JPS63230865A - Formation of thin metallic film - Google Patents

Formation of thin metallic film

Info

Publication number
JPS63230865A
JPS63230865A JP6273487A JP6273487A JPS63230865A JP S63230865 A JPS63230865 A JP S63230865A JP 6273487 A JP6273487 A JP 6273487A JP 6273487 A JP6273487 A JP 6273487A JP S63230865 A JPS63230865 A JP S63230865A
Authority
JP
Japan
Prior art keywords
current
vacuum
filament
vapor deposition
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6273487A
Other languages
Japanese (ja)
Inventor
Masukazu Watanabe
渡辺 益一
Haruyuki Takechi
武市 春行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP6273487A priority Critical patent/JPS63230865A/en
Publication of JPS63230865A publication Critical patent/JPS63230865A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form high quality vapor-deposited films at a low degree of vacuum by continuously increasing the quantity of electric current supplied to a heating source from a low value to a desired value without generating rush current when vapor of a metal is generated with the heating source. CONSTITUTION:A vacuum chamber 1 is evacuated to about 1X10<-2>Torr by a rotary pump 4, further evacuated to about 1X10<-3>Torr by the pump 4 and a mechanical booster pump 3 and finally evacuated to about 3-4X10<-4>Torr by the pumps 4, 3 and a diffusion pump 2. Electric current is then supplied from an AC power source 10 to filaments 5 through a current regulator 9 to evaporate the metal 5 for vapor deposition and to form thin metallic films on substrates 8. At this time, the quantity of electric current supplied to the filaments 5 is continuously increased from a low value to the value required to form the films without generating rush current. Thus, no gas is emitted and vapor deposition can be carried out without causing defects.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は真空蒸着法、イオンプレーティング法、スパッ
タリング法、プラズマ化学蒸着法(プラズマC・VD法
)等により、真空下において、金pAM膜を基材表面に
形成させて表面処理を行う場合、該金属に加熱フィラメ
ントの突入電流の発生を防止させて放出ガスの発生を抑
制し、効率よく金属薄膜の形成を行う方法に関する。
Detailed Description of the Invention [Industrial Fields of Application] The present invention is directed to the production of a gold pAM film in a vacuum by a vacuum evaporation method, an ion plating method, a sputtering method, a plasma chemical vapor deposition method (plasma C/VD method), etc. The present invention relates to a method for efficiently forming a metal thin film by preventing the generation of rush current of a heating filament in the metal and suppressing the generation of released gas when performing surface treatment by forming a metal on the surface of a base material.

[従来の技術] 真空室内で基材表面に金am膜を形成させる方法として
、真空蒸着法、イオンプレーティング法、スパッタリン
グ法などの物理蒸着法(PVD法)および熱CVD法、
光CVD法、プラズマCVD法などの化学蒸着法(CV
D法)が知られている。
[Prior Art] Physical vapor deposition methods (PVD methods) such as vacuum evaporation methods, ion plating methods, and sputtering methods; thermal CVD methods;
Chemical vapor deposition methods (CVD method) such as photoCVD method and plasma CVD method
D method) is known.

これらはいずれも気相の金属原子、金属分子または金属
イオン等の気相金属を発生させ、基材表面に1躾として
堆積させる方法である。
All of these are methods in which gas phase metals such as metal atoms, metal molecules, or metal ions are generated and deposited on the surface of a substrate in one step.

[発明が解決しようとする問題点] しかし、真空室内に酸素や水蒸気等金属と反応しやすい
ガス状成分が残存すると、単体金属による蒸着不良を生
じたり、不良蒸着膜しか得られないので、真空室内の真
空度は通常では7X10−4T orrまたはそれ以上
に保つ必要がある。排気によってこの真空度に到j工す
る時間は、湿度の高い時には署しく長くなり、冬期乾燥
時と高湿度の季節とでは、所要時間が数倍異なる。
[Problems to be Solved by the Invention] However, if gaseous components that easily react with metals, such as oxygen and water vapor, remain in the vacuum chamber, defective vapor deposition of single metals may occur, or only defective vapor deposited films may be obtained. Normally, the degree of vacuum in the room must be maintained at 7X10-4 Torr or higher. The time it takes to reach this degree of vacuum by evacuation becomes significantly longer when humidity is high, and the time required differs several times between dry winter and high humidity seasons.

また、気相金属(原子、分子、イオン)を発生する際に
使用する加熱源の輻射熱により真空室内壁および基材か
ら水蒸気等を含むガスが発生し、これが金属と反応した
り、金属薄膜に収着されて蒸着不良を生ずることがある
。これは真空室内壁に蒸着操作において蒸着した金y&
膜が存在するので、これに吸着していた大気中の水蒸気
等のガスを放出したり、さらに、プラスチック製基材か
ら水蒸気あるいはプラスチック特有のガスが放出される
ためである。
In addition, gas containing water vapor, etc. is generated from the vacuum chamber walls and base material due to the radiant heat of the heating source used to generate gas phase metals (atoms, molecules, ions), which may react with metals or form metal thin films. It may be sorbed and cause poor deposition. This is the gold y &
This is because the presence of the film releases gases such as water vapor in the atmosphere that have been adsorbed onto it, and furthermore, water vapor or gases specific to plastics are released from the plastic base material.

ざらに従来は、蒸着過程におけるフィラメントに流す電
流を段階的に加えている点に特徴があり、蒸着時のフィ
ラメント電流の設定電流値を100とした場合、まずは
じめに予備加熱の段階で50を流し、そのまま一定時間
保持したのち、電流を100に上げて蒸着を開始する。
The conventional method is characterized in that the current applied to the filament is added in stages during the vapor deposition process.If the set current value of the filament current during vapor deposition is 100, first, a current of 50 is applied in the preheating stage. After holding the current for a certain period of time, the current is increased to 100 and vapor deposition is started.

これらの操作過程において、フィラメント電流を50.
100とそれぞれ流した瞬時に、いずれの際にも突入電
流が生じる。この瞬時の過大電流によりフィラメントの
輻射熱が一詩的に増大して、基材や真空室内壁からの放
出ガスが急激に発生するために、真空室内の真空度は低
下し、蒸着には不適当な状態となる。従って、真空度が
一定以上に上がるまで待たねばならなかった。また低真
空度のままで蒸着を行うと基材の蒸着面に光沢むらが生
じたり、酸化物が被覆されて表面が暗黒色になったりあ
るいは蒸着金属の密着力の低下等の蒸着不良が生ずる問
題があった。
During these operating steps, the filament current was increased to 50.
100, an inrush current occurs in both cases. Due to this instantaneous excessive current, the radiant heat of the filament increases exponentially, and gas is rapidly generated from the substrate and the walls of the vacuum chamber, resulting in a decrease in the degree of vacuum in the vacuum chamber, making it unsuitable for vapor deposition. It becomes a state. Therefore, it was necessary to wait until the degree of vacuum rose to a certain level. In addition, if vapor deposition is performed at a low vacuum level, uneven gloss may occur on the vapor-deposited surface of the base material, the surface may become dark black due to coating with oxides, or vapor deposition defects may occur such as a decrease in the adhesion of the vapor-deposited metal. There was a problem.

この真空室内壁から発生するガスの主成分は水蒸気で、
以前に行われた蒸着の際に真空室内壁に蒸着した金Ba
膜が発生源である。この蒸着膜はアモルファス状と考え
られており、非常に活性が高く大気中の水蒸気を吸蔵し
易いためである。
The main component of the gas generated from the walls of this vacuum chamber is water vapor.
Gold Ba deposited on the wall of the vacuum chamber during previous deposition
The membrane is the source. This is because this vapor-deposited film is considered to be amorphous and has very high activity and easily absorbs water vapor in the atmosphere.

また基材が、例えばアクリル樹脂、塩化ごニール樹脂あ
るいはポリカーボネート樹脂などのプラスチックの場合
、真空中ではプラスチックの組成から、かなりの放出ガ
スがある。この放出ガスの主成分も水蒸気である。アク
リル樹脂をステンレス鋼と比較した場合、2000倍の
ガス放出量があるというデータもある。
Furthermore, when the base material is a plastic such as acrylic resin, carbonyl chloride resin, or polycarbonate resin, a considerable amount of gas is released in a vacuum due to the composition of the plastic. The main component of this released gas is also water vapor. There is also data that shows that acrylic resin releases 2000 times more gas than stainless steel.

従ってプラスチックに蒸着する場合には、上記の水蒸気
を短時間に大量に排気できるシステムを設計しなければ
ならない。またプラスチックを扱うときのもう一つの問
題点としては、ガラス2ステンレス鋼に比べて耐熱温度
が低((通常100〜300℃)、フィラメントからの
輻射熱の影響を考慮する必要があるという点があげられ
る。
Therefore, when depositing on plastic, a system must be designed that can exhaust a large amount of water vapor in a short period of time. Another problem when handling plastic is that it has a lower heat resistance than glass 2 stainless steel (usually 100 to 300 degrees Celsius), and it is necessary to consider the effects of radiant heat from the filament. It will be done.

このように、残存ガス及び放出ガスを真空室内から除去
することができれば良好な蒸着膜が得られるし、また放
出ガスの急激な発生による真空室内の真空度の急激な低
下のおそれがなくなることによって、従来よりも真空度
が低(でも良好な蒸着が可能となることが期待される。
In this way, if residual gas and released gas can be removed from the vacuum chamber, a good deposited film can be obtained, and there is no risk of a sudden drop in the degree of vacuum in the vacuum chamber due to the sudden generation of released gas. , it is expected that good vapor deposition will be possible even with a lower degree of vacuum than in the past.

[問題点を解決するための手段] 本発明者等は、上記問題点を解決するために鋭意検討し
た結果、本発明を完成するに至った。
[Means for Solving the Problems] The present inventors have made extensive studies to solve the above problems, and as a result, have completed the present invention.

すなわち本発明は、真空室内で加熱源の存在下で気゛相
金属を発生させて基材表面に金属薄膜を形成させる方法
において、該加熱源へ供給する電流量を低電流量から金
属薄膜形成に要する電流量まで、突入電流の発生を抑制
して連続的に上昇させることを特徴とする金fFA薄膜
を形成する方法である。
That is, the present invention provides a method for forming a metal thin film on the surface of a substrate by generating a vapor phase metal in the presence of a heating source in a vacuum chamber, in which the amount of current supplied to the heating source is changed from a low amount of current to form a metal thin film. This is a method for forming a gold fFA thin film characterized by suppressing the generation of inrush current and continuously increasing the current amount up to the amount required for .

なおここで真空室内の真空度とは真空室内で排気システ
ムの排気口に近い場所における真空度をいい、特にこと
わりがない場合、真空度はこれをいう。これに対し、基
材周辺の真空度とは基材に近い場所における真空度をい
い、真空室内の真空度に比べて基材からの放出ガスによ
る影響を特に受は易く真空度の変化が大きい。
Note that the degree of vacuum in the vacuum chamber herein refers to the degree of vacuum at a location in the vacuum chamber near the exhaust port of the exhaust system, and unless otherwise specified, the degree of vacuum refers to this degree of vacuum. On the other hand, the degree of vacuum around the base material refers to the degree of vacuum in a place close to the base material, and compared to the degree of vacuum inside the vacuum chamber, it is particularly susceptible to the effects of gas released from the base material, and the degree of vacuum changes greatly. .

以下、本発明を真空蒸着法を例にとって図面を参照しな
がらさらに具体的に説明するが、本発明は真空蒸着法に
とどまらずイオンプレーティング法、スパッタリング法
、プラズマCVD法等の真7下における金属薄膜形成に
応用出来るものである。
Hereinafter, the present invention will be explained in more detail with reference to the drawings using a vacuum evaporation method as an example. It can be applied to metal thin film formation.

第1図は、本発明の一実施例による真空蒸着の装置図で
あり、第2図は、フィラメントおよび蒸着金属の真空奎
内における状態の一例を示した図である。
FIG. 1 is a diagram of a vacuum evaporation apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram showing an example of the state of a filament and deposited metal in a vacuum chamber.

第3図は、本発明の一実施例における、真空蒸着の際の
フィラメント電流の時間的経過に対する変化を示すグラ
フである。
FIG. 3 is a graph showing changes in filament current over time during vacuum deposition in one embodiment of the present invention.

第1図において、真空室1内は電流を流すことにより加
熱されるように置かれたフィラメント5およびフィラメ
ント5に載せである蒸着台l716があり(第2図参照
)、その回りに回転可能な基材取付金具7およびこれに
載せである基材8がセットされている。
In Fig. 1, inside the vacuum chamber 1, there is a filament 5 placed to be heated by passing an electric current, and a deposition table 1716 placed on the filament 5 (see Fig. 2), which can be rotated around the filament 5. A base material mounting bracket 7 and a base material 8 placed thereon are set.

フィラメント5へは交流電源10より電流調整器9を通
して電流が供給される。
Current is supplied to the filament 5 from an AC power source 10 through a current regulator 9.

真空蒸着を行うには、準備としてまず真空室1内をロー
タリーポンプ4でI X 10’ T Orr程度まで
排気し、さらにメカニカルブースターポンプ3を併用し
てlx 10−3 T orr程度まで排気し、最侵に
拡散ポンプ2を加えて3〜4X 1O−4T Orrま
で排気する。
To perform vacuum evaporation, as a preparation, the inside of the vacuum chamber 1 is first evacuated to about I x 10'T Orr using the rotary pump 4, and then further evacuated to about Ix 10-3 Torr using the mechanical booster pump 3. Diffusion pump 2 is added to the top of the tank and evacuated to 3-4X 1O-4T Orr.

続いてフィラメント5に電流を流す。ここで電流の流し
方は時間に対して徐々に連続的に、電流1+f1を上げ
ていくことが肝要である。
Next, a current is applied to the filament 5. Here, it is important to gradually and continuously increase the current 1+f1 with respect to time.

これは、装置の規模その他の条件により一概に決められ
ないが、例えば蒸着設定電流が1000Aの場合、5〜
100A/秒の範囲でフィラメント5に電流を流すこと
が好ましい。
Although this cannot be determined unconditionally depending on the scale of the device and other conditions, for example, if the deposition setting current is 1000A,
Preferably, a current is passed through the filament 5 in the range of 100 A/sec.

第3図は本発明による蒸着の際の、フィラメント電流の
時間経過に対する変化を表すグラフである。本発明では
、フィラメント電流を時間に対して徐々に連続的に上昇
させている。この場合、蒸着時まで直線的に電流を増加
させている例を示しており、従来技術で見られたような
フィラメントへの突入電流が生じない。その結果、放出
ガスの発生が見られ″ず、従って真空度の低下も起こら
ず、すぐに蒸着を行うことができ、しかも蒸着不良を起
さずに行うことが可能である。電流を連続的に徐々に上
昇させるとは、第3図に示したように直線的に上昇させ
る場合のほか、曲線で上昇させる方法、微細な階段状で
あって実質的に連続的な方法等を含むものであって、実
質的に突入電流が発生しない方法であればよい。
FIG. 3 is a graph showing changes in filament current over time during vapor deposition according to the present invention. In the present invention, the filament current is gradually and continuously increased over time. In this case, an example is shown in which the current is increased linearly until the time of vapor deposition, and no rush current to the filament occurs as seen in the prior art. As a result, there is no generation of released gas, and therefore no decrease in the degree of vacuum occurs, and the vapor deposition can be performed immediately without causing any defects in the vapor deposition.The current can be continuously applied. In addition to the straight line as shown in Figure 3, the term "gradually rising" includes a method of raising in a curve, a substantially continuous method of raising in the form of minute steps, etc. Any method that does not substantially generate an inrush current may be used.

電流を徐々に上げる装置としては、フィラメントに流れ
る電流を調整して徐々に上昇させ、実質的にフィラメン
トの突入電流をカットできるような調整装置であれば特
に限定されないが、サイリスタを用いた電流調整器が一
例としてあげられる。
The device to gradually increase the current is not particularly limited as long as it is an adjusting device that can adjust the current flowing through the filament to gradually increase it and substantially cut the inrush current of the filament, but current adjustment using a thyristor can be used. An example is a vessel.

フィラメント電流が蒸着設定値になれば、蒸着金属6は
蒸発して基材8に付着、すなわち蒸着が行われる。
When the filament current reaches the deposition set value, the deposited metal 6 is evaporated and attached to the base material 8, that is, the deposition is performed.

フィラメント電流の蒸着設定値は装置により、また蒸着
条件等により一概に決められないが、例えば100〜1
0000△の範囲があげられる。
The deposition setting value of the filament current cannot be determined unconditionally depending on the equipment or deposition conditions, but it is, for example, 100 to 1
The range is 0000△.

またM着時間は通常10〜30秒間位であるが、基材の
種類や目的に応じて適宜変えることができる。
The M-wearing time is usually about 10 to 30 seconds, but can be changed as appropriate depending on the type of substrate and purpose.

なお、蒸着表面を平滑にして蒸着面の光学的性質を高め
るために基材表面を研磨したり、蒸着前に基材表面に合
成樹脂を塗布し、表面の平滑をはかることなどは適宜行
ってよい。
In addition, in order to smooth the vapor deposition surface and improve the optical properties of the vapor deposition surface, the substrate surface may be polished or a synthetic resin may be applied to the substrate surface before vapor deposition to smooth the surface. good.

特に電子部品をII造する場合には電気的性質を向上さ
せるために、研磨清浄処理は必要である。
Especially when manufacturing electronic parts, polishing and cleaning treatment is necessary to improve the electrical properties.

また、基材を予備加熱して蒸着金属との接着強化をはか
ることも適宜行うこともできるが、基材がプラスチック
の場合には耐熱温度が低いことや、フィラメントの1/
@Di熱の影響があることから必ずしも必要としない。
In addition, it is possible to preheat the base material to strengthen the adhesion with the deposited metal, but if the base material is plastic, the heat resistance is low, and the filament is 1/1
@Di It is not necessarily necessary due to the influence of heat.

[実施例] 以下に、本発明を実施例によってさらに詳しく説明する
[Example] Below, the present invention will be explained in more detail with reference to Examples.

アクリル樹脂性の基材(5caX 3nX 2ttua
、100個)を、第1図に示したような装置を使用して
、蒸着金属6としてアルミニウムを用い、フィラメント
5に撚線タングステンを使ってアルミニウム6を蒸発さ
せて蒸着を行った。まずロータリーポンプ4で真空室1
内をIX 1O−2T orrまで排気し、さらにメカ
ニカルブースターポンプを併用してIX 1O−3T 
Orrに、さらに拡散ポンプ2で3X 10’ T o
rrまで排気した。
Acrylic resin base material (5caX 3nX 2ttua
, 100 pieces) were vapor-deposited using the apparatus shown in FIG. 1, using aluminum as the vapor-deposited metal 6, and using stranded tungsten as the filament 5 to evaporate the aluminum 6. First, use rotary pump 4 to vacuum chamber 1.
Evacuate the interior to IX 1O-2T orr, and use a mechanical booster pump to increase IX 1O-3T.
Orr, and 3X 10' To with diffusion pump 2
Exhausted to rr.

ここで蒸着にお1プるフィラメント5を加熱するのに、
サイリスタを組み込んだ電流調整器9を用いた。
Here, to heat the filament 5 used for vapor deposition,
A current regulator 9 incorporating a thyristor was used.

この電流調整器9を設定してフィラメント電流を25A
/秒で徐々に上昇するJ:うにした。フィラメント電流
を流し始めてから40秒後にフィラメント電流が100
0Aになった時から、10秒間1000Aを保持させて
基材8の蒸着を行った。その後フィラメント電流を零に
して蒸着を終了した。
Set this current regulator 9 to set the filament current to 25A.
J: sea urchin gradually rises at 1/sec. 40 seconds after starting the filament current, the filament current reaches 100.
From when the voltage became 0A, 1000A was maintained for 10 seconds and the substrate 8 was deposited. Thereafter, the filament current was reduced to zero to complete the deposition.

この結果、予熱から蒸着開始までは基材8周辺の真空度
の低下は認められず、放出ガスがほとんど発生していな
いことが確認された。
As a result, no decrease in the degree of vacuum around the base material 8 was observed from preheating to the start of vapor deposition, and it was confirmed that almost no released gas was generated.

蒸着終了後、真空室1を大気開放させて基材8を取り出
して調べた結果、基材8はすべて蒸着状態が良好であっ
た。
After the vapor deposition was completed, the vacuum chamber 1 was opened to the atmosphere, and the substrates 8 were taken out and examined. As a result, all the substrates 8 were found to be in a good vapor deposition state.

[発明の効果] 本発明の効果を掲げると以下の通りである。[Effect of the invention] The effects of the present invention are as follows.

■真空室内の真空度で比較した場合、本発明では3〜4
x 10−4−「orr程度で蒸着開始可能であり、従
来法の1×10〜’Torrに比べて低真空度で蒸着が
始められる。
■When comparing the degree of vacuum inside the vacuum chamber, the present invention has a degree of vacuum of 3 to 4.
Vapor deposition can be started at about x 10-4 Torr, and vapor deposition can be started at a lower degree of vacuum compared to 1x10 to Torr in the conventional method.

■その結果、本発明によれば所望の真空度に到達するの
に要する時間が矧縮され、例えば40分が1ji分に短
縮され、酒肴作業の能率化が図れる。
(2) As a result, according to the present invention, the time required to reach a desired degree of vacuum is shortened, for example, from 40 minutes to 1 minute, making it possible to streamline the work of serving sake.

■従来は基材とフィラメントとの位置関係により、真空
室内の特に上部および下部では突入電流によるフィラメ
ントの加熱による輻射熱の影響で放出ガスが多く分布し
、これらの位置では基材の蒸着による不良品が生じやす
く、基材は比較的不良品の出来にくい中間部のみに設置
していた。
■Conventionally, due to the positional relationship between the base material and the filament, a large amount of released gas was distributed, especially in the upper and lower parts of the vacuum chamber, due to the influence of radiant heat caused by the heating of the filament due to the rush current, and in these positions, defective products due to evaporation of the base material were generated. The base material was installed only in the middle part where defective products are relatively less likely to occur.

しかし本発明によれば、フィラメントによる幅用熱が少
ないので基材はフィラメントとの位置による影響を受け
ず、放出ガスが少ない結果、真空室内の上部から下部ま
で基材を設置することができ、真空Tの蒸着有効容積が
従来60%であったものが80%に増加できる。
However, according to the present invention, since the width heat generated by the filament is small, the base material is not affected by its position with the filament, and as a result of the small amount of released gas, the base material can be installed from the top to the bottom inside the vacuum chamber. The effective deposition volume of the vacuum T can be increased from 60% to 80%.

■さらに、従来法に比べて本発明ではフィラメントへの
突入電流がないのでフィラメントの11113割合が小
さくなり、従って、従来1つのフィラメントの平均使用
回数が8回であったものが、本発明によれば平均使用回
数は20回と3倍近くに伸びる効果が1!?られる。
■Furthermore, compared to the conventional method, in the present invention there is no inrush current to the filament, so the 11113 ratio of the filament is smaller, and therefore, the average number of times one filament is used is eight times in the past, but with the present invention, the average number of times one filament is used is eight. The average number of uses is 20 times, which increases the effect by nearly 3 times! ? It will be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例による装置図、第2図は、
フィラメントJ3よび蒸着金属の真空室内における状態
の一例を示した図、 第3図は、本発明の一実施例における、蒸着の際のフィ
ラメント電流の時間的経過のグラフ。 1・・・真空室、2・・・拡散ポンプ、3・・・メカニ
カルブースターポンプ、4・・・ロータリーポンプ、5
・・・フィラメント、6・・・蒸着金属、7・・・基材
取付治具、8・・・基材、9・・・電流調整器、10・
・・交流電源。
FIG. 1 is a diagram of a device according to an embodiment of the present invention, and FIG.
A diagram showing an example of the state of the filament J3 and the vapor-deposited metal in the vacuum chamber. FIG. 3 is a graph of the time course of the filament current during vapor deposition in one embodiment of the present invention. 1... Vacuum chamber, 2... Diffusion pump, 3... Mechanical booster pump, 4... Rotary pump, 5
... filament, 6... vapor deposited metal, 7... base material mounting jig, 8... base material, 9... current regulator, 10.
··AC source.

Claims (1)

【特許請求の範囲】 1、真空室内で加熱源の存在下で気相金属を発生させて
基材表面に金属薄膜を形成させる方法において、該加熱
源へ供給する電流量を低電流量から金属薄膜形成に要す
る電流量まで、突入電流の発生を抑制して連続的に上昇
させることを特徴とする金属薄膜を形成する方法。 2、前記電流量を蒸着設定電流値に対し、サイリスタを
用いた電流調整器で0.5〜10%A/秒で連続的に上
昇させる特許請求の範囲第1項記載の金属薄膜を形成す
る方法。 3、前記金属薄膜を形成する方法が真空蒸着法、イオン
プレーティング法、スパッタリング法、プラズマ化学蒸
着法から選ばれるいずれか1つである特許請求の範囲第
1項または第2項記載の金属薄膜を形成する方法。
[Claims] 1. In a method for forming a metal thin film on the surface of a substrate by generating a vapor phase metal in the presence of a heating source in a vacuum chamber, the amount of current supplied to the heating source is changed from a low current amount to a metal thin film. A method for forming a metal thin film, characterized by suppressing the generation of inrush current and continuously increasing the current amount up to the amount required for forming the thin film. 2. Forming the metal thin film according to claim 1, in which the amount of current is continuously increased at a rate of 0.5 to 10% A/sec with respect to the deposition set current value using a current regulator using a thyristor. Method. 3. The metal thin film according to claim 1 or 2, wherein the method for forming the metal thin film is any one selected from vacuum evaporation, ion plating, sputtering, and plasma chemical vapor deposition. How to form.
JP6273487A 1987-03-19 1987-03-19 Formation of thin metallic film Pending JPS63230865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6273487A JPS63230865A (en) 1987-03-19 1987-03-19 Formation of thin metallic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6273487A JPS63230865A (en) 1987-03-19 1987-03-19 Formation of thin metallic film

Publications (1)

Publication Number Publication Date
JPS63230865A true JPS63230865A (en) 1988-09-27

Family

ID=13208899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6273487A Pending JPS63230865A (en) 1987-03-19 1987-03-19 Formation of thin metallic film

Country Status (1)

Country Link
JP (1) JPS63230865A (en)

Similar Documents

Publication Publication Date Title
US4867859A (en) Apparatus for forming a thin film
JP2004511655A (en) Preparation method of indium tin oxide thin film using magnetron negative ion sputtering source
KR19980081269A (en) Nitrided titanium integrated layer to prevent titanium-aluminum interaction
WO1994019509A1 (en) Film forming method and film forming apparatus
JPS63230865A (en) Formation of thin metallic film
JPH02138469A (en) Material for vacuum having diamond surface, surface treatment of this material for vacuum production, of diamond film surface, vacuum vessel and its parts formed by using material for vacuum, in-vacuum driving mechanism, electron release source, in-vacuum heater and vessel of vapor deposition source
JPH04225223A (en) High density integrated circuit con- ducting layer or manufacture of structure and device
JP2776807B2 (en) Method for manufacturing semiconductor device
JP3792738B2 (en) Method for producing carrier for surface plasmon resonance analysis
JPH04242933A (en) Formation of oxide film
KR100258056B1 (en) The method for making tin oxide film of gas sensor by sn target with ion beam sputtering
JPH0723532B2 (en) Method for forming transparent conductive film
JPS62287074A (en) Roll coater device
JP2890032B2 (en) Silicon thin film deposition method
JP2765569B2 (en) Method for manufacturing semiconductor device
JP2002069616A (en) Production method for thin film of anatase-type titanium oxide
US3315208A (en) Nitrogen stabilized titanium thin film resistor and method of making same
JPS6318053A (en) Formation of colored thin film
KR100295618B1 (en) High vacuum magnetron sputtering method using ion beam
KR950004779B1 (en) Hard blacking film with an excellant adhesion and method for making the same
KR100237166B1 (en) The method for tin coating using ion beam
JPH089767B2 (en) Method for producing low resistance transparent conductive film
JPS63230864A (en) Method and device for forming thin metallic film
JPH02115359A (en) Formation of compound thin film and device therefor
JPS60175316A (en) Method of producing conductive transparent thin film