス、例えばNO
□が収容されており、また上記高圧容器lは該作動ガス
に太陽光Sを受光せしめる受光面(図示せず)を有して
いる。
In the figure, 1 is a high-pressure container, and inside it contains a working gas that undergoes a photochemical reaction and expands when exposed to sunlight S, such as NO.
□ is accommodated, and the high-pressure vessel l has a light-receiving surface (not shown) that allows the working gas to receive sunlight S.

上記高圧容器lの入口側は圧縮機2に接続されていて、
上記作動ガスは圧縮機2によって初期圧をもって高圧容
器1内に送り込まれている。
The inlet side of the high pressure container l is connected to the compressor 2,
The working gas is fed into the high-pressure vessel 1 by the compressor 2 at an initial pressure.

高圧容器1の出口側は、例えば発電機等の負荷5を有す
るタービン4の入力側に接続されている。
The outlet side of the high pressure vessel 1 is connected to the input side of a turbine 4 having a load 5 such as a generator, for example.

また、上記タービン4はその回転力の一部で圧縮機2を
駆動すべく軸6にて連結されている。タービン4の出力
側は負圧容器7に接続されている。
Further, the turbine 4 is connected by a shaft 6 so that a part of its rotational force drives the compressor 2. The output side of the turbine 4 is connected to a negative pressure vessel 7.

また、上記高圧容器lとタービン4の出力側とは、弁9
を介してタービン4の回転調整のためのバイ。
Further, the high pressure vessel l and the output side of the turbine 4 are connected to a valve 9.
By for adjusting the rotation of turbine 4 through.

パス管8で接続されている。They are connected by a pass pipe 8.

上記負圧容器7は、作動ガスを帰還すべく圧縮機2に接
続されている。
The negative pressure vessel 7 is connected to the compressor 2 to return working gas.

次に、上記のごとくの本実施例装置におけるその作動を
説明する。
Next, the operation of the apparatus of this embodiment as described above will be explained.

■ 先ず、装置の運転に先立ち、弁3を閉じておき、圧
縮機2を回転する。すると、作動ガスたるNOxは初期
圧をもって高圧容器1に収容される。
■ First, before operating the device, valve 3 is closed and compressor 2 is rotated. Then, the working gas NOx is accommodated in the high-pressure container 1 with an initial pressure.

■ 初期圧をもったNo、tガスは、高圧容器1内にて
太陽光Sを受け、光化学反応によって2NO,+ hν
(光) → 2NO+ 0□のどと(分解し、さらに太
陽熱Sを受は膨張せんとするが上記反応は一定容積の高
圧容器1内でなされるためにガス圧が上昇する。この場
合、圧力は初期圧に対して1.5倍程度にまで達する。
■ No, t gas with initial pressure receives sunlight S in the high-pressure container 1, and undergoes a photochemical reaction to become 2NO, + hν
(Light) → 2NO+0 The pressure reaches about 1.5 times the initial pressure.

■ かかる状態で、弁3を開放すると(弁9は閉じてい
るとする)、高圧化されたNO□ガスは膨張しながらタ
ービンの入力側にてタービン4を回転せしめ、該タービ
ン4が負荷5にエネルギを与える。なお、この回転力の
一部は圧縮機2の回転のために消費される。
■ In this state, when the valve 3 is opened (assuming that the valve 9 is closed), the highly pressurized NO□ gas expands and rotates the turbine 4 on the input side of the turbine, and the turbine 4 is then give energy to. Note that a part of this rotational force is consumed for rotation of the compressor 2.

■ タービン4を回転駆動せしめた膨張後のNotガス
は、圧縮機2により吸引され負圧となっている負圧容器
7に送り込まれる。換言すれば、上記タービン4は高圧
容器1と負圧容器7との内圧差によって駆動されること
となる。
(2) The expanded Not gas that rotates the turbine 4 is sucked by the compressor 2 and sent to the negative pressure container 7 where the pressure is negative. In other words, the turbine 4 is driven by the internal pressure difference between the high pressure vessel 1 and the negative pressure vessel 7.

■ しかる後、NO2ガスは圧縮機2によって圧縮され
て初期圧をもって再び高圧容器1に送られ、上述のサイ
クルを繰り返す。
(2) Thereafter, the NO2 gas is compressed by the compressor 2 and sent to the high-pressure vessel 1 again at the initial pressure, and the above-mentioned cycle is repeated.

■ なお、弁9は高圧容器1内で生ずるN(hガスの圧
力が高すぎる場合、タービン4を経ずに負圧容器7にこ
れを送るように開かれる。
(2) Note that if the pressure of the N (h) gas generated in the high pressure vessel 1 is too high, the valve 9 is opened so as to send it to the negative pressure vessel 7 without passing through the turbine 4.

次に本発明の第二実施例装置について説明する。Next, a second embodiment of the present invention will be explained.

本実施例は、前実施例とほぼ同一の構成であるが、高圧
容器に他の熱源、例えば固体廃棄物の排熱等によるヒー
タ11を導入し、また負圧容器7には冷却管12を導入
して両容器の圧力差をさらに拡大してタービンの出力増
大を図ったものである。
This embodiment has almost the same configuration as the previous embodiment, but a heater 11 using another heat source, such as exhaust heat from solid waste, is introduced into the high-pressure container, and a cooling pipe 12 is installed in the negative-pressure container 7. This was done to further expand the pressure difference between the two vessels and increase the output of the turbine.

次に第3図には本発明の第三実施例が示されている。本
実施例では、高圧容器1への作動ガス、例えばNO2ガ
スの帰還を一旦液化ガスにする点に特徴がある。例えば
NO2の場合、沸点が零下二十数度と比較的高く、復水
器13にてLNG等の冷熱を利用して液化し、これをポ
ンプ14で熱交換器15に送り込み、ここで排熱等の高
温熱源を利用して高い初期圧をもつN(hガスとして高
圧容器1に送ることとしたもので、出力はさらに増大で
きる。
Next, FIG. 3 shows a third embodiment of the present invention. This embodiment is characterized in that the working gas, for example, NO2 gas, is returned to the high-pressure vessel 1 once as a liquefied gas. For example, in the case of NO2, the boiling point is relatively high at around 20 degrees below zero, and it is liquefied in the condenser 13 using the cold heat of LNG, etc., and then sent to the heat exchanger 15 by the pump 14, where it is used as exhaust heat. By using a high-temperature heat source such as N (h) gas having a high initial pressure, it is sent to the high-pressure vessel 1, and the output can be further increased.

上記各実施例ではNO2の例の場合を示したが、NO□
自体には毒性があるので、プラント全体をアンモニアか
水等で満たされた二重構造のものとすると安全性が確保
される。
In each of the above embodiments, the case of NO2 was shown, but NO□
Since the substance itself is toxic, safety can be ensured by building the entire plant into a double structure filled with ammonia or water.

(発明の効果) 本発明は、以上のように太陽光によって膨張する性質の
作動ガスを高圧容器に収容しこれに太陽光を照射して内
圧を高め、これによってタービンを回転駆動することと
したので、エネルギ効率がきわめてよく、受光面積も従
来の太陽熱発電や太陽電池発電等の装置に比してきわめ
て少な(てすみ、それだけ装置の小型化そして装置の設
置面積も要せず、経済的利益が大きいという効果をもた
らす。さらに、高圧容器内の作動ガスを、排熱等を利用
して初期圧を上げるとさらにその出力増大を図ることが
でき、上記効果は増長する。
(Effects of the Invention) As described above, the present invention stores a working gas that expands when exposed to sunlight in a high-pressure container, irradiates it with sunlight to increase the internal pressure, and thereby drives a turbine to rotate. Therefore, the energy efficiency is extremely high, and the light-receiving area is extremely small compared to conventional solar thermal power generation and solar cell power generation devices. Furthermore, if the initial pressure of the working gas in the high-pressure container is increased using exhaust heat or the like, the output can be further increased, and the above-mentioned effects will be further enhanced.

【図面の簡単な説明】 第1図は本発明の第一実施例装置の概要構成図、第2図
は第二実施例装置の概要構成図、第3図は第三実施例装
置の概要構成図である。 1・・・・・・・・・高圧容器 4・・・・・・・・・タービン 5・・・・・・・・・負荷 S・・・・・・・・・太陽光 特許出願人       日本鋼管株式会社代 理 人
  弁理士  藤  岡   徹第  3  図 第  1  図 第  2 図
[Brief Description of the Drawings] Fig. 1 is a schematic configuration diagram of a device according to a first embodiment of the present invention, Fig. 2 is a schematic configuration diagram of a device according to a second embodiment, and Fig. 3 is a schematic configuration diagram of a device according to a third embodiment of the present invention. It is a diagram. 1...High pressure vessel 4...Turbine 5...Load S...Solar patent applicant Japan Toru Fujioka, Agent Patent Attorney, Steel Pipe Co., Ltd. Figure 3 Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 太陽光を受光する高圧容器内に、太陽光で光化学反応し
て膨張する作動ガスを収容し、上記高圧容器の出口側を
、負荷を有するタービンの入力側に接続し、タービンの
出力側から排出せられる上記作動ガスを上記高圧容器の
入口側に帰還せしめることとする光化学原動装置。
A working gas that expands through a photochemical reaction with sunlight is contained in a high-pressure container that receives sunlight, and the outlet side of the high-pressure container is connected to the input side of a turbine with a load, and is discharged from the output side of the turbine. The photochemical power device is configured to return the working gas that is supplied to the high-pressure container to the inlet side of the high-pressure container.
JP6245887A 1987-03-19 1987-03-19 Photochemical prime mover device Pending JPS63230966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6245887A JPS63230966A (en) 1987-03-19 1987-03-19 Photochemical prime mover device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6245887A JPS63230966A (en) 1987-03-19 1987-03-19 Photochemical prime mover device

Publications (1)

Publication Number Publication Date
JPS63230966A true JPS63230966A (en) 1988-09-27

Family

ID=13200780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6245887A Pending JPS63230966A (en) 1987-03-19 1987-03-19 Photochemical prime mover device

Country Status (1)

Country Link
JP (1) JPS63230966A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275996A (en) * 2009-06-01 2010-12-09 Mitsubishi Heavy Ind Ltd Solar heat gas turbine and solar heat gas turbine power generation device
KR101212276B1 (en) 2007-02-01 2012-12-14 도쿄엘렉트론가부시키가이샤 Deposition apparatus, deposition method and deposition apparatus manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101212276B1 (en) 2007-02-01 2012-12-14 도쿄엘렉트론가부시키가이샤 Deposition apparatus, deposition method and deposition apparatus manufacturing method
JP2010275996A (en) * 2009-06-01 2010-12-09 Mitsubishi Heavy Ind Ltd Solar heat gas turbine and solar heat gas turbine power generation device

Similar Documents

Publication Publication Date Title
Lovegrove et al. A solar-driven ammonia-based thermochemical energy storage system
US4085590A (en) Hydride compressor
CN104791204B (en) A kind of underground heat, combustion gas and supercritical carbon dioxide combined generating system
JP2880925B2 (en) Hydrogen combustion gas turbine plant
CN101946134B (en) Solar thermal energy storage method
NZ291537A (en) Gas turbine generating plant, turbine driven by exhaust from electrochemical cell
CA2292488A1 (en) Waste heat recovery in an organic energy converter using an intermediate liquid cycle
US4262739A (en) System for thermal energy storage, space heating and cooling and power conversion
IL112793A (en) Externally fired combined cycle gas turbine system
CN101946070B (en) Method of converting solar heat energy
Venkataramani et al. Experimental investigation on small capacity compressed air energy storage towards efficient utilization of renewable sources
US4044821A (en) Low to high temperature energy conversion system
Kelem et al. Development and assessment of a novel multigeneration plant combined with a supercritical CO2 cycle for multiple products
CN101936274A (en) Thermal power generation system based on gas turbine circulation in solar energy regeneration reheating inter-cooling
JPS63230966A (en) Photochemical prime mover device
RU2111422C1 (en) Combined solar-electric power plant
SK279395B6 (en) Integrated power block
CN114687940A (en) Open air circulation system of nuclear reactor for coupling wind and light energy storage
JPS6138111A (en) Power facility using solar heat
JP2002242694A (en) Energy storing type gas turbine generator
JP2011256856A (en) Method and device for recovering thermal-potential conversion energy in heat engine
Luzzi et al. Base-load solar thermal power using thermochemical energy storage
CN214581867U (en) S-CO2 recompression Brayton cycle ammonia based solar energy utilization device
CN115523113B (en) Solar power generation and energy storage system
CA2084202A1 (en) Process for using energy potentials, in particular with small temperature differences