JPS63230643A - Selective hydrogenation of acetylene compound - Google Patents

Selective hydrogenation of acetylene compound

Info

Publication number
JPS63230643A
JPS63230643A JP62064354A JP6435487A JPS63230643A JP S63230643 A JPS63230643 A JP S63230643A JP 62064354 A JP62064354 A JP 62064354A JP 6435487 A JP6435487 A JP 6435487A JP S63230643 A JPS63230643 A JP S63230643A
Authority
JP
Japan
Prior art keywords
reaction
acetylene
butadiene
concentration
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62064354A
Other languages
Japanese (ja)
Inventor
Takayoshi Okubo
大久保 隆義
Hideji Hirayama
平山 秀二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP62064354A priority Critical patent/JPS63230643A/en
Publication of JPS63230643A publication Critical patent/JPS63230643A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To enable selective hydrogenation of an acetylene compound existing as an impurity in a fraction composed mainly of 4C hydrocarbons containing 1,3-butadiene, by hydrogenating with dissolved hydrogen in pressurized liquid phase in the pressure of a Pd-based solid catalyst supported on a carrier. CONSTITUTION:In the selective hydrogenation of an acetylene compound in a fraction composed mainly of 4C hydrocarbons containing 1,3-butadiene, the reaction is carried out at 5-60 deg.C in liquid phase in the presence of more than equimolar amount of dissolved hydrogen based on the acetylene compound using a solid catalyst containing Pd element in an amount of 0.001-0.04wt.% based on a carrier (e.g. gamma-Al2O3). The catalyst may contain a cocatalyst such as inorganic acid salt or organic acid salt of Cu, Ag, Au, Pb or Zn. Multi-stage hydrogenation reaction is used in the case of high acetylene concentration and the control of reaction heat can be easily carried out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、石油類のクラッキングによシ得られる1、3
−ブタツエンを含む炭素数4の炭化水素を主体とする留
分(以下「C4留分」という。)中の不純物であるアセ
チレン化合物の水素添加方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to
- A method for hydrogenating an acetylene compound which is an impurity in a fraction mainly composed of hydrocarbons having 4 carbon atoms (hereinafter referred to as "C4 fraction") including butatsuene.

〔従来の技術〕[Conventional technology]

石油類のクラッキング等によシ得られるC4留分は主と
して1,3−ブタジエン、イソブチン、 n−ブテン(
ブテン−1,!テンー2)、ブタン類からなり、これに
不純物として少量のビニルアセチレン、エチルアセチレ
ンなどのC4アセチレン化合物、また場合によってはメ
チルアセチレンなどのC3アセチレン化合物を微量含有
する(以下これを「アセチレン化合物」という。)。
The C4 fraction obtained by cracking petroleum products mainly contains 1,3-butadiene, isobutyne, n-butene (
Butene-1,! Ten-2), butanes, and contains small amounts of C4 acetylene compounds such as vinyl acetylene and ethyl acetylene as impurities, and in some cases, trace amounts of C3 acetylene compounds such as methyl acetylene (hereinafter referred to as "acetylene compounds"). ).

このC4留分、特にその中に含まれる1、3−ブタジエ
ンを分離してゴム、fラスチック及びその他の化学工業
用原料として利用する場合、不純物として含まれるアセ
チレン化合物は種々の障害となるため、予め適当な処理
を行って一定の濃度以下になるように除いておかなけれ
ばならない。
When this C4 fraction, especially the 1,3-butadiene contained therein, is separated and used as a raw material for rubber, f-plastic, and other chemical industries, the acetylene compounds contained as impurities pose various obstacles. It must be removed by appropriate treatment in advance so that the concentration is below a certain level.

1.3−ブタジエン又は1,3−ブタジエンを含むC2
留分中のアセチレン化合物を除去する方法として、従来
より触媒の存在下に気相又は液相条件にてアセチレン化
合物を選択的に水素添加する方法が行われている。
C2 containing 1,3-butadiene or 1,3-butadiene
As a method for removing acetylene compounds in a fraction, a method has conventionally been used in which acetylene compounds are selectively hydrogenated under gas phase or liquid phase conditions in the presence of a catalyst.

しかし、この方法に於いては一般に1.3−ブタジエン
(以下「ブタジェン」という。)と不純物のアセチレン
化合物の反応性に差が少いこと及び水素添加をすべきア
セチレン化合物の濃度がブタジェンの濃度に較べて極め
て低いことなどのために、ブタジェンの水素添加を出来
る限り抑制して、アセチレン化合物のみを選択的且つ十
分に水素添加反応させることは非常に困難である。
However, in this method, there is generally little difference in reactivity between 1,3-butadiene (hereinafter referred to as "butadiene") and an impurity acetylene compound, and the concentration of the acetylene compound to be hydrogenated is determined by the concentration of butadiene. It is extremely difficult to suppress the hydrogenation of butadiene as much as possible and selectively and sufficiently hydrogenate only the acetylene compound.

例えば、気相法では通常150〜200℃位の温度で反
応が行われるが、かかる高温での反応ではブタジェンの
水素添加反応や重合が甚しく、相当量のブタジェンの損
失は免れず、また高分子物質の付着等による触媒の劣化
も著しい。
For example, in the gas phase method, the reaction is usually carried out at a temperature of about 150 to 200°C, but in the reaction at such a high temperature, the hydrogenation reaction and polymerization of butadiene are severe, and a considerable amount of butadiene is inevitably lost. The deterioration of the catalyst due to adhesion of molecular substances is also significant.

一方、液相法では通常100℃以下の比較的低い温度で
反応が行われるため気相法と較べて触媒の劣化等の欠点
は少ないが、反面アセチレン化合物の水素添加反応をほ
ぼ完全に行うためには可成り多量の水素を用いる必要が
あり、それによるブタジェンの水素添加反応の割合も多
くなるという難点もまた避は難い。
On the other hand, in the liquid phase method, the reaction is usually carried out at a relatively low temperature of 100°C or less, so there are fewer drawbacks such as catalyst deterioration compared to the gas phase method. It is also difficult to avoid the disadvantage that it is necessary to use a considerably large amount of hydrogen, which increases the proportion of the hydrogenation reaction of butadiene.

本発明者らは、かかる現状に鑑み、C4留分中のアセチ
レン化合物を液相法にて選択的に水素添加する方法を提
案している。
In view of the current situation, the present inventors have proposed a method of selectively hydrogenating acetylene compounds in a C4 fraction by a liquid phase method.

例えば、触媒についてはA’ラノウムと周期律表の第1
Vb族金属又はその塩類を組み合わせたもの(特開昭5
7−185229 )、反応方法について実質的に無水
状態の系で水添反応を行うことを特徴とする技術(特開
昭57−206627 ) 、脱硫剤により脱硫したC
鴫留分原料を使用することを特徴とする技術(特開昭5
9−196828 )等がある。
For example, regarding catalysts, A'ranium and the first part of the periodic table are
Combinations of group Vb metals or their salts (Unexamined Japanese Patent Publication No. 5
7-185229), a technology characterized in that the hydrogenation reaction is carried out in a substantially anhydrous system (Japanese Patent Application Laid-Open No. 57-206627), C desulfurized with a desulfurizing agent
A technology characterized by the use of ash distillate raw materials (Japanese Patent Application Laid-open No. 5
9-196828) etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

これらの従来技術では、C4留分中のアセチレン化合物
を一定濃度以下となるように処理する為に可成シ多量の
水素を液相の反応系に供給することが求められ、反応系
内に気泡水素が存在し、更に水素の反応系内での分散に
不均一がみられた。又触媒性能を十分発揮させる為に触
媒担体に担持する・母ラジウムの量を多くし水素添加反
応を促進させていた。
In these conventional techniques, in order to reduce the concentration of acetylene compounds in the C4 fraction to a certain level, it is required to supply a large amount of hydrogen to the liquid phase reaction system, which creates air bubbles in the reaction system. Hydrogen was present, and hydrogen was unevenly distributed within the reaction system. In addition, in order to fully demonstrate the catalytic performance, the amount of mother radium supported on the catalyst carrier was increased to accelerate the hydrogenation reaction.

このことによシ、アセチレン化合物のみでなく、有効成
分であるブタジェン等の水素添加反応も可成シあシ、損
失となっていた。
As a result, not only the acetylene compound but also the hydrogenation reaction of butadiene, which is an active ingredient, was lost.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、かかる問題点を解決するために、ブタジェン
又はブタジェンを含む炭素数4の炭化水素を主体とする
留分中のアセチレン化合物を、/IPラジウム系固体触
媒の存在下に加圧液相にて水素添加する方法において、
固体触媒中のパラジウムを触媒担体に対して0.001
〜0.04重量%とし、且つ液相中にアセチレン化合物
に対して1モル倍以上の溶解水素の存在下で水素添加反
応が選択的に進行することを見い出し、本発明の方法を
完成するに至った。
In order to solve such problems, the present invention aims to convert acetylene compounds in a fraction mainly composed of butadiene or a hydrocarbon having 4 carbon atoms containing butadiene into a pressurized liquid phase in the presence of an /IP radium-based solid catalyst. In the method of hydrogenation in
0.001 of palladium in solid catalyst to catalyst carrier
It has been discovered that the hydrogenation reaction proceeds selectively in the presence of dissolved hydrogen in the liquid phase at a concentration of ~0.04% by weight and in an amount of 1 mole or more relative to the acetylene compound, and has completed the method of the present invention. It's arrived.

本発明の場合、触媒中の・臂ラジウム濃度に特徴があシ
、原料C4留分中のブタジェンの水素添加による損失を
最小とし、アセチレン化合物を選択的に水素添加するに
は触媒担体に対して0.001−0.04重量%とする
仁とが重要である。
In the case of the present invention, the concentration of radium in the catalyst is characteristic, and in order to minimize the loss of butadiene in the raw C4 fraction due to hydrogenation and to selectively hydrogenate acetylene compounds, it is necessary to A concentration of 0.001-0.04% by weight is important.

液相の水素添加反応において、反応圧を上げ液相中の溶
解水素濃度を高くすると、ブタジェン及びアセチレン化
合物の水素添加速度はいずれも加速されるが、この場合
従来技術に開示されている如く、触媒中のパラジウム濃
度が0.1〜0.5重量%という高いものを用いる限り
は、C4留分中のブタジェン濃度の関係でブタジェンの
水添速度が一層・早やまる結果となり、著しくアセチレ
ン化合物の選択性が低下することKなる。
In a liquid phase hydrogenation reaction, increasing the reaction pressure and increasing the dissolved hydrogen concentration in the liquid phase accelerates the hydrogenation rate of both butadiene and acetylene compounds, but in this case, as disclosed in the prior art, As long as a catalyst with a high palladium concentration of 0.1 to 0.5% by weight is used, the hydrogenation rate of butadiene becomes even faster due to the butadiene concentration in the C4 fraction, and the acetylene compound is significantly The selectivity of K decreases.

十分な選択性を与えるには従来技術のパラジウム担持濃
度では不適当であって、その濃度゛を低下することが好
ましい結果を生むことになる。
Prior art palladium loading concentrations are inadequate to provide sufficient selectivity, and lowering the concentration would yield favorable results.

触媒のパラジウム濃度を減少することは、反応の活性サ
イトを減らすことで、競争反応に与っているブタジェン
、水素、とくにブタジェンの反応性が抑制されるために
反応選択性が向上するものと推定される。又選択性向上
は、触媒に対する吸着性がアセチレン化合物〉プタジェ
/にも帰因すると推定され1反応活性サイトが減少する
とアセチレン化合物の水素添加速度が促進されるという
ことである。
It is assumed that reducing the palladium concentration in the catalyst improves reaction selectivity by reducing the number of active sites for the reaction and suppressing the reactivity of butadiene and hydrogen, especially butadiene, which participate in the competitive reaction. be done. The improvement in selectivity is also presumed to be due to the adsorption of the acetylene compound to the catalyst, and as the number of active sites for one reaction decreases, the rate of hydrogenation of the acetylene compound is accelerated.

反応活性サイトを減らすにもその下限があり、担体中の
パラソウム濃度dZO,001重量%未満ではアセチレ
ン化合物の水素添加反応も急激減してしまう。パラジウ
ム濃度が0.04重量%を越えると本発明の特徴となっ
ているアセチレン化合物の選択性の低下をまねくことに
なる。
There is a lower limit to the reduction of the number of reactive sites, and if the parasium concentration in the carrier is less than dZO, 0.001% by weight, the hydrogenation reaction of the acetylene compound will also be sharply reduced. If the palladium concentration exceeds 0.04% by weight, this will lead to a decrease in the selectivity of acetylene compounds, which is a feature of the present invention.

本発明において使用する触媒は、主成分としてパラジウ
ム元素を含むことは必須であるが、助触媒成分として他
の金属塩類、例えば銅、銀、金、錫、亜鉛、カドミウム
又は鉛の無機酸塩、有機酸塩等を含有するものであって
公知のものが使用できる。
Although it is essential that the catalyst used in the present invention contains palladium as a main component, other metal salts such as copper, silver, gold, tin, zinc, cadmium, or inorganic acid salts of lead may be used as co-catalyst components. Any known material containing an organic acid salt or the like can be used.

触媒担体としては、r −At20. 、77−At2
0. 、θ−At203等の公知のものが使用できる。
As a catalyst carrier, r-At20. , 77-At2
0. , θ-At203, and other known materials can be used.

・々ラジウムに対して添加してもよい助触媒成分は、金
属原子比として0.1〜20の公知範囲が好ましい。当
然のことながら、・9ラジウム濃度を減少する場合、助
触媒成分の添加量もそれに対応して変化させ最適値とす
ることが望ましい。
- The promoter component that may be added to radium preferably has a metal atomic ratio in a known range of 0.1 to 20. Naturally, when reducing the .9 radium concentration, it is desirable to change the amount of the co-catalyst component added accordingly to obtain an optimum value.

次に、本発明の第2番目の特徴は、溶解水素の1定濃度
以上の存在下にて水素添加反応を行うことにある。系内
に気泡水素を残留させずに、且つ水素添加速度を可及的
に大きくするには溶解水素濃度を高める必要がある。C
4留分に対する水素の溶解度はほぼ圧力に比例して増大
するが、圧力13 Kg /crn2Gの場合約0.4
モル%、30Kp/cm”Gで1.8モル%程度となっ
ているが、この値はC4留分組成、液の温度によっても
変動する。
Next, the second feature of the present invention is that the hydrogenation reaction is carried out in the presence of a certain concentration or more of dissolved hydrogen. In order to increase the hydrogen addition rate as much as possible without leaving bubble hydrogen in the system, it is necessary to increase the concentration of dissolved hydrogen. C
The solubility of hydrogen in the 4 fractions increases approximately in proportion to the pressure, but at a pressure of 13 Kg/crn2G it is approximately 0.4
The mol% is about 1.8 mol% at 30 Kp/cm''G, but this value varies depending on the C4 fraction composition and the temperature of the liquid.

C4留分中のアセチレン化合物の濃度が0.5〜1.0
重量%の場合は、反応圧力は10〜60Kg/cm”G
の範囲から適宜選ぶことができる。
The concentration of acetylene compounds in the C4 fraction is 0.5 to 1.0
In the case of weight%, the reaction pressure is 10-60Kg/cm"G
You can choose from the range as appropriate.

アセチレン化合物の合計濃度に対して、水素添加の理論
値は1であり、これ未満の溶解水素濃度ではアセチレン
化合物の水素添加が不十分となる。
The theoretical value of hydrogenation with respect to the total concentration of acetylene compounds is 1, and if the dissolved hydrogen concentration is less than this, hydrogenation of the acetylene compounds becomes insufficient.

C4留分中に水素を溶解させるには、公知の方法を用い
ることができる。例えば1/4〜3/4のアルミナの充
填塔を所定の圧力下、20Kf/c!!L”Gに保ち、
溶解性を良好にする為にφ211IIの径を有するディ
ストリビュターを設ける等である。
Known methods can be used to dissolve hydrogen in the C4 fraction. For example, a 1/4 to 3/4 alumina packed column is placed under a predetermined pressure at 20 Kf/c! ! Keep it at L”G,
In order to improve solubility, a distributor having a diameter of φ211II is provided.

C4留分中のアセチレン化合物の濃度については特に限
定しないが、留分中の溶解濃度は圧力による決まる限界
があシ必要な規格にあった製品をえるためには、水素添
加反応を2段以上の多段で行う場合も必要となる。C4
留分中のアセチレン化合物濃度、使用反応圧力下での水
素溶解濃度、アセチレン化合物の水素添加速度等を考え
、ブタジェン損失を最小とすることを考慮に入れると、
所要の段数は決まるものである。
There is no particular limit to the concentration of acetylene compounds in the C4 fraction, but there is a limit to the dissolved concentration in the fraction, which is determined by pressure.In order to obtain a product that meets the required specifications, two or more stages of the hydrogenation reaction are required. This may also be necessary if the process is performed in multiple stages. C4
Considering the acetylene compound concentration in the fraction, the dissolved hydrogen concentration under the reaction pressure used, the hydrogenation rate of the acetylene compound, etc., and taking into account the minimum loss of butadiene,
The required number of stages is determined.

このような多段水素添加反応を考慮すれば、C4留分中
に共存するアセチレン化合物の合計濃度は0.5〜3重
量%でも水素添加による除去は可能である。
If such a multistage hydrogenation reaction is taken into account, it is possible to remove the acetylene compounds coexisting in the C4 fraction by hydrogenation even if the total concentration is 0.5 to 3% by weight.

多段水素添加、例えば二段の場合、一段目と二段目の水
素添加に使用する触媒は、選択性を考慮すると04アセ
チレン化合物濃度が下る二段目では、アセチレンの水素
添加速度を下げない範囲で、一段目よりtJ?ラジウム
濃度の低い触媒を使用することが好ましいが、一段目と
二段目とも同一パラジウム濃度の触媒を使用しても支障
はない。
In the case of multistage hydrogenation, for example, two stages, the catalyst used for the first and second stage hydrogenation should be within a range that does not reduce the hydrogenation rate of acetylene in the second stage, where the concentration of the 04 acetylene compound decreases, considering selectivity. So, tJ from the first stage? Although it is preferable to use a catalyst with a low radium concentration, there is no problem in using catalysts with the same palladium concentration in both the first and second stages.

反応温度は0〜80℃、好ましくは5〜60℃で、LH
8Vは2〜200hr、好ましくは4〜150hr  
にあって、反応系が実質的に液相を保持できる反応温度
に設定される。
The reaction temperature is 0 to 80°C, preferably 5 to 60°C, and LH
8V is 2-200hr, preferably 4-150hr
The reaction temperature is set at a temperature at which the reaction system can substantially maintain a liquid phase.

本発明に用いる水素は純品であってもよく、又は不活性
ガス、例えばメタンで希釈したものでもよい。
The hydrogen used in the present invention may be pure or diluted with an inert gas, such as methane.

反応型式は触媒、固定床式が好ましく、液相で固定床を
行うには流下式又は溢流式のいずれも採用できる。
The reaction type is preferably a catalytic or fixed bed type, and either a flowing type or an overflow type can be adopted to carry out the fixed bed reaction in a liquid phase.

又反応器としては等温型又は断熱型のいずれも使用でき
る。
Further, as the reactor, either an isothermal type or an adiabatic type can be used.

本発明による方法は、気液接触の問題が反応において発
生しない水素溶解法を採用することにより、次の利点を
もっている。
The method according to the present invention has the following advantages by employing a hydrogen dissolution method in which the problem of gas-liquid contact does not occur in the reaction.

(1)水素添加反応を溶解水素で行うため、水素及びC
4留分液の分散をよくするために特別の工夫を必要とせ
ず設備的に有利である。
(1) Since the hydrogenation reaction is carried out with dissolved hydrogen, hydrogen and C
No special measures are required to improve the dispersion of the four fractions, which is advantageous in terms of equipment.

(2)  C4留分中のアセチレン濃度が高い場合、水
素添加反応を多段とすればよく、反応熱制御も容易とな
る。
(2) When the acetylene concentration in the C4 fraction is high, the hydrogenation reaction may be carried out in multiple stages, and the reaction heat can be easily controlled.

(3)触媒はパラジウム濃度が著しく低くても有効であ
シ、経済的に有利となる。
(3) The catalyst remains effective even at extremely low palladium concentrations, which is economically advantageous.

次に本発明の実施例を示し、発明を具体的に説明する。Next, examples of the present invention will be shown to specifically explain the invention.

実施例、比較例共に、原料C4留分は原料中の触媒、被
毒成分を吸着除去する前処理塔を通し、その後このC4
留分に所定量の水素を混合し、水素を溶解するための充
填塔を通して水素を完全に溶解後、水素添加反応器へ導
入し反応を行わせた。
In both Examples and Comparative Examples, the raw C4 fraction is passed through a pretreatment tower that adsorbs and removes the catalyst and poisoning components in the raw material, and then the C4 fraction is
A predetermined amount of hydrogen was mixed with the fraction, passed through a packed column for dissolving hydrogen, and after the hydrogen was completely dissolved, the mixture was introduced into a hydrogenation reactor and reacted.

〔実施例〕〔Example〕

実施例1〜4及び比較例1〜3は触媒量7514の反応
器を用い、水素添加反応を一段で行った。
In Examples 1 to 4 and Comparative Examples 1 to 3, a reactor with a catalyst amount of 7514 was used, and the hydrogenation reaction was performed in one stage.

その結果は第1表に示した。The results are shown in Table 1.

実施例1゜ (1)  C4留分原料組成 ブタン        8.90  wt%n−ブテン
      23.50 イソブチン     24.90 1.3−ブタノエン      42.09エチルアセ
チレン      0.13ビニルアセチレン    
  0.48メチルアセチレン      微 量 グロパジエン      微量 (2)水素添加の反応条件 反応型式  :等温型 反応温度  =38℃ 反応圧力  : 31Kp/cWL2GLH8v:14
hr−1 溶解水素濃度  :1.7モル% 溶解水素モル比 :2.8(対C4アセチレン化合物)
(3)使用触媒 組成   : Pd−Pb(CH3COO)2−At2
0. 。
Example 1 (1) C4 fraction raw material composition Butane 8.90 wt% n-butene 23.50 Isobutyne 24.90 1.3-butanoene 42.09 Ethyl acetylene 0.13 Vinyl acetylene
0.48 Methylacetylene Trace amount Glopadiene Trace amount (2) Reaction conditions for hydrogenation Reaction type: Isothermal reaction temperature = 38℃ Reaction pressure: 31Kp/cWL2GLH8v:14
hr-1 Dissolved hydrogen concentration: 1.7 mol% Dissolved hydrogen molar ratio: 2.8 (to C4 acetylene compound)
(3) Catalyst composition used: Pd-Pb(CH3COO)2-At2
0. .

Pb/Pd原子比=原 子比相4率:0.02wt%(対At2o3)粒径  
:2〜4uφ(球状) 実施例2゜ 反応条件の内、反応温度を21℃に、LH8Vを30h
r  に変更した外は、実施例1と同じである。
Pb/Pd atomic ratio = atomic ratio phase 4 ratio: 0.02wt% (vs. At2o3) particle size
:2~4uφ (spherical) Example 2゜Among the reaction conditions, the reaction temperature was 21℃ and LH8V was 30h.
It is the same as Example 1 except that r is changed.

実施例3゜ 反応条件の内、反応器を断熱型とし、C4留分の入口温
度を10℃に変更した外は、実施例1と同じである。
Example 3 The reaction conditions were the same as in Example 1 except that the reactor was of an adiabatic type and the inlet temperature of the C4 fraction was changed to 10°C.

実施例4゜ 触媒: Pd−Pb(CH3COO)2−At203.
 Pb/Pd原子比:4Pd担持率” 0.002 w
t%(対At20. )と変更した外は、実施例1と同
じである。
Example 4 Catalyst: Pd-Pb(CH3COO)2-At203.
Pb/Pd atomic ratio: 4Pd loading rate” 0.002 w
It is the same as Example 1 except that t% (vs. At20.) was changed.

比較例1゜ 触媒: Pd−Pb(CH3COO) −At20. 
、 Pb/Pd原子比:4Pd担持率−0,35、wt
%(対ht2o3)と変更した以外は、実施例1と同じ
である。
Comparative Example 1゜Catalyst: Pd-Pb(CH3COO)-At20.
, Pb/Pd atomic ratio: 4Pd support rate -0.35, wt
% (vs. ht2o3) is the same as in Example 1 except for the change.

比較例2゜ 反応圧力を20 Kf/m” Gと変更した外は、比較
例1と同じである。
Comparative Example 2 The same as Comparative Example 1 except that the reaction pressure was changed to 20 Kf/m''G.

比較例3゜ 反応圧力を8 Kf/cm” Gと変更した外は、比較
例1と同じである。
Comparative Example 3 The same as Comparative Example 1 except that the reaction pressure was changed to 8 Kf/cm''G.

第1表から判明するごとく、実施例1〜4は比較例1と
比べると1,3−ブタジエンの損失が少い、特に実施例
1〜3はアセチレン化合物の除去率を高く保ったままで
、ブタ・ジエンの損失が少い。
As is clear from Table 1, Examples 1 to 4 show less loss of 1,3-butadiene than Comparative Example 1. In particular, Examples 1 to 3 maintain a high removal rate of acetylene compounds, and・Loss of diene is small.

比較例2〜3は、アセチレン化合物の除去率が不十分で
ある。
Comparative Examples 2 and 3 have insufficient removal rates of acetylene compounds.

実施例5゜ 触媒量1.2 m3の反応器を2基用い、水素添加反応
を二段で行った。
Example 5 Two reactors each having a catalyst amount of 1.2 m3 were used to carry out the hydrogenation reaction in two stages.

(1)  C4留分原料組成 実施例1と同じ (2)水素添加の反応条件 ■第1段反応器 反応器型式 :断熱型 C4留分入口温度:23℃ 反応圧力  : 31 Kg /ctn2GLH8V 
    :、 14 hr ’溶解水素濃度  :1.
8モル% 溶解水素モル比 :3(対C4アセチレン)■第2段反
応器 溶解水素濃度が1.6モル%で、溶解水素モル比は23
である。
(1) C4 fraction raw material composition Same as Example 1 (2) Reaction conditions for hydrogenation 1st stage reactor Reactor type: Adiabatic C4 fraction inlet temperature: 23°C Reaction pressure: 31 Kg / ctn2GLH8V
:, 14 hr 'Dissolved hydrogen concentration: 1.
8 mol% Dissolved hydrogen molar ratio: 3 (to C4 acetylene) ■The dissolved hydrogen concentration in the second stage reactor is 1.6 mol%, and the dissolved hydrogen molar ratio is 23
It is.

これ以外は第1段反応器と同じ条件である。Other than this, the conditions are the same as those of the first stage reactor.

(3)使用触媒 第1段反応器及び第2段反応器とも次のように同一触媒
を同一量充填して水素添加反応を行った。
(3) Catalyst Used Both the first stage reactor and the second stage reactor were filled with the same amount of the same catalyst to carry out the hydrogenation reaction as follows.

Pd担持率:0.02wt%(対At203)粒 径 
:2〜4絽φ(球状) このような条件で二段選択水素添加反応を行った結果、
二段目の反応器出口C4留分中のエチルアセチレン、ビ
ニルアセチレン濃度は、各々35と3 wt ppm 
であり、その除去率は各々97.3,99.9%であっ
た。
Pd loading rate: 0.02wt% (vs. At203) Particle size
: 2 to 4 φ (spherical) As a result of performing a two-stage selective hydrogenation reaction under these conditions,
The concentrations of ethyl acetylene and vinyl acetylene in the C4 fraction at the outlet of the second stage reactor were 35 and 3 wt ppm, respectively.
The removal rates were 97.3% and 99.9%, respectively.

又1,3一ブタノエン濃度は40.4wt%であり、そ
の損失率は4.0%であった。
The 1,3-butanoene concentration was 40.4 wt%, and the loss rate was 4.0%.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の方法はC4留分中のアセチ
レン化合物を水素添加することにより除去し、この際有
効成分であるブタジェンの損失を少くした方法である。
As described above, the method of the present invention is a method in which acetylene compounds in the C4 fraction are removed by hydrogenation, and at this time, the loss of butadiene, an active ingredient, is reduced.

尚、水素溶解の状態で水素添加反応を行うことを可能と
したので、アセチレン化合物の除去率が安定した優ぐれ
た方法である。
Furthermore, since the hydrogenation reaction can be carried out in a state where hydrogen is dissolved, it is an excellent method with a stable removal rate of acetylene compounds.

Claims (1)

【特許請求の範囲】 1,3−ブタジエン又は1,3−ブタジエンを含む炭素
数4の炭化水素を主体とする留分中のアセチレン化合物
を、パラジウム系固体触媒の存在下に加圧液相にて水素
添加する方法において、 前記固体触媒中のパラジウム元素を触媒担体に対して0
.001〜0.04重量%とし、且つ液相中に前記アセ
チレン化合物に対して1モル倍数以上の溶解水素の存在
下で水素添加反応を行うことを特徴とする方法。
[Claims] An acetylene compound in a fraction mainly composed of 1,3-butadiene or a hydrocarbon having 4 carbon atoms containing 1,3-butadiene is converted into a pressurized liquid phase in the presence of a palladium-based solid catalyst. In the method of hydrogenating the solid catalyst, the palladium element in the solid catalyst is
.. 001 to 0.04% by weight, and the hydrogenation reaction is carried out in the presence of dissolved hydrogen in a liquid phase in an amount of 1 mole or more relative to the acetylene compound.
JP62064354A 1987-03-20 1987-03-20 Selective hydrogenation of acetylene compound Pending JPS63230643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62064354A JPS63230643A (en) 1987-03-20 1987-03-20 Selective hydrogenation of acetylene compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62064354A JPS63230643A (en) 1987-03-20 1987-03-20 Selective hydrogenation of acetylene compound

Publications (1)

Publication Number Publication Date
JPS63230643A true JPS63230643A (en) 1988-09-27

Family

ID=13255828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62064354A Pending JPS63230643A (en) 1987-03-20 1987-03-20 Selective hydrogenation of acetylene compound

Country Status (1)

Country Link
JP (1) JPS63230643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105732255A (en) * 2014-12-11 2016-07-06 中国石油天然气股份有限公司 Method of selective hydrogenation of alkynes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105732255A (en) * 2014-12-11 2016-07-06 中国石油天然气股份有限公司 Method of selective hydrogenation of alkynes

Similar Documents

Publication Publication Date Title
EP1663918B1 (en) Process for liquid phase hydrogenation
US6204218B1 (en) Catalyst and process for purifying streams of materials
US8247340B2 (en) Catalyst formulation for hydrogenation
EP0933129B1 (en) Catalyst for selective hydrogenation of highly unsaturated hydrocarbon compound in olefin compound
KR100230081B1 (en) Method for the selective hydrogenation of crude c4-cuts rich in butadiene
RU2312128C2 (en) Method of removing oxygen from olefin-containing process streams
JPS63190835A (en) Improvement for selective hydrogenation of acetylenes
US4547600A (en) Process for selectively hydrogenating acetylenic hydrocarbons of a C4 hydrocarbon cut containing butadiene
CA1144183A (en) Method of removing oxygen from a gas containing an unsaturated hydrocarbon
EP0183293A1 (en) Catalysts and process for the selective hydrogenation of acetylenes
TW200418790A (en) Process for the selective hydrogenation of alkynes
US4257877A (en) Selective hydrogenation process
US3432573A (en) Olefins and process for purifying them
KR20060069433A (en) Process for the selective hydrogenation of phenylacetylene
JPS63230643A (en) Selective hydrogenation of acetylene compound
US3897511A (en) Removal of {60 -acetylenes from gas streams
JPS604139A (en) Selective hydrogenation process
JP5346030B2 (en) Catalyst for selective hydrogenation of acetylene compounds in 1,3-butadiene, method for producing the same and method for using the same
KR20000076203A (en) Process for purifying material flows
JPH02200643A (en) Isomerization of butene-1 contained in isobutylene to butene-2
JPH0456012B2 (en)
CA1290354C (en) Process for the selective hydrogenation of alkynes
JPH0526540B2 (en)
JPS59227829A (en) Selective hydrogenation process
US3068304A (en) Separation of acetylenic impurities using a cuprous and cupric chloride solution