JPS63230877A - Production of thin tin film - Google Patents

Production of thin tin film

Info

Publication number
JPS63230877A
JPS63230877A JP6390587A JP6390587A JPS63230877A JP S63230877 A JPS63230877 A JP S63230877A JP 6390587 A JP6390587 A JP 6390587A JP 6390587 A JP6390587 A JP 6390587A JP S63230877 A JPS63230877 A JP S63230877A
Authority
JP
Japan
Prior art keywords
tin
thin film
substrate
film
tin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6390587A
Other languages
Japanese (ja)
Inventor
Shinichi Fukada
晋一 深田
Hitoshi Onuki
仁 大貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6390587A priority Critical patent/JPS63230877A/en
Publication of JPS63230877A publication Critical patent/JPS63230877A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a thin TiN film suitable for use in the production of a semiconductor device by feeding a specified organotitanium compd., ammonia and hydrogen to a reaction tube under specified conditions with an inert gas. CONSTITUTION:A reaction tube 11 is heated to 50-400 deg.C with a heater 12 and evacuated to 0.1-10Torr by a vacuum pump 9. A Ti source and an inert gas as a carrier gas are introduced into the tube 11 from an inlet 5 and NH3, H2 and the inert gas are also introduced from an inlet 6. At this time, a compd. represented by a formula Ti(C5H5)2R<1>R<2> (where each of R<1> and R<2> is composed of C and H, and R<1> and R<2> may have the same structure) is used as the Ti source. Thus, a thin TiN film contg. no impurities is formed on a substrate 3 heated separately from the reaction tube 11. The TiN film has grains grown parallel to the surface of the substrate and the number of grain boundaries perpendicular to the growth direction is <=1 per 1mum on the average.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、TiN薄膜とその製造方法に係り、特に、半
導体装置の製造に好適なTiN薄膜の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a TiN thin film and a method for manufacturing the same, and particularly to a method for manufacturing a TiN thin film suitable for manufacturing semiconductor devices.

〔従来の技術〕[Conventional technology]

従来、半導体装置の金属窒化物膜としては特公昭50−
24596号公報に記載のように、TiN。
Conventionally, as a metal nitride film for semiconductor devices,
TiN as described in Japanese Patent No. 24596.

ZrN、HfN、VN、NbN、TaN等が知られてい
る。また、これらの金属窒化物膜の製造については、T
iNについて、反応性スパッタ法、TicQaを原料と
するCVD法等が知られている。また、特に、特開昭5
2−71174号公報に記載のように有機チタン化合物
を原料とするプラズマCVD法によるTiN膜の製造方
法があった。
ZrN, HfN, VN, NbN, TaN, etc. are known. In addition, regarding the production of these metal nitride films, T.
Regarding iN, a reactive sputtering method, a CVD method using TicQa as a raw material, and the like are known. In addition, in particular,
As described in Japanese Patent No. 2-71174, there is a method for producing a TiN film using a plasma CVD method using an organic titanium compound as a raw material.

特に、ジャーナル オブ エレクトロケミカルソサイエ
テイ 122 (1975年)第1545頁から第15
49頁において、TiNの低温MOCVD法による製膜
方法が論じられている。
In particular, Journal of Electrochemical Society 122 (1975) pp. 1545-15.
On page 49, a method for forming TiN films by low temperature MOCVD is discussed.

遷移金属窒化物膜をMOCVD法により形成する場合、
金属ソースとしてどのような化合物を選択するかが、形
成される窒化物膜の膜質に大きく影響する。特開昭60
−125372号公報では、ベンゼン環、または、シク
ロペンタシュニル環に金属原子がはさまれたサンドイン
チ構造の化合物を用い、その熱分解により金属薄膜を形
成している。また、特開昭61−69969号公報では
金属ソースに含窒素化合物であるアジド化合物Ti[N
(CHa)z14等を用いて金属窒化物膜を形成してい
る。
When forming a transition metal nitride film by MOCVD method,
The type of compound selected as the metal source greatly influences the quality of the nitride film formed. Tokukai 1986
In Japanese Patent No. 125372, a compound having a sandwich structure in which a metal atom is sandwiched between a benzene ring or a cyclopentashnyl ring is used, and a metal thin film is formed by thermal decomposition of the compound. Furthermore, in JP-A-61-69969, an azide compound Ti[N], which is a nitrogen-containing compound, is used as a metal source.
A metal nitride film is formed using (CHa)z14 or the like.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

特公昭50−24596号公報にある技術では遷移金属
窒化物膜の有効性については述べられているが、具体的
な成膜方法についての記述がなく、この技術を実施する
上で問題があった。
Although the technology in Japanese Patent Publication No. 50-24596 describes the effectiveness of transition metal nitride films, there was no description of a specific film-forming method, which caused problems in implementing this technology. .

また、特開昭52−71174号公報によれば、TiN
膜を形成することは可能だが、TiN生成までの化学反
応についての検討がなく問題があった。すなわち、Ti
ソースに[(CHi)zNNコミTi用いる場合には、
特開昭61−69969号公報と同じ技術であり。
Furthermore, according to Japanese Patent Application Laid-Open No. 52-71174, TiN
Although it is possible to form a film, there was a problem in that there was no study of the chemical reactions leading to the formation of TiN. That is, Ti
When using [(CHi)zNNkomiTi for the source,
This is the same technology as in Japanese Patent Application Laid-Open No. 61-69969.

TiN生成までの反応経路が複雑であり反応の制御が困
難であるという問題点があった。また、Ti(CaHs
)zを用いる場合、この化合物が熱的に不安定であり問
題があった。
There was a problem in that the reaction path leading to TiN production was complicated and it was difficult to control the reaction. In addition, Ti(CaHs
)z was used, there was a problem because this compound was thermally unstable.

J 、Electrochaw+、Soc、122 p
p、1545(1975)では、窒素を含む有機チタン
化合物の熱分解によってTiN膜を得ているが、膜質が
悪く、ち密で密着性良く膜形成する上で問題があった。
J, Electrochaw+, Soc, 122p
P, 1545 (1975), a TiN film was obtained by thermal decomposition of a nitrogen-containing organic titanium compound, but the film quality was poor and there were problems in forming a dense film with good adhesion.

特開昭60−125372号公報の技術をTiに用いる
と、Ti(CsHs)z、 Ti(CaHs)zがTi
ソースとなるが、これらの化合物は熱的に不安定である
。また、この技術は金属薄膜の製造方法であり、金属窒
化物およびその製造方法である本発明とは異なる技術で
ある。特開昭61−69969号公報の技術では含窒素
金属化合物の熱分解反応によりTiNを生成するが、T
iNの生成までに複雑な反応経路を経なければならず、
不純物を含みやすい1反応を制御しながら膜形成するの
が困難、という問題点があった。
When the technique of JP-A-60-125372 is applied to Ti, Ti(CsHs)z and Ti(CaHs)z become Ti.
However, these compounds are thermally unstable. Further, this technology is a method for manufacturing a metal thin film, and is a different technology from the present invention, which is a metal nitride and a method for manufacturing the same. In the technique disclosed in JP-A No. 61-69969, TiN is produced by a thermal decomposition reaction of a nitrogen-containing metal compound.
It is necessary to go through a complicated reaction pathway before producing iN,
There is a problem in that it is difficult to form a film while controlling one reaction that tends to contain impurities.

本発明の目的は、TiNの生成までの化学反応を制御性
良く行ない、良質のTiN膜をMOCVD法で形成する
ことにある。
An object of the present invention is to form a high-quality TiN film by the MOCVD method by performing chemical reactions leading to the formation of TiN with good controllability.

また、本発明のTiN薄膜裏造方法によれば。Further, according to the TiN thin film backing method of the present invention.

形成されたTiN薄膜は膜面方向によく成長し。The formed TiN thin film grows well in the direction of the film surface.

1μm以上の大きさになる。従来のCVD法、反応性ス
パッタ法で形成されたTiN薄膜では結晶粒の大きさは
、200〜SoO人と小さく1粒界の影響による抵抗の
増大と拡散バリヤ性の劣化が生じていた。すなわち1本
発明は、抵抗が小さく、拡散バリア性の高いTiN膜を
提供する目的も同時に持っている。
The size becomes 1 μm or more. In TiN thin films formed by conventional CVD methods and reactive sputtering methods, the crystal grain size is small, ranging from 200 to SoO, resulting in an increase in resistance and a deterioration in diffusion barrier properties due to the influence of grain boundaries. That is, one object of the present invention is to provide a TiN film with low resistance and high diffusion barrier properties.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、CVD装置において金属ソースとしてTi
(CsHa)zR’R”  (R’ 、 R”はCとH
のみで構成される。)を用い、基板を加熱し金属ソース
を分解し、基板表面にTiを生成させ、反応管中に別瞬
導入したN Haと反応させ、TiN薄膜を基板上に形
成するとこにより達成される。
The above purpose is to use Ti as a metal source in a CVD device.
(CsHa)zR'R"(R',R" are C and H
Consists of only ), the substrate is heated to decompose the metal source, Ti is generated on the surface of the substrate, and is reacted with N 2 Ha introduced separately into the reaction tube to form a TiN thin film on the substrate.

〔作用〕[Effect]

本発明では、Tiが以下の式に従って基板上に形成され
る。
In the present invention, Ti is formed on the substrate according to the following formula.

Ti(Cs)Is)zR”R”+−Hz→Ti+2Cs
Hs+HJ”+HJ”(Q、m、nは整数) 有機Ti化合物は、 Ti(CsHs)zCQ zが安
定な化合物として良く知られているが、この物質は熱分
解後NソースであるNHaと反応し、NH4CQを形成
するm N Ha Ca はガスとなりにくく、基板中
に不純物として残る。そのため、Ti(CaHs)2C
QxのCI2を熱分解後ガスになりやすい有機物質で置
換した化合物であるTi(CsHs)zRIR”がTi
ソースとして好適な化合物である。Nは、NHsから供
給され以下の反応によりTiNを基板上に生成する。
Ti(Cs)Is)zR"R"+-Hz→Ti+2Cs
HS , NH4CQ is difficult to turn into a gas and remains as an impurity in the substrate. Therefore, Ti(CaHs)2C
Ti(CsHs)zRIR”, a compound in which CI2 of Qx is replaced with an organic substance that easily becomes gas after thermal decomposition, is Ti
This compound is suitable as a source. N is supplied from NHs, and TiN is produced on the substrate through the following reaction.

Ti+NHs→T i N + −Hzそれに対し、従
来のMOCVD技術であるTi [N(CI(a)zl
a等のTiアジドの熱分解では原料中のT i / N
比が1/4であり、反応により形成されるTiNのT 
i / N比の制御が困難であり、また、C−Hの共有
結合が切断されずに残りT i N中に不純物としてC
が残っていた。
Ti+NHs→T i N + -Hz On the other hand, the conventional MOCVD technology Ti [N(CI(a)zl
In the thermal decomposition of Ti azide such as a, T i / N in the raw material
The ratio is 1/4, and the T of TiN formed by the reaction
It is difficult to control the i/N ratio, and C-H covalent bonds remain unbroken and remain as impurities in TiN.
was left.

本発明では、供給Ti量とN量を独立に制御し膜中のT
 i / N比を変えることが可能である。また、TL
(CsHs>xR”R”の中で切断される結合は、配位
結合、あるいは、Ti−Cの弱い共有結合であり、熱分
解により形成されるTiN中へTiソースから不純物が
はいりにくい。
In the present invention, the amount of Ti and the amount of N supplied are controlled independently, and the amount of T in the film is
It is possible to vary the i/N ratio. Also, T.L.
(CsHs>xR The bond broken in "R" is a coordinate bond or a weak Ti-C covalent bond, and impurities are difficult to enter from the Ti source into TiN formed by thermal decomposition.

また1本発明によれば、TiNは基板上にTiとNの層
が順次積層して形成され、しかも、結晶の成長をさまた
げるCQやC等の不純物の混入がない、そのため、従来
困難であった基板に平行な方向へ結晶はよく成長し、平
均1μm以上の結晶粒を含むTiN薄膜が形成される。
Furthermore, according to the present invention, TiN is formed by sequentially stacking Ti and N layers on a substrate, and there is no inclusion of impurities such as CQ or C that hinder crystal growth, which is difficult to do in the past. Crystals grow well in the direction parallel to the substrate, and a TiN thin film containing crystal grains with an average size of 1 μm or more is formed.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。第1
図はTiソースにTi(CsHa)z(CミCC13H
5)2を用いたMOCVD法により形成したT i N
薄膜の断面図である。1はTiN薄膜であり膜厚は30
0人である。基板温度500℃で膜形成した場合、基板
に平行な方向への結晶粒の大きさは最大2μmとなった
。また、このriNWI!Iは(111)面に配向して
おり、X線回折では(111)と(222)の回折ピー
クのみを与えた。
An embodiment of the present invention will be described below with reference to FIG. 1st
The figure shows Ti(CsHa)z(CmiCC13H) in Ti source.
5) T i N formed by MOCVD method using 2
FIG. 2 is a cross-sectional view of a thin film. 1 is a TiN thin film and the film thickness is 30
There are 0 people. When the film was formed at a substrate temperature of 500° C., the maximum crystal grain size in the direction parallel to the substrate was 2 μm. Also, this riNWI! I was oriented in the (111) plane, and X-ray diffraction gave only (111) and (222) diffraction peaks.

以下、本発明の一実施例を第2図により説明する。11
は反応容器であり石英製である。12は反応容器を加熱
するためのヒータであり、4は基板を支持するためのサ
セプタであり内部にヒータが装着されており、2とは独
立に基板の加熱を行なう、5,6は原料ガス導入口であ
り、7は導出口であり、9の真空ポンプおよび10のマ
スフローコントローラで容器内の圧力を調節する。原料
ガスの導入口は、Tiソース−キャリヤ不活性ガス導入
口5とN Hs −Hz−キャリヤ不活性ガス導入口6
にわかれている。TiソースとしてTi(CsHs)z
(C=CCaHg)zを用い、キャリア不活性ガスには
Arを用いた。また、TiソースとしてはTi(Cs)
Is)z(CHs)z、 Ti(CaHs)z(CsH
s)zも使用可能であるお反応容器内圧は1〜1OTo
rrとし1反応容器部度80℃、基板温度500℃で膜
形成を行なった。膜形成速度はソースガス濃度に依存し
て変化し50〜300人/ m i n程度の速度で成
膜した。第3図にTiN薄膜の結晶粒径の平均と膜の比
抵抗の関係を示す、比抵抗は基板面に平行な方向で測定
した。比抵抗は結晶粒径が大きくなるに従って小さくな
っており、平均粒径1μm以上でほぼ一定値となり粒径
を大きくした時の効果を示している。第4図にTiN薄
膜の結晶粒径と拡散バリヤ性能の関係を示した。拡散バ
リヤ性能は半導体装置の寿命で測っており、寿命が長い
ほど拡散バリヤ性能が高い。半導体装置は第5図に示す
構造となっている。13のAQ配線がTiN薄ll11
4中を拡散し、Si基板15上に達し、さらに拡散層1
6を突きやぶることにより半導体装置は破壊される。な
お、図中3は基板、8は有機金属化合物−キャリヤガス
混合装置、17は、Si酸化膜である。
An embodiment of the present invention will be described below with reference to FIG. 11
is a reaction vessel made of quartz. 12 is a heater for heating the reaction vessel; 4 is a susceptor for supporting the substrate; a heater is installed inside; the substrate is heated independently from 2; 5 and 6 are raw material gases; 7 is an inlet port, 7 is an outlet port, and the pressure inside the container is adjusted by a vacuum pump 9 and a mass flow controller 10. The raw material gas inlets are Ti source-carrier inert gas inlet 5 and N Hs-Hz-carrier inert gas inlet 6.
It is divided into two. Ti(CsHs) as Ti source
(C=CCaHg)z was used, and Ar was used as a carrier inert gas. In addition, Ti (Cs) is used as a Ti source.
Is)z(CHs)z, Ti(CaHs)z(CsH
s) Z can also be used.The internal pressure of the reaction vessel is 1 to 1 OTo.
Film formation was carried out at a reaction vessel temperature of 80°C and a substrate temperature of 500°C. The film formation rate varied depending on the source gas concentration and was approximately 50 to 300 people/min. FIG. 3 shows the relationship between the average crystal grain size of the TiN thin film and the resistivity of the film. The resistivity was measured in a direction parallel to the substrate surface. The specific resistance decreases as the crystal grain size increases, and becomes a nearly constant value when the average grain size is 1 μm or more, indicating the effect of increasing the grain size. FIG. 4 shows the relationship between the crystal grain size and diffusion barrier performance of the TiN thin film. Diffusion barrier performance is measured by the lifespan of a semiconductor device, and the longer the lifespan, the higher the diffusion barrier performance. The semiconductor device has a structure shown in FIG. 13 AQ wiring is TiN thin 11
4, reaches the Si substrate 15, and further spreads through the diffusion layer 1.
6, the semiconductor device is destroyed. In the figure, 3 is a substrate, 8 is an organometallic compound-carrier gas mixing device, and 17 is a Si oxide film.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、MOCVD法により不純物を含まない
TiN薄膜を形成でき、しかも、形成されたTiN薄膜
は基板と平行に1μm程度まで成長させることができる
ので粒界の影響による抵抗の増大や拡散バリヤ性能の低
下のないTiN薄膜を形成することができる。
According to the present invention, a TiN thin film that does not contain impurities can be formed by the MOCVD method, and the formed TiN thin film can be grown to a thickness of about 1 μm in parallel with the substrate, so there is no increase in resistance due to the influence of grain boundaries and diffusion. A TiN thin film can be formed without deterioration in barrier performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のTiN薄膜の断面図、第2
図は本発明のTiN用MOCVD装置の構成図、第3図
はTiN膜中のTiN結晶粒径と比抵抗の関係を示す図
、第4図はTiN膜中のTiN結晶粒径と450℃での
半導体装置の寿命の関係を示す図、第5図は第4図の測
定に用いた半導体装置の構造図である。
FIG. 1 is a cross-sectional view of a TiN thin film according to an embodiment of the present invention, and FIG.
The figure is a block diagram of the MOCVD apparatus for TiN of the present invention, Figure 3 is a diagram showing the relationship between the TiN crystal grain size in the TiN film and specific resistance, and Figure 4 is a diagram showing the relationship between the TiN crystal grain size in the TiN film and the resistivity at 450°C. FIG. 5 is a structural diagram of the semiconductor device used in the measurement of FIG. 4.

Claims (1)

【特許請求の範囲】 1、TiN薄膜中の結晶粒が、前記TiN薄膜を形成さ
せる基板面に平行に成長し、成長方向に垂直な結晶粒界
の数が1μmあたり平均一個以下であることを特徴とす
るTiN薄膜の製造方法。 2、50〜400℃に加熱し、0.1〜10Torrに
減圧した反応管へ有機チタン化合物、アンモニアおよび
水素を不活性ガスと共に供給し、前記反応管とは独立に
加熱した基板の表面にTiN膜を形成する成膜方法にお
いて、 前記有機チタン化合物が次式で表わされる化合物である
ことを特徴とするTiN薄膜の製造方法。 Ti(C_5H_5)_2R^1R^2 (ただし、上式においてR^1、R^2はCとHのみか
ら構成される。またR^1とR^2は同一の構造であっ
てもよい。)
[Claims] 1. The crystal grains in the TiN thin film grow parallel to the substrate surface on which the TiN thin film is formed, and the number of grain boundaries perpendicular to the growth direction is one or less per 1 μm on average. Characteristic method for producing a TiN thin film. 2. An organic titanium compound, ammonia, and hydrogen are supplied together with an inert gas to a reaction tube heated to 50 to 400°C and depressurized to 0.1 to 10 Torr, and TiN is applied to the surface of the heated substrate independently of the reaction tube. A method for producing a TiN thin film, wherein the organic titanium compound is a compound represented by the following formula. Ti(C_5H_5)_2R^1R^2 (However, in the above formula, R^1 and R^2 are composed of only C and H. Also, R^1 and R^2 may have the same structure. )
JP6390587A 1987-03-20 1987-03-20 Production of thin tin film Pending JPS63230877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6390587A JPS63230877A (en) 1987-03-20 1987-03-20 Production of thin tin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6390587A JPS63230877A (en) 1987-03-20 1987-03-20 Production of thin tin film

Publications (1)

Publication Number Publication Date
JPS63230877A true JPS63230877A (en) 1988-09-27

Family

ID=13242806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6390587A Pending JPS63230877A (en) 1987-03-20 1987-03-20 Production of thin tin film

Country Status (1)

Country Link
JP (1) JPS63230877A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139825A (en) * 1989-11-30 1992-08-18 President And Fellows Of Harvard College Process for chemical vapor deposition of transition metal nitrides
US6475912B1 (en) 1998-06-01 2002-11-05 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method and apparatus for fabricating the same while minimizing operating failures and optimizing yield

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139825A (en) * 1989-11-30 1992-08-18 President And Fellows Of Harvard College Process for chemical vapor deposition of transition metal nitrides
US6475912B1 (en) 1998-06-01 2002-11-05 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method and apparatus for fabricating the same while minimizing operating failures and optimizing yield
US6683381B2 (en) 1998-06-01 2004-01-27 Matsushita Electric Industrsial Co., Ltd. Semiconductor device having a copper interconnect layer
US6906420B2 (en) 1998-06-01 2005-06-14 Matsushita Electric Industrial Co., Ltd. Semiconductor device

Similar Documents

Publication Publication Date Title
US20210066080A1 (en) Methods and apparatus for depositing a chalcogenide film and structures including the film
US9765431B2 (en) Atomic layer deposition of metal phosphates and lithium silicates
US5173327A (en) LPCVD process for depositing titanium films for semiconductor devices
TWI655310B (en) Metal-aluminum alloy films from metal amidinate precursors and aluminum precursors
JPH0639357B2 (en) Method for growing element semiconductor single crystal thin film
JPH06302528A (en) Vapor deposition of silicon nitride thin film
US20080317972A1 (en) Method for depositing thin films by mixed pulsed cvd and ald
US20050089632A1 (en) Process for producing oxide films
JP2003511561A (en) Method of depositing transition metal nitride thin film
JPS6042823A (en) Method for forming thin film
US8906457B2 (en) Method of atomic layer deposition using metal precursors
TW202204662A (en) Method and system for depositing molybdenum layers
JPS63230877A (en) Production of thin tin film
JPS61113770A (en) Control of chemical vapor deposition
US11837635B2 (en) Method of forming graphene on a silicon substrate
JPS62153190A (en) Boron nitride coated crucible
KR100232195B1 (en) Synthesizing method of supply gas for forming cvd thin film
Törndahl Atomic layer deposition of copper, copper (I) oxide and copper (I) nitride on oxide substrates
JPH05226335A (en) Forming method of thin film
JPS61251119A (en) Chemical vapor deposition method
JPH0239423A (en) Method of applying iii-v compound to semiconductor substrate
JPS63145777A (en) Production of hexagonal boron nitride film
JPS62147785A (en) Continuously manufacture device for photosensor
JPH0297417A (en) Production of crystalline boron nitride compound film containing silicon atom
CN113621942A (en) Aluminum-doped gallium oxide film and preparation method thereof