JPS604139A - Selective hydrogenation process - Google Patents

Selective hydrogenation process

Info

Publication number
JPS604139A
JPS604139A JP11104283A JP11104283A JPS604139A JP S604139 A JPS604139 A JP S604139A JP 11104283 A JP11104283 A JP 11104283A JP 11104283 A JP11104283 A JP 11104283A JP S604139 A JPS604139 A JP S604139A
Authority
JP
Japan
Prior art keywords
styrene
phenylacetylene
hydrogenation
catalyst
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11104283A
Other languages
Japanese (ja)
Inventor
Koichi Kuno
久野 耕一
Hideji Hirayama
平山 秀二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP11104283A priority Critical patent/JPS604139A/en
Publication of JPS604139A publication Critical patent/JPS604139A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To carry out the selective hydrogenation of an acetylene compound and phenylacetylene in styrene, in liquid phase under atmospheric or pressurized condition, by using a catalyst containing palladium and a VIB-group metal or its salt and supported on alumina. CONSTITUTION:Acetylene compounds and phenylacetylene existing as impurities in styrene useful as a raw material of plastics and other chemicals are selectively hydrogenated in liquid phase under atmospheric or pressurized condition, and removed. The selective hydrogenation of the impurities can be promoted, and the removal ratio can be increased by carrying out the reaction in the presence of a catalyst containing palladium and a IVB-metal or its salt (e.g. tin, lead or nitrage, acetate, etc. containing said metals as cation) and supported on alumina. In addition to the above effects, the hydrogenation of styrene can be suppressed and the loss of styrene caused by the side reaction can be minimized.

Description

【発明の詳細な説明】 本発明はエチルベンゼンの脱水素等により1qられるス
チレン中のアセチレン化合物、フェニルアセチレンを常
圧又は加圧液相条件下に選択的に水素添加する方法に関
し、詳しくは、その際に触媒としてアルミナに担持され
たパラジウムと周期律表の第rvbm金属又はその塩類
を含む触媒を用いることを特徴とする方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for selectively hydrogenating phenylacetylene, an acetylene compound in styrene containing 1q, under normal pressure or pressurized liquid phase conditions by dehydrogenation of ethylbenzene, etc. In particular, the present invention relates to a method characterized in that a catalyst containing palladium supported on alumina and a metal of the RVBM group of the periodic table or a salt thereof is used as a catalyst.

化学工業原料として重要なスヂレンは1−チレン及びベ
ンゼンより製造される]エチルベンげンの脱水素あるい
はAキシラン法として知られるプロピレンAキリイドと
の併産法等で工業的に生産されている。エチルベンゼン
の脱水素法によるスヂレン製造は600℃以上の高温で
水蒸気存在下で行なわれ、その際触媒としては例えば、 Z n O−Ca O−K 20− A fJ、 20
3系のちのが工業的に使用されている。
Sutylene, which is important as a raw material for the chemical industry, is produced from 1-tyrene and benzene] and is produced industrially by dehydrogenation of ethylbenzene or by a co-production method with propylene A-kylide known as the A-xylan method. The production of styrene by the dehydrogenation method of ethylbenzene is carried out at a high temperature of 600°C or higher in the presence of water vapor, and the catalyst used at this time is, for example, ZnO-CaO-K20-AfJ, 20
The latter three series are used industrially.

近年触媒改良の進歩は著しく、スヂレン選択率の極わめ
−C高い触媒が開発されている。しかし、スヂレン選択
率の高い高性能触媒の場合、B;(水素温度が従来に比
して高目とする必要があるため、生成づるスチレン中に
従来はあまり問題どならイTかったアセチレン化合物、
フェニルアはヂレンが副生ずるという事態が生じている
In recent years, there has been remarkable progress in improving catalysts, and catalysts with extremely high -C selectivity for styrene have been developed. However, in the case of high-performance catalysts with high styrene selectivity, the hydrogen temperature needs to be higher than before, so acetylene compounds, which have traditionally not caused problems, are added to the styrene produced. ,
A situation has arisen in which Diren is produced as a by-product of Fenirua.

プラスナック及びその他の化学工業用原石としで、この
スヂレンを利用づる場合、不純物とし−(含まれるフェ
ニルアセチレンは秤々の障害となるため、予め適当な処
理を行って一定の温度以下になるように除いてa5かな
ければならない。
When using this styrene as raw material for plastic snacks and other chemical industries, it is necessary to treat it in advance to keep the temperature below a certain level, as the phenylacetylene contained therein is a major hindrance. It must be a5 except for.

通常の蒸留操作でスチレン中のフェニルアセチレンを除
去することも考えられるが、沸点が近接づるため蒸留分
離は困fi′cある。又、スチレン中のフェニルアセチ
レンを除去づる方法として触媒の存在下に気相又は液相
条件Fにでフェニルアセチレンを選択的に水素添加する
方法も試みられている。しかし、この方法に於いてはス
チレンと不純物のフェニルアセチレンの反応性に差が少
いこと及び水素添加すべきフェニルアしチレン濃度がス
チレン濃度に較べて極めて低いことなどのために、スチ
レンの水素添加を出来る限り抑制して、フェニルアセチ
レンのみを選択的月充分に水素添加することは非常に困
難である。
It is possible to remove phenylacetylene from styrene by ordinary distillation, but separation by distillation is difficult because the boiling points are close to each other. Furthermore, as a method for removing phenylacetylene from styrene, a method of selectively hydrogenating phenylacetylene under gas phase or liquid phase conditions F in the presence of a catalyst has also been attempted. However, in this method, hydrogenation of styrene is difficult because there is little difference in reactivity between styrene and the impurity phenylacetylene, and the concentration of phenylacetylene to be hydrogenated is extremely low compared to the styrene concentration. It is extremely difficult to selectively and sufficiently hydrogenate only phenylacetylene while suppressing phenylacetylene as much as possible.

気相法は触媒劣化も早く、エネルギー的にも極りめで不
利であり、液相法の場合比較的低温で反応が行なわれる
ため触媒劣化等の欠点は少いが、反面フェニルアセチレ
ンの水素添加をほぼ完全に行うためには可成り多量の水
素を用いる必要があり、それによるスチレンの水素添加
の割合も多くなるという難点もまた避は難い。
The gas phase method is disadvantageous because the catalyst deteriorates quickly and is extremely energy-consuming, whereas the liquid phase method has fewer drawbacks such as catalyst deterioration because the reaction is carried out at a relatively low temperature, but on the other hand, hydrogenation of phenylacetylene In order to achieve this almost completely, it is necessary to use a considerably large amount of hydrogen, which inevitably leads to the problem that the proportion of hydrogenation of styrene increases.

本発明者らは、かかる現状に鑑み、スチレン中のアセチ
レン化合物、フェニルアセチレンを選択的に水素添加す
る方法に於いて効果的な触媒を開発ずべく種々検問を重
ねた結果パラジウムと周期律表第1V b族の金属又は
その塩類をアルミナに担持した触媒が優れた性能を有す
ることを見出し、本発明の方法を完成づ−るに至った。
In view of the current situation, the present inventors conducted various investigations in order to develop an effective catalyst for selectively hydrogenating the acetylene compound in styrene, phenylacetylene, and as a result, palladium and The present inventors have discovered that a catalyst in which a 1Vb group metal or its salt is supported on alumina has excellent performance, and has completed the method of the present invention.

即ち、本発明はスチレン中のアセチレン化合物、フェニ
ルアセチレンを常圧又は加圧液相条件下に選択的に水素
添加する方法に於いて、触媒としてアルミナに担持され
たパラジウムと周期律表の第1V b族の金属又はその
塩類を含む触媒を用いることを特徴とする方法を提供せ
んとするものである。
That is, the present invention relates to a method for selectively hydrogenating an acetylene compound, phenylacetylene, in styrene under normal pressure or pressurized liquid phase conditions, using palladium supported on alumina as a catalyst and the first V of the periodic table. It is an object of the present invention to provide a method characterized by using a catalyst containing a group B metal or a salt thereof.

以下、本発明の方法について更に詳細に説明づる。The method of the present invention will be explained in more detail below.

本発明の方法に於いて用いられる触媒は式で表示すれば
、Pd−X−AJL203 (Xは周期律表第1vb族
の金属又はその塩類である)′C″あり、Xの具体例を
示せば、例えば、錫、鉛及びこれらを陽イオンどする硝
酸塩、酢酸塩等である。
The catalyst used in the method of the present invention has the formula Pd-X-AJL203 (X is a metal of group 1Vb of the periodic table or its salts) 'C''. Please give a specific example of X. Examples include tin, lead, and nitrates and acetates that convert these into cations.

触媒の担体としては各種金属酸化物等を用いることがで
きるが、特にアルミナが好ましく、就中γ−A見203
.η−A文203・ θ−A文203などが好適である。触媒組成として担体
に対するパラジウムの聞は0.01〜5重量%、好まし
くは0,03〜2重が%であり、パラジウムに対するX
の比は原子比(X/Pd )として0.1〜10、好ま
しくは0.5〜8の範囲である。触媒の調製法としては
特に制限はなく、この種触媒について通常用いられる方
法を適宜利用Jれ4;I’良い。
Various metal oxides can be used as the catalyst carrier, but alumina is particularly preferred, and γ-A 203
.. η-A sentence 203, θ-A sentence 203, etc. are suitable. As for the catalyst composition, the ratio of palladium to the carrier is 0.01 to 5% by weight, preferably 0.03 to 2% by weight, and
The ratio is in the range of 0.1 to 10, preferably 0.5 to 8 as an atomic ratio (X/Pd). There are no particular restrictions on the method for preparing the catalyst, and methods commonly used for this type of catalyst may be used as appropriate.

一例を示せば次のような方法に°C調製できる。For example, the temperature can be adjusted as follows.

アルミナ担体に塩化パラジウム、硝酸パラジウム、酢酸
パラジウム、塩化パラジウムナトリウムなどの酸又は水
に可溶な塩類の溶液を所定量含浸させた後、このパラジ
ウム塩を、水素、ヒドラジン、ホルムアルデヒドギ酸ソ
ーダ、ナトリウムボロハイドライドなどの適当な還元剤
を用いて乾式又は湿式法にて金属状パラジウムに還元す
る。次いでこの金属状パラジウムを担持したアルミナを
良く水洗して乾燥4る。
After impregnating an alumina carrier with a predetermined amount of a solution of acid or water-soluble salts such as palladium chloride, palladium nitrate, palladium acetate, and sodium palladium chloride, the palladium salt is mixed with hydrogen, hydrazine, formaldehyde, sodium formate, and sodium borohydride. It is reduced to metallic palladium by a dry or wet method using a suitable reducing agent such as hydride. Next, the alumina carrying metallic palladium is thoroughly washed with water and dried (4).

次にこれを錫、鉛、などの可溶性塩類を所定濃度に溶解
した溶液に浸漬して錫、鉛の塩類を担持ゼしめて、必要
に応じて還元処理を施し乾燥して所望の触媒を得る。
Next, this is immersed in a solution in which soluble salts such as tin and lead are dissolved at a predetermined concentration so that the salts of tin and lead are supported and zeolized, subjected to reduction treatment if necessary, and dried to obtain the desired catalyst.

本発明の方法を実施する際の反応条件としては必ずしも
厳密な制限はないが、一般に次のような条件下にて行わ
れる。
There are no strict limitations on the reaction conditions when carrying out the method of the present invention, but the reaction is generally carried out under the following conditions.

反応温度が0・〜80℃、好ましくは5〜60℃の範囲
、反応Ii力が1:1圧〜20kg/ cm2G、好ま
しくは1〜10k(+/ am2G、I−12とフェニ
ルアはヂレンのモル比は0.1〜15、好ましくは1〜
10の範囲、ml−ISVは反応温度、反応圧力、フェ
ニルアセチレン濃度及びその水添除去程度にもよるが2
〜80h r−1の範囲、好ましくは4〜40 t+ 
r−1の範囲に夫々設定される。
The reaction temperature is in the range of 0 to 80°C, preferably 5 to 60°C, the reaction force is 1:1 pressure to 20kg/cm2G, preferably 1 to 10k(+/am2G, I-12 and phenyla are moles of dylene). The ratio is from 0.1 to 15, preferably from 1 to
The range of 10, ml-ISV depends on the reaction temperature, reaction pressure, phenylacetylene concentration and degree of its hydrogenation removal, but the range is 2.
~80 h r-1, preferably 4-40 t+
They are respectively set in the range r-1.

本発明で用いる1(2は純品であっても良く、又は不活
性ガス例えばメタンで希釈したものでも良い。
1 (2) used in the present invention may be pure or may be diluted with an inert gas such as methane.

本発明方法で用いるスチレン中のフェニルアセヂレンの
含有用については特に限定しないが、0.001〜2 
wt%の範囲でち水添除去可能である。
The content of phenylacetylene in the styrene used in the method of the present invention is not particularly limited, but is 0.001 to 2.
Hydrogenation removal is possible within a range of wt%.

本発明方法を実施する際の反応型式は固定床反応であり
、液相で固定床を行なうには流下式または渦流式のいず
れをも採用できる。7また、反応器として、等温型また
は断熱型いずれのものも使用できる。
The reaction type in carrying out the method of the present invention is a fixed bed reaction, and either a flowing type or a vortex type can be adopted to carry out a fixed bed reaction in a liquid phase. 7 Furthermore, as the reactor, either an isothermal type or an adiabatic type can be used.

本発明方法にJ:るど、選択水素化が促進され、フェニ
ルアセチレンの除去率は非常に高く、月副反応どして起
るスチレンの水素化が著しく低減されるので、スチレン
の損失を最小にできるというすぐれた利点がある。
In the method of the present invention, selective hydrogenation is promoted, the removal rate of phenylacetylene is very high, and the hydrogenation of styrene caused by side reactions is significantly reduced, so the loss of styrene is minimized. It has the great advantage of being able to

以下、本発明の方法について代表的な例を示し更に具体
的に説明する。ただし、これらは単なる例示であり、本
発明はこれらに限定されないことは言うまでもない。
Hereinafter, the method of the present invention will be explained in more detail by showing typical examples. However, these are merely examples, and it goes without saying that the present invention is not limited thereto.

実施例1゜ (1) 原料組成 スチレン 99.5wt%フェニル
アセチレン 0.5 (2) 水素化条件 触媒: Pd −Pll (CI−13Coo)2−A
u203 ρb /Pd原子比−3.Pd 含有m (対Δ文203)= 0、35wt% 温度:21℃ 圧力; 5 kg/cm2G M2モル比; 5 Ll−18V(空塔基準) : 201+r−1このス
チレン組成及び水素化条件下、粒i¥、2へ・4 mm
φの触fi15dを内径12mmの断熱反応管に充填し
、断熱条件下でフェニルアセチレンの水添除去反応を行
った。
Example 1゜(1) Raw material composition Styrene 99.5wt% Phenylacetylene 0.5 (2) Hydrogenation conditions Catalyst: Pd-Pll (CI-13Coo)2-A
u203 ρb /Pd atomic ratio -3. Pd content m (relative to Δtext 203) = 0, 35 wt% Temperature: 21°C Pressure: 5 kg/cm2G M2 molar ratio: 5 Ll-18V (empty column basis): 201+r-1 This styrene composition and hydrogenation conditions, Grain i¥, 2 to 4 mm
An adiabatic reaction tube having an inner diameter of 12 mm was filled with φ15d, and a hydrogenation reaction of phenylacetylene was carried out under adiabatic conditions.

その結果、フェニルアセチレンは全て水添除去され、若
干のエチルベンゼンが生成し、スチレン損失は0.3%
であった。
As a result, all of the phenylacetylene was removed by hydrogenation, some ethylbenzene was produced, and the loss of styrene was 0.3%.
Met.

実施例2 触媒として、 0.35 % Pd −8n (CH3Coo)2−Δ
n203 、Sn /Pd原子比−3を使用する以外、
実施例1と全く同様にして、フェニルアはチレンの水添
除去反応を行った。
Example 2 As a catalyst, 0.35% Pd-8n (CH3Coo)2-Δ
Except for using n203, Sn / Pd atomic ratio -3,
In exactly the same manner as in Example 1, phenyla was subjected to a hydrogenation reaction of tyrene.

その結果、フェニルアセチレンの転化率は95%であり
、スチレン損失は0.2%であった。
As a result, the conversion rate of phenylacetylene was 95%, and the loss of styrene was 0.2%.

比較例1 触媒としT O,35%Pd−AfL203ヲ使用する
以外、実施例1と全く同様にして、フェニルアはチレン
の水添除去反応を行った結果、フェニルアセチレン転化
率は100%であり、スチレン損失は2%であった。即
ち、エチルベン1ン生成が大となり、スチレン損失が過
大であった。
Comparative Example 1 The phenyla was subjected to hydrogenation removal reaction of tyrene in exactly the same manner as in Example 1 except that TO, 35% Pd-AfL203 was used as a catalyst, and as a result, the phenylacetylene conversion rate was 100%, Styrene loss was 2%. That is, the production of ethylbenzene was large and the loss of styrene was excessive.

代理人 弁理士 菊 地 精 −Agent Patent Attorney Sei Kikuchi

Claims (1)

【特許請求の範囲】[Claims] スチレン中のアセチレン化合物、フェニルアセチレンを
常圧又は加圧液相条件下に選択的に水素添加リ−る方法
に於いて、触媒としてアルミナに担持されたパラジウム
と周期(1!表の第■vb族金属又はその塩類を含む触
媒を用いることを特徴とづ゛る方法。
In a method of selectively hydrogenating phenylacetylene, an acetylene compound in styrene, under normal pressure or pressurized liquid phase conditions, palladium supported on alumina and periodic acid (1! A method characterized by using a catalyst containing a group metal or a salt thereof.
JP11104283A 1983-06-22 1983-06-22 Selective hydrogenation process Pending JPS604139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11104283A JPS604139A (en) 1983-06-22 1983-06-22 Selective hydrogenation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11104283A JPS604139A (en) 1983-06-22 1983-06-22 Selective hydrogenation process

Publications (1)

Publication Number Publication Date
JPS604139A true JPS604139A (en) 1985-01-10

Family

ID=14550931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11104283A Pending JPS604139A (en) 1983-06-22 1983-06-22 Selective hydrogenation process

Country Status (1)

Country Link
JP (1) JPS604139A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272633A (en) * 1985-09-27 1987-04-03 Mitsubishi Petrochem Co Ltd Purification of styrene compound
JPS6287535A (en) * 1985-10-15 1987-04-22 Mitsubishi Petrochem Co Ltd Purification of styrene or such
JPS6287534A (en) * 1985-10-15 1987-04-22 Mitsubishi Petrochem Co Ltd Purification of styrene or the like
JPS62149635A (en) * 1985-12-24 1987-07-03 Mitsubishi Petrochem Co Ltd Purification of styrene-containing material by selective hydrogenation
JPS63277639A (en) * 1987-05-11 1988-11-15 Mitsubishi Petrochem Co Ltd Purification of styrenes
JPH0195696A (en) * 1987-10-08 1989-04-13 Canon Inc Telephone system
EP0834499A1 (en) * 1996-10-02 1998-04-08 Dainippon Ink And Chemicals, Inc. Process for the preparation of aromatic vinyl compounds

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272633A (en) * 1985-09-27 1987-04-03 Mitsubishi Petrochem Co Ltd Purification of styrene compound
JPS6287535A (en) * 1985-10-15 1987-04-22 Mitsubishi Petrochem Co Ltd Purification of styrene or such
JPS6287534A (en) * 1985-10-15 1987-04-22 Mitsubishi Petrochem Co Ltd Purification of styrene or the like
JPH0566931B2 (en) * 1985-10-15 1993-09-22 Mitsubishi Petrochemical Co
JPS62149635A (en) * 1985-12-24 1987-07-03 Mitsubishi Petrochem Co Ltd Purification of styrene-containing material by selective hydrogenation
JPS63277639A (en) * 1987-05-11 1988-11-15 Mitsubishi Petrochem Co Ltd Purification of styrenes
JPH0195696A (en) * 1987-10-08 1989-04-13 Canon Inc Telephone system
EP0834499A1 (en) * 1996-10-02 1998-04-08 Dainippon Ink And Chemicals, Inc. Process for the preparation of aromatic vinyl compounds

Similar Documents

Publication Publication Date Title
JP3939787B2 (en) Palladium-containing supported catalysts for the selective catalytic hydrogenation of acetylene in hydrocarbon streams.
EP0689872B2 (en) Pd and Ag containing catalyst for the selective hydrogenation of acetylene
US3128317A (en) Selective hydrogenation of acetylene in ethylene with a zeolitic catalyst
TW201821155A (en) Method for the oxidation of ethylene to form ethylene oxide
JP6718017B2 (en) Method for producing 1,3-cyclohexanedimethanol
TW201503956A (en) Method for regenerating catalyst for hydrogenation reaction, and method for producing hydride of polyhydric alcohol
JPS604139A (en) Selective hydrogenation process
KR100887001B1 (en) Process for preparing a group ?-metal containing catalyst, use thereof for preparing an alkenyl carboxylate
JP3046865B2 (en) Method for producing chloroform from carbon tetrachloride and catalyst composition used therefor
US11046632B2 (en) Process for the preparation of 3-methyl-2-buten-1-al
WO2023134779A1 (en) Hydrogenation catalyst and preparation method therefor, and method for preparing isohexanediol and methyl isobutyl carbinol
JP2819171B2 (en) Method for producing aromatic alcohol
CN114433220B (en) Preparation method of benzene and synthesis gas alkylation catalyst
JPWO2007058251A1 (en) Method for producing cycloalkyl alkyl ether
US4115462A (en) Gas phase aromatic hydrogenation using palladium lithium aluminum spinel catalyst
WO2005030683A1 (en) Process for producing cumene and process for propylene oxide production including the production process
TWI457313B (en) Study on the selective hydrogenation of phenylethylene in the presence of styrene in the presence of
US11926540B2 (en) Cycle water treatment process for ethlyene epoxidation
WO2010035325A1 (en) Catalyst for selective hydrogenation of acetylene compounds in 1,3-butadiene, method for producing the same and method of using the same
CN113457729B (en) Catalyst for synthesizing dihydric alcohol mono-tert-butyl ether, preparation method and application
US4177166A (en) Hydroalkylation composition and process for producing said composition
JPS6039653B2 (en) Method for producing oxygen-containing hydrocarbon compound
DE1909964A1 (en) Process for the preparation of 2-methylene-1,3-diacetoxy-propane
US5196603A (en) Process for decomposing peroxide impurities in a teritary butyl alcohol feedstock using an iron (II) compound
JPS63154636A (en) Production of cyclic alcohol