JPS63145777A - Production of hexagonal boron nitride film - Google Patents

Production of hexagonal boron nitride film

Info

Publication number
JPS63145777A
JPS63145777A JP61292058A JP29205886A JPS63145777A JP S63145777 A JPS63145777 A JP S63145777A JP 61292058 A JP61292058 A JP 61292058A JP 29205886 A JP29205886 A JP 29205886A JP S63145777 A JPS63145777 A JP S63145777A
Authority
JP
Japan
Prior art keywords
boron nitride
substrate
nitride film
hexagonal boron
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61292058A
Other languages
Japanese (ja)
Inventor
Katsumitsu Nakamura
勝光 中村
Hiroshi Namikawa
並河 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP61292058A priority Critical patent/JPS63145777A/en
Publication of JPS63145777A publication Critical patent/JPS63145777A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Chemical Vapour Deposition (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To deposit a satisfactorily crystallized hexagonal boron nitride film in the form of a thin film on a substrate, by bringing a nitrogen compd. and boron compd. into reaction at a specific temp. by a chemical vapor deposition method. CONSTITUTION:The substrate is disposed in a reaction tube of a CVD device. The nitrogen compd. (NH3, etc.) and the boron compd. [B(C2H5)3, etc.] are introduced with gaseous hydrogen as a carrier into the reaction tube and are brought into reaction in a 700-1,700 deg.C range to form the hexagonal boron nitride film on the substrate. The inflow rates of the respective compds. at this time are regulated to, for example, about >=25NH3/B(C2H5)3 molar ratio. A quartz glass plate or the like having about 0.3-2.0mm thickness is used for the substrate and the preferable thickness of the hexagonal boron nitride film is about 0.5-50mu. The intrusion of impurities into the film is preventable if consideration is paid for the conditions for production. Application of adequate tensile stress to the film is possible by the control and determination of the material quality, thickness and crystal direction of the substrate. The hexagonal boron nitride film used for the mask substrate, etc., in X-ray lithography is thereby produced.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、X線リソグラフィにおけるマスク基板等に
使用される六方晶窒化硼素膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method of manufacturing a hexagonal boron nitride film used as a mask substrate in X-ray lithography.

「従来の技術」 近年、半導体製造技術の微細化の傾向の一つとして、い
わゆるサブミクロン領域での微細加工技術が脚光を浴び
ている。こめ微細加工技術は、大別して電子線によるも
の、イオンビームによるもの、また、X線によるものが
挙げられるが、とりわけxe;tによる微細加工技術(
以下、X線リソグラフィと称する)は、照射するX線の
波長が短い(数人〜数十式程度)ため、0.1μ7程度
までの微細なパターンを基板上に形成することが可能で
あるという利点を有し、注目を集めている。
"Conventional Technology" In recent years, microfabrication technology in the so-called submicron region has been in the spotlight as one of the trends toward miniaturization of semiconductor manufacturing technology. Microfabrication technology can be roughly divided into those using electron beams, those using ion beams, and those using X-rays, but in particular, microfabrication technology using xe;t (
X-ray lithography (hereinafter referred to as X-ray lithography) is capable of forming patterns as fine as 0.1 μ7 on a substrate because the wavelength of the X-rays it irradiates is short (about a few to several tens of meters). It has advantages and is attracting attention.

面記X線リソグラフィに使用され、その表面に転写用原
パターンが形成されろマスク基板は、曲記X線が十分に
透過される必要があるため、その材料となる物質は軽元
素に限定されろ。また、X線マスク基板に要求される他
の条件としては、以下に示すようなしのが挙げられろ。
The mask substrate used in area X-ray lithography, on which the original pattern for transfer is formed, must be sufficiently transparent to the curved X-rays, so the materials it is made from are limited to light elements. reactor. Further, other conditions required for the X-ray mask substrate include the following.

(目)  レジストの最高感度の領域でX線源に対して
透明であること。
(Eye) Be transparent to the X-ray source in the most sensitive area of the resist.

(2)取り扱いの点でも、パターンを形成するためにも
適当な強度を有すること。
(2) It must have appropriate strength both in terms of handling and in forming patterns.

(3)基板上にパターン等を作製する工程を考°え、熱
的にも化学的にも安定であること。
(3) It must be thermally and chemically stable, considering the process of creating patterns etc. on the substrate.

(4) X線の照射に対して安定であること。(4) Be stable against X-ray irradiation.

(5)可視光の範囲でマスクの重ね合ね仕を可能にする
ため光学的に透明であること。
(5) Be optically transparent to enable overlapping of masks in the visible light range.

(6)マスクパターンを形成するために許容できろ範囲
内で表面が平坦であること。
(6) The surface should be flat within an allowable range for forming a mask pattern.

以上の要求を満足する物質として、従来半導体製造に使
用されているシリコン(Si)基板の他に、窒化硼素(
BN)、炭化硼素(B、c)、珪化硼*(I3.Si)
等の硼化物によるX19リソグラフイ用のマスク基板が
近年提案されている(例えば特公昭56−37G92号
明細書)。
In addition to silicon (Si) substrates conventionally used in semiconductor manufacturing, boron nitride (
BN), boron carbide (B, c), boron silicide* (I3.Si)
Mask substrates for X19 lithography using borides have been proposed in recent years (for example, Japanese Patent Publication No. 56-37G92).

これら硼化物のうち、特に窒化硼素は前記(2)、(6
)の条件を除けばその他の条件をほぼ満足するLめ、X
線すソグラフf用のマスク基板として好適な材料である
といえろ。
Among these borides, boron nitride is particularly used in (2) and (6) above.
), which almost satisfies the other conditions except for the condition L,
It can be said that it is a suitable material as a mask substrate for line lithography f.

この、X線リソグラフィ用の窒化硼素膜を製造オろ方法
としては、硼素のハロゲン化物(BCl、、[3Fz、
BBra等)あるいはジボラン(B、Hll )とアン
モニア(Nll++)とを用いて、化学気相堆積(CV
D)法により基板上に薄膜状に堆積させて作製する方法
が一般的である。この際、その反応温度は、形成後の窒
化硼素膜に過大なストレスを与えないように、400℃
〜700℃程度の温度であるのが通常であった。
As a manufacturing method for this boron nitride film for X-ray lithography, boron halide (BCl, [3Fz,
Chemical vapor deposition (CV) using diborane (B, Hll) and ammonia (Nll++)
A common method is to deposit a thin film on a substrate using method D). At this time, the reaction temperature was set at 400°C so as not to give excessive stress to the boron nitride film after formation.
The temperature was usually around 700°C.

「発明が解決しようとずろ問題点」 ところで、前述の窒化硼素膜をX線リソグラフィ用の基
板として使用ずろ際に遺されていた問題として、形成さ
れた膜に適当な強度を持たせること、形成された膜に平
坦性を持た什ろために、この膜に適当な引張応力を与え
ること、があった。
``Problems that the invention cannot solve'' By the way, there were problems that remained when the aforementioned boron nitride film was used as a substrate for X-ray lithography. In order to maintain the flatness of the resulting film, it was necessary to apply an appropriate tensile stress to the film.

しかし、純粋の窒化硼素(I3N)はグラファイト等と
同様の結晶構造を有する六方晶系に属し、無色透明の結
晶であるにもかかわらず、従来提供されている窒化硼素
薄膜は黄色を呈する非晶質膜であることが大半であった
。これは、本発明台等の研究によれば、従来の窒化硼素
薄膜は、硼素に対して窒素が少なく、水素が20〜30
%程度混入されているアモルファス化膜であり、この水
素の混入により、本来窒化1素結晶が有すべき強度を前
記薄膜状態では得ることが難しく、また、X線リソグラ
フィ用マスク基板として使用しrこ場合、X線照射に伴
う熱の発生に対する耐熱性、あるいは組成の変化等X線
耐性が良好でない、という改善点を生む原因となってい
た。
However, pure boron nitride (I3N) belongs to a hexagonal system with a crystal structure similar to graphite etc., and although it is a colorless and transparent crystal, conventionally provided boron nitride thin films have a yellow color and are amorphous. Most of them were membranes. This is because, according to research by the present inventors, the conventional boron nitride thin film contains less nitrogen than boron and 20-30% hydrogen.
This is an amorphous film in which about 30% of hydrogen is mixed in. Due to the mixing of hydrogen, it is difficult to obtain the strength that mononitride crystal should originally have in the thin film state, and it is also difficult to use it as a mask substrate for X-ray lithography. In this case, the heat resistance against the generation of heat accompanying X-ray irradiation or the X-ray resistance due to changes in composition are not good, which is a cause for improvement.

まrこ、前記形成された膜に対する応力の付与は、成膜
温度、ガス圧、RFパワー等により従来制御されてきた
が、窒化硼素膜に応力を与える要因についてはまだ十分
に解明されているとは言えず、従って、前述の如くX線
リソグラフィ用として供用しうろ程度の平坦さを有゛ケ
ろ窒化硼素膜の提供は困難な状況にあった。
The application of stress to the formed film has traditionally been controlled by the film formation temperature, gas pressure, RF power, etc., but the factors that apply stress to the boron nitride film are still not fully understood. Therefore, as mentioned above, it has been difficult to provide a boron nitride film with a level of flatness suitable for use in X-ray lithography.

この発明:よ前記問題点に鑑みてなされたもので、その
目的とするところは、X線リソグラフィ用マスク基板と
して要求される条件を満足しうる六方晶窒化硼素膜の製
造方法を提供することにある。
This invention was made in view of the above-mentioned problems, and its purpose is to provide a method for manufacturing a hexagonal boron nitride film that can satisfy the requirements for a mask substrate for X-ray lithography. be.

「問題点を解決するための手段。“A means to solve problems.

前記問題点を解決するために、この発明は、窒素化合物
と硼素化合物とを化学気相堆積(CVD)法により70
0°C〜1700℃の範囲内で反応させろような六方晶
窒化硼素膜の製造方法を構成している。
In order to solve the above-mentioned problems, the present invention provides a method for depositing a nitrogen compound and a boron compound by a chemical vapor deposition (CVD) method.
The present invention constitutes a method for manufacturing a hexagonal boron nitride film in which the reaction is carried out within the range of 0°C to 1700°C.

以下、この発明の六方晶窒化硼素膜の製造方法について
、第1図ないし第5図を参照して、工程を追って詳細に
説明する。
Hereinafter, the method for manufacturing a hexagonal boron nitride film of the present invention will be described in detail step by step with reference to FIGS. 1 to 5.

第1図は、この発明により製造された六方晶窒化硼素膜
を示す図である。図中、符号lは六方晶窒化硼素膜であ
り、この六方晶窒化硼素膜lの周縁部は、枠体に形成さ
れた石英ガラス等の基板2により支持され、その平坦性
が推持されている。
FIG. 1 is a diagram showing a hexagonal boron nitride film manufactured according to the present invention. In the figure, reference numeral 1 indicates a hexagonal boron nitride film, and the peripheral edge of this hexagonal boron nitride film 1 is supported by a substrate 2 made of quartz glass or the like formed on a frame to maintain its flatness. There is.

この発明に係わる六方晶窒化硼素膜!製造に使用される
前記窒素化合物としては、アンモニア(NH3)、ヒド
ラジン(NtH,)、トリアルキルアミン(N (Cn
Hzn+t )3 )等が挙げられるが、取り扱い上の
点でアンモニアが好ましい。
Hexagonal boron nitride film according to this invention! The nitrogen compounds used in the production include ammonia (NH3), hydrazine (NtH,), trialkylamine (N (Cn
Hzn+t)3), etc., but ammonia is preferred from the viewpoint of handling.

また、前記硼素化合物としては、硼素のハロゲン化物(
BCl、、BF2、BBrs等)、ジボラン(n t■
−t a )、トリエヂルボラン< s (c tr+
 5)3 )、あるいはトリメトキシボリン(13(C
H3o )s )等が挙げられるが、取り扱い丑の点で
トリメトキシボリンが最ら好ましく、この場合、担体ガ
スとしては水素あるいは窒素を用いれば良い。
Further, as the boron compound, boron halide (
BCl, BF2, BBrs, etc.), diborane (nt■
−t a ), triedylborane < s (c tr+
5) 3) or trimethoxyborine (13(C
Among them, trimethoxyborine is most preferable from the viewpoint of ease of handling, and in this case, hydrogen or nitrogen may be used as the carrier gas.

これら窒素化合物及び硼素化合物を用いて、化学気相堆
積(以下、CVDと弥する)法により、第1図に示すよ
うな六方晶窒化硼素膜lを作製するわけだが、前記CV
D法を実現するためのCVD装置は、常圧CVD装置、
減圧CVD装置等周知の装置で良く、回答特殊な手段、
装置を必要としない。また、前記硼素化合物にトリエチ
ルボラン、l・リメトキシボリン等の有機金属を使用し
た場合、いわゆる有機金属熱分解化学気相堆積(MOC
VD )法と呼ばれろ手法を用いて、窒素化合物及び硼
素化合物(有機金@)の反応により六方晶窒化硼素膜l
を作製することになるが、この場合においても、従来使
用されている〜l0CVD装置を用いれば良い。なお、
基@2上に堆積される六方晶窒化硼素膜lの膜厚は、そ
の使用用途により適宜決定されれば良いが、0,5〜5
0μm程度が好ましい。
Using these nitrogen compounds and boron compounds, a hexagonal boron nitride film l as shown in FIG. 1 is produced by chemical vapor deposition (hereinafter referred to as CVD).
The CVD equipment for realizing method D is a normal pressure CVD equipment,
A well-known device such as a low-pressure CVD device may be used, and special means may be required.
No equipment required. Furthermore, when an organic metal such as triethylborane or l-rimethoxyborine is used as the boron compound, so-called metal-organic pyrolysis chemical vapor deposition (MOC) can be used.
A hexagonal boron nitride film is formed by the reaction of a nitrogen compound and a boron compound (organic gold) using a method called VD) method.
In this case as well, a conventionally used ~10CVD apparatus may be used. In addition,
The thickness of the hexagonal boron nitride film l deposited on the base@2 may be determined as appropriate depending on its intended use, and may be from 0.5 to 5.
Approximately 0 μm is preferable.

この発明に係わる六方晶窒化硼素1121の製造方法の
特徴はその反応温度であり、すなわち、前記窒素化合物
及び硼素化合物を700℃〜1700℃、好ましくは9
00℃〜1100°Cの範囲内の温度で反応させ、基板
2上に六方晶窒化硼素膜lを堆積させるところにある。
A feature of the method for producing hexagonal boron nitride 1121 according to the present invention is its reaction temperature, that is, the nitrogen compound and boron compound are heated at 700°C to 1700°C, preferably at 9°C.
The hexagonal boron nitride film 1 is deposited on the substrate 2 by reacting at a temperature within the range of 00°C to 1100°C.

700℃より低い温度での反応では、前述の如く基板2
上に堆積されろ窒化硼素か十分に結晶化されないとノ(
に、前記硼素化合物の担体ガスとして使用される水素I
I 。
In the reaction at a temperature lower than 700°C, as described above, the substrate 2
If the boron nitride deposited on top is not sufficiently crystallized (
, hydrogen I used as a carrier gas for the boron compound
I.

等の混入を招くこととなり・、さらに言えば、その堆積
速度が遅く、不経済である。また、1700℃より高い
温度での反応では、原料化合物がCVD装置の反応管の
表面で分解されてしまい、前記基板2上への堆積速度が
低下ずろため、不経済となる。
Furthermore, the rate of deposition is slow, which is uneconomical. Further, in a reaction at a temperature higher than 1700° C., the raw material compound is decomposed on the surface of the reaction tube of the CVD apparatus, and the rate of deposition onto the substrate 2 is reduced, which is uneconomical.

前記CVD装置の反応管へ流入さける窒素化合物及び硼
素化合物の流入速度は、−例として窒素化合物にアンモ
ニア、また硼素化合物にトリエチルボランを使用した場
合、そのモル比てNH3/B (CtH5)3≧25で
あれば、基板2上にほぼ化学噴論組成の窒化硼素膜1が
堆積される。逆に、前記モル比が25未満であると、堰
板2上に堆積される窒化硼素中の窒素/硼素成分比N/
Bが!より大きく低下してしまう。また、前記温度範囲
内で、あれば、その成分比N/nがほぼ1に近い゛よう
な窒化硼素膜を作製することができる。 前記CVD装
置の反応管内に配置され、その上面に窒化硼素膜か堆積
される基板2としては、第2図に示すように、その板厚
が0.3〜2.0ffiI11程度の石英ガラス板、酸
化アルミニウム(サファイヤ)板、あるいはシリコン基
板等が挙げられるが、前記高温での反応後に、室温に戻
した状態で前記窒化硼素膜に適当な引張応力を与えろた
めに、窒化硼素の熱膨張係数(IxlO−’)より低い
熱膨張係数を有ずろ石英ガラス(熱膨張係数5XIO−
’)基板が好ましい。さらに、この基板2の板厚を前記
熱膨張係数の差によって適宜調整すれば、温度低下に伴
う収縮により窒化硼素膜に作用される応力を調節し、こ
れにより室温に戻した状態で窒化硼素膜に適度な張力が
加えられるようにすることかできる。すなわち、基板2
に石英ガラス基板等熱膨張係数の低い基板を使用した場
合、基板2の板厚が薄ければ、室温に戻した状態でこの
基板が大きく湾曲し、逆に基#fZ、2の板厚が厚けれ
ば、前記湾曲の度合も小さいからである。
The inflow rate of the nitrogen compound and boron compound to be avoided into the reaction tube of the CVD apparatus is - For example, when ammonia is used as the nitrogen compound and triethylborane is used as the boron compound, the molar ratio of NH3/B (CtH5)3 ≧ 25, the boron nitride film 1 having a substantially chemical composition is deposited on the substrate 2. Conversely, when the molar ratio is less than 25, the nitrogen/boron component ratio N/ in the boron nitride deposited on the dam plate 2 is
B! It will drop even more. Moreover, within the above temperature range, a boron nitride film whose component ratio N/n is approximately close to 1 can be produced. As shown in FIG. 2, the substrate 2 placed in the reaction tube of the CVD apparatus and on which the boron nitride film is deposited is a quartz glass plate having a thickness of about 0.3 to 2.0 ffiI11; Examples include an aluminum oxide (sapphire) plate or a silicon substrate, but in order to apply an appropriate tensile stress to the boron nitride film when the temperature is returned to room temperature after the reaction at the high temperature, the thermal expansion coefficient of boron nitride ( IxlO-') has a lower thermal expansion coefficient than silica glass (thermal expansion coefficient 5XIO-
') Substrate is preferred. Furthermore, if the thickness of the substrate 2 is adjusted appropriately according to the difference in the thermal expansion coefficients, the stress applied to the boron nitride film due to shrinkage due to a decrease in temperature can be adjusted. It is possible to apply appropriate tension to the That is, substrate 2
When a substrate with a low coefficient of thermal expansion, such as a quartz glass substrate, is used, if the thickness of substrate 2 is thin, this substrate will curve significantly when returned to room temperature. This is because the thicker the layer, the smaller the degree of curvature.

また、前記石英ガラス基板でも窒化硼素との熱膨張係数
の差が大きいので、基板2上に予め窒化硼素に比較的熱
膨張係数の近い物質からなる緩衝層を形成しておくのが
好ましい。この緩衝層としては、前記石英ガラスと同一
の材料である二酸化珪素(SiO2)を、蒸着法あるい
はスパッタリング法により、厚さ0.2〜1μmの範囲
で、基板2上面に形成したような緩衝層が挙げられろ。
Further, since the quartz glass substrate also has a large difference in coefficient of thermal expansion from boron nitride, it is preferable to form a buffer layer on the substrate 2 in advance, which is made of a material whose coefficient of thermal expansion is relatively similar to that of boron nitride. This buffer layer may be a buffer layer formed of silicon dioxide (SiO2), which is the same material as the silica glass, to a thickness of 0.2 to 1 μm on the upper surface of the substrate 2 by vapor deposition or sputtering. Can you name it?

この場合、蒸着あるいはスパッタリングの速度をlO〜
100人/秒と通常よりら速くすることで、所望の熱膨
張係数を有する緩衝層を得ることができる。
In this case, the rate of vapor deposition or sputtering is
A buffer layer having a desired coefficient of thermal expansion can be obtained by increasing the speed to 100 persons/second, which is higher than usual.

さらに、六方晶窒化硼素は、硼素と窒素が交互に結合し
てベンゼンと同様なボラノン環を形成したものが2次元
に連なり、これがファンデルワールス力によって重積さ
れたものと考えられており、従って、このボラジン環に
平行な方向(a軸方向)の熱膨張係数(IXIO−Mと
、ボラジン環に直交する方向(C軸方向)の熱膨張係数
(4×1O−6)とが大きく異なる、という性質を有し
ている。ここで、本発明者の研究結果によれば、この発
明に係わる六方晶窒化硼素膜lの製造方法によって製造
された六方品窒化硼素膜lの結晶方向は、基板またろ石
英ガラス等の窒化硼素膜l堆積面における構造状態に左
右され、いわゆる基板2側の「結合の手」に連なる方向
で窒化硼素の結晶が成長することが明らかになっている
。従って、この基板2の構造状態を適宜制御することに
よって、六方晶窒化硼素膜■の結晶状態をも制御するこ
とが可能であると共に、その熱膨張係数も、前記石英ガ
ラスの熱膨張係数により近付いた、所望の熱膨張係数に
制御することが可能となる。
Furthermore, hexagonal boron nitride is thought to be a two-dimensional series of boron and nitrogen atoms bonded alternately to form borano rings similar to benzene, which are stacked together by van der Waals forces. Therefore, the thermal expansion coefficient (IXIO-M) in the direction parallel to the borazine ring (a-axis direction) and the thermal expansion coefficient (4×1O-6) in the direction perpendicular to the borazine ring (c-axis direction) are significantly different. According to the research results of the present inventor, the crystal direction of the hexagonal boron nitride film l manufactured by the method for manufacturing a hexagonal boron nitride film l according to the present invention is as follows. It has been revealed that boron nitride crystals grow in the direction of the so-called "bonding hands" on the substrate 2 side, depending on the structure of the substrate and the surface on which the boron nitride film is deposited, such as quartz glass. By appropriately controlling the structural state of this substrate 2, it is possible to control the crystalline state of the hexagonal boron nitride film 2, and its thermal expansion coefficient approaches that of the quartz glass. , it becomes possible to control the thermal expansion coefficient to a desired value.

以上述べた方法により、第3図に示すような、基板2上
に結晶化された六方晶窒化硼素膜lを作製することがで
きる。この後、前述の如くX線リソグラフィ用のマスク
基板として供用されろためには、前記石英ガラス等の基
板2の一部あるいは全体を除去して膜単体にする必要が
ある。この際、前記六方晶窒化硼素膜lは、いわゆる耐
熱性セラミックスの一種であるため、エツチング液に対
する耐性が良好であり、その特性変化等に細心の注0を
払う必要がない。以下、この手順を工程を追って説明ず
ろ。
By the method described above, it is possible to produce a crystallized hexagonal boron nitride film l on the substrate 2 as shown in FIG. Thereafter, in order to use the substrate 2 as a mask substrate for X-ray lithography as described above, it is necessary to remove part or all of the substrate 2 made of quartz glass or the like to form a single film. At this time, since the hexagonal boron nitride film 1 is a type of so-called heat-resistant ceramics, it has good resistance to etching solutions, and there is no need to pay close attention to changes in its characteristics. Below, I will explain this procedure step by step.

まず、第3図に示すような、基板2上に堆積した六方晶
窒化硼素膜lに、第4図に示すように、その上面、側面
、及び基板2下面の周縁部等残存すべき個所にエツチン
グ液か触れないようにワックス3を塗布する。このワッ
クス3は、従来半導体製造工程で慣用されているワック
スで良く、同等特殊な性質のものが要求されることはな
い。次に、前記基板2の材質に対応するエツチング液(
例えば基板2に石英ガラスを使用した場合には弗酸(I
IF’)からなるエツチング液)により、この基板2を
、第5図に示すように、その周縁部のみを残して除去す
る。この後、ワックス3を除去すれば、第1図に示すよ
うな六方晶窒化硼素膜lを得ることができる。
First, the hexagonal boron nitride film l deposited on the substrate 2 as shown in FIG. Apply wax 3 without touching the etching solution. This wax 3 may be a wax that has been conventionally used in semiconductor manufacturing processes, and does not need to have similar special properties. Next, an etching solution (
For example, when quartz glass is used for the substrate 2, hydrofluoric acid (I
As shown in FIG. 5, the substrate 2 is removed using an etching solution (IF'), leaving only its peripheral portion. Thereafter, by removing the wax 3, a hexagonal boron nitride film l as shown in FIG. 1 can be obtained.

以上説明した六方品窒化硼素膜lの製造方法は、窒素化
合物と硼素化合物とを化学気相堆積(CVD)法により
7006C〜1700°Cの範囲内で反応させることを
特徴とするものであるから、この製造方法によれば、十
分に結晶化された六方晶窒化硼素膜lを、基板2上に薄
膜状に堆積さけた状態で得ることができろと共に、その
製造条件等に留像すれば、不純物が殆ど混入されない窒
化硼素膜を得ることが可能となる。また、基板2の材質
や板厚、緩衝層の杉成、及び六方晶窒化硼素膜lの結晶
方向を、前述の如き手法に従って制御、決定すれば、室
、・話に戻った状態でこの六方晶窒化硼素膜lに適当な
引張応力を与えることができる。
The method for manufacturing the hexagonal boron nitride film l described above is characterized by reacting a nitrogen compound and a boron compound at a temperature of 7006C to 1700C by chemical vapor deposition (CVD). According to this manufacturing method, it is possible to obtain a sufficiently crystallized hexagonal boron nitride film l deposited on the substrate 2 in the form of a thin film. , it becomes possible to obtain a boron nitride film in which almost no impurities are mixed. In addition, if the material and thickness of the substrate 2, the thickness of the buffer layer, and the crystal direction of the hexagonal boron nitride film 1 are controlled and determined according to the method described above, the chamber can be... Appropriate tensile stress can be applied to the crystalline boron nitride film l.

よって、この製造方法によれば、X線すソグラフィ用マ
スク堰板として要求される条件を満足しうる、六方晶窒
化硼素膜の製造方法を実現することができろ。
Therefore, according to this manufacturing method, it is possible to realize a method for manufacturing a hexagonal boron nitride film that can satisfy the requirements for a mask dam for X-ray lithography.

二の発明に係わる六方晶窒化硼素膜の製造方法によって
製造された六方晶窒化硼素膜1は、前記の如くX線リソ
グラフィのマスク基板に用いられろだけてなく、電子回
路、音響素子等の薄膜基板にし好適に用いられる。
The hexagonal boron nitride film 1 produced by the hexagonal boron nitride film production method according to the second invention can be used not only as a mask substrate for X-ray lithography as described above, but also as a thin film for electronic circuits, acoustic elements, etc. It is suitably used as a substrate.

二実竜例」 以下、この発明の六方品窒化硼素膜の製造方法を、実施
例により更に詳細に説明するが、この発明の製造方法は
、以下に示す実施例に限定されない。
EXAMPLE 2 Hereinafter, the method for producing a hexagonal boron nitride film of the present invention will be explained in more detail with reference to Examples, but the method for producing a hexagonal boron nitride film of the present invention is not limited to the Examples shown below.

(実験例) 全3600m1.内径25zxφの石英ガラス製の反応
器中に、トリエヂルボラン(以下、T E Bと略称す
る、純度98%)、アンモニア(純度999%)、水素
(純度99.999%)及びアルゴン(純度99.99
5%)を流入させて、MOCVD法により六方晶窒化硼
素膜を製作した。窒化硼素膜が堆積される基板としては
、酸化アルミニウム板(サファイヤ、寸法12XI2X
0.6zff3 )及びシリコン基板(寸法+2x12
xO,25■3 )を使用した。これら基板は、焼結形
成された窒化硼素膜の基板ホルダ上に水平方向から20
度傾斜さ仕て載置、固定し、外部に設置した炉により所
定の温度に加熱した。基板周辺の温度は、前記反応器内
に挿入した熱電χすにより測定した。
(Experiment example) Total 3600m1. In a quartz glass reactor with an inner diameter of 25zxφ, triedylborane (hereinafter abbreviated as TEB, purity 98%), ammonia (purity 999%), hydrogen (purity 99.999%), and argon (purity 99.99)
5%), and a hexagonal boron nitride film was manufactured by the MOCVD method. The substrate on which the boron nitride film is deposited is an aluminum oxide plate (sapphire, dimensions 12XI2X
0.6zff3) and silicon substrate (dimensions +2x12
xO,25■3) was used. These substrates are placed on a sintered boron nitride film substrate holder from a horizontal direction.
It was mounted and fixed at an angle, and heated to a predetermined temperature in an external furnace. The temperature around the substrate was measured using a thermoelectric chamber inserted into the reactor.

TE[3は、このTEIl中に水素ガスをバブリングす
ることで搬送した。また、このTEB飽和器の温度は、
0°C〜25℃の間で選び一定に維持した。T E B
の流量は、このTE[3飽和器からの′rEB損失量か
ら算出した。この実験例の他の実験条件については、第
1表に示す通りである。
TE[3 was transported by bubbling hydrogen gas into this TEIl. Also, the temperature of this TEB saturator is
The temperature was selected between 0°C and 25°C and kept constant. T E B
The flow rate was calculated from the 'rEB loss amount from this TE[3 saturator. Other experimental conditions for this experimental example are as shown in Table 1.

第  1  表 以上述べた方法により基板上に堆積された薄膜を、X線
回折により分析したところ、(002)方向のみに強い
ピークを検出した。これは、基板面に対して垂直方向に
結晶軸のC軸が配向された状態で、結晶が堆積されたこ
とを示し、これにより基板上に堆積された薄膜が六方晶
の結晶構造を有することが判明した。
Table 1 When the thin film deposited on the substrate by the method described above was analyzed by X-ray diffraction, a strong peak was detected only in the (002) direction. This indicates that the crystal was deposited with the C-axis of the crystal axis oriented perpendicular to the substrate surface, and thus the thin film deposited on the substrate had a hexagonal crystal structure. There was found.

次に、前記X線回折データから格子定数C8(入)を算
出し、この格子定数C8を縦軸に、また堆積温度(℃)
を横軸に取った場合の、格子定数C6と堆積温度との関
係を、第6図に示す。温度の上昇に従って、格子定数C
8が小さくなり、バルクの状態で得られろ窒化硼素結晶
の格子定数6.66人に漸近することが判る。すなわら
、堆積温度の上昇に従って、基板上に堆積される窒化硼
素膜の結晶化がより完全になるのである。またこれは、
前記X線回折におけるピークの半値幅が、温度上昇に従
って狭くなるという実験結果からも裏付けられた。
Next, the lattice constant C8 (in) is calculated from the X-ray diffraction data, and the vertical axis is the lattice constant C8, and the deposition temperature (°C) is
FIG. 6 shows the relationship between the lattice constant C6 and the deposition temperature when C6 is plotted on the horizontal axis. As the temperature increases, the lattice constant C
8 becomes smaller and approaches asymptotically to the lattice constant of 6.66, which is the lattice constant of the boron nitride crystal obtained in the bulk state. That is, as the deposition temperature increases, the crystallization of the boron nitride film deposited on the substrate becomes more complete. Also, this is
This was also supported by the experimental results that the half width of the peak in the X-ray diffraction narrows as the temperature rises.

また、前記X線回折のピーク強度から、基板上への薄膜
堆積速度を算出し、この堆積速度の対数を縦軸に、また
絶対反応温度の逆数を横軸にしてグラフ化した実験結果
を、第7図に示す。なお、この時、TEBとアンモニア
のモル比N H3/ B(Cttt 、)、= 30 
 で一定であった。図示の如く、温度750℃において
堆積速度は0.025μm(2,5xlO”入)7秒で
あったのか、1000℃において0.96μx(9,a
xto’入)7秒と上昇する。
In addition, the experimental results were obtained by calculating the thin film deposition rate on the substrate from the peak intensity of the X-ray diffraction, and graphing the logarithm of this deposition rate on the vertical axis and the reciprocal of the absolute reaction temperature on the horizontal axis. It is shown in FIG. In addition, at this time, the molar ratio of TEB and ammonia N H3 / B (Cttt, ), = 30
was constant. As shown in the figure, the deposition rate was 0.025μm (2,5xlO") for 7 seconds at a temperature of 750°C, and 0.96μx (9,a) at 1000°C.
xto') increases to 7 seconds.

さらに、前記基板上に堆積された窒化硼素膜からの蛍光
X線を微小点X線分析器により測定し、窒化硼素中の窒
素成分による硼素にα、vAのシフト積からこの窒化硼
素膜の成分を測定した。この測定結果から得られる窒素
及び硼素の成分比N/Bを縦軸に、また、’r E B
とアンモニアとのモル比N H3/ B (CtH5)
3を横軸に取ってグラフ化した実験結果を第8図に示す
。なお、この時の温度は1000℃、TEBの流量は0
.8肩Q/分、全体の流…はl 30 y(1/分であ
り、前記各窒素及び硼素の成分量は、標準の窒化硼素試
料により補正した。第8図に示すように、前記モル比が
25以上であれば、はぼ化学量論的に完全な窒化硼素膜
を基板上に堆積させろことが可能である。すなわち、前
記モル比が25以上であるように前記TEB及びアンモ
ニアを流入させれば、はぼ純粋の窒化硼素膜が得られる
ことが、前記実験結果から理解できろ。
Furthermore, fluorescent X-rays from the boron nitride film deposited on the substrate are measured using a micropoint X-ray analyzer, and the composition of the boron nitride film is determined from the shift product of α and vA due to the nitrogen component in boron nitride. was measured. The component ratio N/B of nitrogen and boron obtained from this measurement result is plotted on the vertical axis, and 'r E B
and ammonia molar ratio NH3/B (CtH5)
FIG. 8 shows the experimental results graphed with 3 on the horizontal axis. Note that the temperature at this time was 1000°C, and the TEB flow rate was 0.
.. 8 shoulders Q/min, the total flow rate is l 30 y (1/min), and the amounts of each nitrogen and boron component were corrected using a standard boron nitride sample.As shown in FIG. If the ratio is 25 or more, it is possible to deposit a stoichiometrically perfect boron nitride film on the substrate, i.e., the TEB and ammonia can be injected such that the molar ratio is 25 or more. It can be understood from the above experimental results that a substantially pure boron nitride film can be obtained if this is done.

また、前記窒素及び硼素の成分比を縦軸に、堆積温度を
横軸に取ってグラフ化した実験結果を第9図に示す。な
お、この時のTE[(とアンモニアとのモル比N II
 3/ B (C!II S)3は、10及び30の2
種類に設定した。第9図に見る如く、@記成分比は、前
記第7図と同様に、tooo℃付近の堆積温度において
ピークを迎えている。つまり、第7図及び第9図の結果
から、1000℃付近、すなわち900℃〜1100℃
の範囲内での窒化硼素膜の作製が、最も効率が良いこと
が理解できる。
Further, FIG. 9 shows the experimental results, which are graphed with the nitrogen and boron component ratios plotted on the vertical axis and the deposition temperature plotted on the horizontal axis. In addition, at this time, the molar ratio of TE [(and ammonia) N II
3/ B (C!II S) 3 is 2 of 10 and 30
Set to type. As seen in FIG. 9, the component ratios shown in the figure (@) reach a peak at a deposition temperature of about too° C., similarly to FIG. 7 above. In other words, from the results shown in Figures 7 and 9, the temperature is around 1000℃, that is, 900℃ to 1100℃.
It can be seen that fabricating a boron nitride film within the range of is most efficient.

最後に、酸化アルミニウム板上に堆積された窒化硼素膜
の波長2.5μ肩〜50μl(波数・1000C〔1〜
200cm−’ )におけろ赤外線反射(図中破線)及
び透過(図中実線)スペクトルを、第1O図に示す。こ
こで、反射率及び透過率のリファレンスとしては、アル
ミニウム蒸着膜及び無表面加工のシリコン基板を用いた
。図中、波数1600C〔1〜1300cm−’に…当
する吸収帯は、窒化硼素の面内振動を示す乙のであり、
これによってら基板上に純粋の窒化硼素膜が形成されて
いることが理解できろ。
Finally, a boron nitride film deposited on the aluminum oxide plate with a wavelength of 2.5 μl to 50 μl (wave number 1000 C [1 to
The infrared reflection (dashed line in the figure) and transmission (solid line in the figure) spectra at 200 cm-' are shown in Figure 1O. Here, as a reference for reflectance and transmittance, an aluminum vapor-deposited film and a silicon substrate with no surface processing were used. In the figure, the absorption band corresponding to the wave number 1,600C [1 to 1,300cm-'] indicates the in-plane vibration of boron nitride.
From this, it can be understood that a pure boron nitride film is formed on the substrate.

「発明の効果」 以上詳細に説明したように、この発明は、窒素化合物と
硼素化合物とを化学気相堆積(CVD )法により70
0℃〜1700℃の範囲内で反応させろことを特徴とす
るものであるから、この発明によれば、十分に結晶化さ
れた六方晶窒化硼素膜を、基板上に薄膜状に堆積さけた
状態で得ることができると共に、その製造条件等に留な
すれば、不純物が殆ど混入されない窒化硼素膜を得ろこ
とが可能となる。また、前記六方晶窒化硼素膜が堆積さ
れろ基板の材質及び板厚、緩衝層の形成、及び六方晶窒
化硼素膜の結晶方向を制御、決定することにより、室温
に戻った状態でこの六方晶窒化硼素膜に適当な引張応力
を与えることができる。
"Effects of the Invention" As explained in detail above, the present invention is capable of depositing a nitrogen compound and a boron compound by a chemical vapor deposition (CVD) method.
According to the present invention, a sufficiently crystallized hexagonal boron nitride film is deposited in the form of a thin film on a substrate. It is possible to obtain a boron nitride film in which almost no impurities are mixed, provided that the manufacturing conditions are maintained. In addition, by controlling and determining the material and thickness of the substrate on which the hexagonal boron nitride film is deposited, the formation of the buffer layer, and the crystal orientation of the hexagonal boron nitride film, the hexagonal boron nitride film can be deposited at room temperature. Appropriate tensile stress can be applied to the boron nitride film.

よって、この製造方法によれば、X線リソグラフィ用マ
スク基板として要求される条件を満足しつる、六方晶窒
化硼素膜の製造方法を実現することができる。
Therefore, according to this manufacturing method, it is possible to realize a method for manufacturing a hexagonal boron nitride film that satisfies the requirements for a mask substrate for X-ray lithography.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係わる六方品窒化硼素膜の製造方法
により製造された六方晶窒化i素膜を示4−模式図、第
2図ないし第5図は、この発明の六方晶窒化硼素膜の製
造方法を説明ずろための工程図、第6図は格子定数と堆
積温度との関係を示す図、第7図は堆積速度と絶対反応
温度との関係を示す図、第8図は窒素及び硼素の成分比
とアンモニア及びトリエチルボロンのモル比との関係を
示す図、第9図は窒素及び硼素の成分比と堆積温度との
関係を示す図、第1θ図は窒化硼素膜の赤外線反射及び
透過スペクトルを示す図である。 1・・・・・・六方晶窒化硼素膜、2・・・・・基板。 出願人  中   村  勝   光 日本酸素株式会社 第1図 第2図 第3図 第4図 ど 第5図 准積温亀(’C) l板温度(’C)
FIG. 1 shows a hexagonal boron nitride film manufactured by the hexagonal boron nitride film manufacturing method according to the present invention. Figure 6 is a diagram showing the relationship between lattice constant and deposition temperature, Figure 7 is a diagram showing the relationship between deposition rate and absolute reaction temperature, and Figure 8 is a diagram showing the relationship between nitrogen and Figure 9 shows the relationship between the boron component ratio and the molar ratio of ammonia and triethyl boron, Figure 9 shows the relationship between the nitrogen and boron component ratio and deposition temperature, and Figure 1θ shows the relationship between the infrared reflection and the boron nitride film. It is a figure showing a transmission spectrum. 1... Hexagonal boron nitride film, 2... Substrate. Applicant Masaru Nakamura Nippon Sanso Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 4 and Figure 5 Semi-semiconductor temperature ('C) l Plate temperature ('C)

Claims (1)

【特許請求の範囲】[Claims] 窒素化合物と硼素化合物とを化学気相堆積(CVD)法
により700℃〜1700℃の範囲内で反応させること
を特徴とする六方晶窒化硼素膜の製造方法。
A method for producing a hexagonal boron nitride film, comprising reacting a nitrogen compound and a boron compound at a temperature of 700°C to 1700°C by chemical vapor deposition (CVD).
JP61292058A 1986-12-08 1986-12-08 Production of hexagonal boron nitride film Pending JPS63145777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61292058A JPS63145777A (en) 1986-12-08 1986-12-08 Production of hexagonal boron nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61292058A JPS63145777A (en) 1986-12-08 1986-12-08 Production of hexagonal boron nitride film

Publications (1)

Publication Number Publication Date
JPS63145777A true JPS63145777A (en) 1988-06-17

Family

ID=17776993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61292058A Pending JPS63145777A (en) 1986-12-08 1986-12-08 Production of hexagonal boron nitride film

Country Status (1)

Country Link
JP (1) JPS63145777A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298626A (en) * 2008-06-11 2009-12-24 Nippon Telegr & Teleph Corp <Ntt> Hexagonal boron nitride structure and its manufacturing method
JP2010076955A (en) * 2008-09-24 2010-04-08 Mitsui Chemicals Inc Sheet with metallic foil and laminated body for circuit board
KR20210134745A (en) 2019-03-15 2021-11-10 도쿄엘렉트론가부시키가이샤 Method and apparatus for forming a hexagonal boron nitride film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298626A (en) * 2008-06-11 2009-12-24 Nippon Telegr & Teleph Corp <Ntt> Hexagonal boron nitride structure and its manufacturing method
JP2010076955A (en) * 2008-09-24 2010-04-08 Mitsui Chemicals Inc Sheet with metallic foil and laminated body for circuit board
KR20210134745A (en) 2019-03-15 2021-11-10 도쿄엘렉트론가부시키가이샤 Method and apparatus for forming a hexagonal boron nitride film

Similar Documents

Publication Publication Date Title
JPH01176067A (en) Formation of silicon nitride film
EP0020455A1 (en) Arrangement with radiation window or mask structure.
JP3071876B2 (en) X-ray mask, method of manufacturing the same, and exposure method using the same
JPH0247824A (en) Manufacture of x-ray lithography mask utilizing amorphous carbon support film
JPS63145777A (en) Production of hexagonal boron nitride film
US5082695A (en) Method of fabricating an x-ray exposure mask
JPS63277593A (en) Elements coated with diamond and its production
JPS63145779A (en) Method for controlling stress of hexagonal boron nitride film
JPS63145778A (en) Production of drum-shaped hexagonal boron nitride film
JPH04299515A (en) X-ray transmission film for x-ray lithography mask and manufacture thereof
US4940851A (en) Membrane for use in X-ray mask and method for preparing the same
JPH03139836A (en) Method for piling silicon nitride layer on glass substrate
JPH07118854A (en) Formation of silicon carbide film
JPH03196149A (en) Formation of sic/si3n4 film for x-ray lithography
JP4179452B2 (en) LiNbO3 oriented thin film forming method
JPH04137725A (en) Glass substrate polycrystalline silicon film
JP3220246B2 (en) X-ray mask manufacturing method
CN113380603B (en) High-boron-component two-dimensional III-group multi-element nitride mixed crystal and preparation method thereof
JPS63176393A (en) Production of aluminum nitride thin film
JPH10199801A (en) X-ray lithography mask having artificial diamond film having little residual stress
JP2573985B2 (en) X-ray mask
JP2757939B2 (en) X-ray mask
JPS61502716A (en) Fabrication of devices with silicon oxide regions
JPH04188717A (en) Diamond substrate and manufacture thereof
JPH02281614A (en) Manufacture of polycrystalline silicon thin film