JPS63230151A - Measuring phantom for radiation image pickup apparatus - Google Patents

Measuring phantom for radiation image pickup apparatus

Info

Publication number
JPS63230151A
JPS63230151A JP62063997A JP6399787A JPS63230151A JP S63230151 A JPS63230151 A JP S63230151A JP 62063997 A JP62063997 A JP 62063997A JP 6399787 A JP6399787 A JP 6399787A JP S63230151 A JPS63230151 A JP S63230151A
Authority
JP
Japan
Prior art keywords
image
radiation
phantom
imaging
point measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62063997A
Other languages
Japanese (ja)
Inventor
和彦 浜谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP62063997A priority Critical patent/JPS63230151A/en
Publication of JPS63230151A publication Critical patent/JPS63230151A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating apparatus or devices for radiation diagnosis
    • A61B6/582Calibration
    • A61B6/583Calibration using calibration phantoms

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、一度の撮影により任意断層面の断層像を再構
成できる放射線像撮影装置においてその断層像の再構成
に必要な各投影データのシフト量を高精度に抽出するこ
とができる放射線像撮影装置用の計測ファントムに関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a radiographic imaging apparatus capable of reconstructing a tomographic image of an arbitrary tomographic plane by one-time imaging, in which each projection data necessary for reconstructing the tomographic image is The present invention relates to a measurement phantom for a radiographic imaging apparatus that can extract a shift amount with high precision.

〔従来の技術〕[Conventional technology]

従来のこの種の放射線像撮影装置において任意断層面の
断層像を再構成するために各投影データに与えるシフト
量は、第6図に示すように、放射線源1と放射線検出器
2との位置関係によって求めていた。すなわち、上記放
射線源1と放射線検出器2とは図示省略の被検体を間に
挟んで対向配置されており、両者が互いに平行な平面内
で相対運動して、各位置における投影像をディジタル化
して取り込むが、その放射線′g1と放射線検出器2と
の移動中心○の放射線検出器2の入射投影面に対する結
像点O′の位置は一定不変である。ここで、上記移動中
心○を含み放射線検出器2の入射投影面に平行な平面を
載断面3と呼ぶ。一方、上記載断面3より例えば上方へ
△2だけ離れた点Pの放射線検出器2の入射投影面に対
する結像点P′の位置は、放射線源1の矢印六方向及び
放射線検出器2の矢印B方向の相対運動により各位置の
投影データ毎に異なることが知られている。なお、符号
4は、上記点Pを含み放射線検出器2の入射投影面に平
行な任意断層面である。
In a conventional radiation imaging apparatus of this type, the amount of shift given to each projection data in order to reconstruct a tomographic image of an arbitrary tomographic plane is determined by the position of the radiation source 1 and the radiation detector 2, as shown in FIG. I was looking for it by relationship. That is, the radiation source 1 and the radiation detector 2 are placed opposite to each other with a subject (not shown) in between, and they move relative to each other in a plane parallel to each other to digitize the projected image at each position. However, the position of the imaging point O' of the movement center ○ of the radiation 'g1 and the radiation detector 2 with respect to the incident projection plane of the radiation detector 2 remains constant. Here, a plane that includes the movement center ◯ and is parallel to the incident projection plane of the radiation detector 2 is called a loading plane 3. On the other hand, the position of the imaging point P' with respect to the incident projection plane of the radiation detector 2 at a point P, which is separated upward by Δ2 from the above-mentioned cross section 3, is in the direction of the six arrows of the radiation source 1 and in the direction of the arrow of the radiation detector 2. It is known that projection data at each position differs due to relative movement in the B direction. Note that reference numeral 4 is an arbitrary tomographic plane that includes the point P and is parallel to the incident projection plane of the radiation detector 2.

このような状態で、移動中心0の結像点O′と放射線源
1とを結ぶ直線が相対運動の中心線5となす角をθ(こ
れを曝射角という)とし、また、放射線源1から載断面
3までの距離をaとし、さらに、載断面3から放射線検
出器2の入射投影面までの距離をbとすると、載断面3
上の点0の結像点O′から任意断層面4上の点Pの結像
点P′までのずれ量dは、 となる。そこで、このずれ量dの分だけ結像点P′の位
置を結像点0′の方ヘシフトすることにより、任意断層
面4上の点Pの結像点P′は、相対運動のどの位置の投
影データに対してもその位置が不変となる。従って、こ
の場合は、曝射角θの投影データについては上記ずれ量
dがシフト量であることがわかる。このことから、各位
置における投影像の計測時の曝射角θが任意断層面の断
層像を再構成するために必要となることがわかる。
In this state, the angle between the straight line connecting the imaging point O' of the movement center 0 and the radiation source 1 and the center line 5 of relative motion is θ (this is called the exposure angle), and the radiation source 1 If the distance from the mounting surface 3 to the mounting surface 3 is a, and the distance from the mounting surface 3 to the incident projection plane of the radiation detector 2 is b, then the mounting surface 3
The amount of deviation d from the imaging point O' of point 0 above to the imaging point P' of point P on the arbitrary tomographic plane 4 is as follows. Therefore, by shifting the position of the imaging point P' toward the imaging point 0' by the amount of shift d, the imaging point P' of the point P on the arbitrary tomographic plane 4 can be shifted to any position of the relative movement. Its position remains unchanged even with respect to projection data. Therefore, in this case, it can be seen that the above deviation amount d is the shift amount for the projection data of the exposure angle θ. From this, it can be seen that the exposure angle θ at the time of measuring the projection image at each position is necessary in order to reconstruct the tomographic image of an arbitrary tomographic plane.

そして、従来は、被検体について各位置における投影像
を計測する際に、各曝射角θを直接計測して、上記第(
1)式によりそれぞれのシフト量dを求めていた。ある
いは、放射線像撮影装置の定まった装置仕様により、放
射線源1と放射線検出器2との相対運動の移動速度や各
諸元a、b。
Conventionally, when measuring the projected image of the subject at each position, each exposure angle θ is directly measured, and the
Each shift amount d was calculated using equation 1). Alternatively, the speed of relative movement between the radiation source 1 and the radiation detector 2 and each of the specifications a and b may be determined according to the fixed device specifications of the radiographic imaging device.

Δ2等から時間関数として、計算により各位置のシフト
量を求めていた。
The amount of shift at each position was calculated from Δ2 etc. as a time function.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、このような従来の放射線像撮影装置におけるシ
フト量の抽出においては、まず、被検体について各位置
での投影像を計測する際に各曝射角θを直接計測するの
では、その曝射角θを高精度に計測するのが難しいもの
であった。また、装置仕様により移動速度等から時間関
数として計算により求めるのでは、必ずしも放射線像撮
影装置が装置仕様どおりに正確に動くとは限らないもの
であった。従って、各位置における投影データのシフト
量を高精度に抽出できないことがあった。
However, when extracting the shift amount in such conventional radiographic imaging devices, first of all, it is difficult to directly measure each exposure angle θ when measuring the projected image at each position of the subject. It was difficult to measure the angle θ with high precision. Furthermore, if the time function is calculated as a function of time based on the moving speed or the like according to the device specifications, the radiographic imaging device does not necessarily move accurately according to the device specifications. Therefore, the shift amount of projection data at each position may not be extracted with high precision.

このことから、得られた任意断層面の断層像に画像ボケ
が生ずることがあり、良好な診断情報が得られないもの
であった。
For this reason, image blurring may occur in the obtained tomographic image of an arbitrary tomographic plane, making it impossible to obtain good diagnostic information.

そこで、本発明は、このような問題点を解決することが
できる放射線像撮影装置用の計測ファントムを提供する
ことを目的とする。
Therefore, an object of the present invention is to provide a measurement phantom for a radiographic imaging apparatus that can solve such problems.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題点を解決する本発明の手段は、放射線吸収係
数の高い材料で小物体に形成された多数の結像点計測部
材を、放射線吸収係数が低くかつ剛性の高い材料ででき
た平板状の支持部材の表面または内部に、互いに隣接す
る間隔を所要量だけあけて一直線上に配列固定して成る
ファントム部材を、放射線吸収係数の低い材料でできた
取付台の上面に上記結像点計測部材の配列方向が直立ま
たは傾斜するように固定した放射線像撮影装置用の計測
ファントムによってなされる。
The means of the present invention for solving the above-mentioned problems is to replace a large number of imaging point measuring members formed on a small object made of a material with a high radiation absorption coefficient with a flat plate made of a material with a low radiation absorption coefficient and high rigidity. The phantom members are arranged and fixed in a straight line with the required spacing between adjacent ones on the surface or inside of the support member of the phantom member. This is done using a measurement phantom for a radiographic imaging device that is fixed so that the arrangement direction of the members is upright or tilted.

〔実施例〕〔Example〕

以下、本発明の実施例を添付図面に基づいて詳細に説明
する。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明による放射線像撮影装置用の計測ファン
トムの実施例を示す斜視図である。この計測ファントム
は、任意断層面の断層像を再構成できる放射線像撮影装
置においてその断層像の再構成に必要な各投影データの
シフト量を抽出するためのもので、取付台6と、ファン
トム部材7とを組み合わせて成る。
FIG. 1 is a perspective view showing an embodiment of a measurement phantom for a radiographic imaging apparatus according to the present invention. This measurement phantom is used to extract the shift amount of each projection data necessary for reconstructing a tomographic image in a radiographic imaging apparatus capable of reconstructing a tomographic image of an arbitrary tomographic plane. It consists of a combination of 7.

上記取付台6は、後述のファントム部材7を支持固定す
るもので、放射線吸収係数の低い材料、 、例えば合成
樹脂あるいはアクリル樹脂などで平板状に形成した水平
片8と垂直片9とが略直角に交わるように組み合わされ
ている。なお、この取付台6が放射線吸収係数の低い材
料でできているのは、放射線源からの放射線の照射に対
してその放射線をよく透過し、放射線による陰影像が残
らないようにするためである。
The mounting base 6 supports and fixes a phantom member 7, which will be described later, and is made of a material with a low radiation absorption coefficient, such as synthetic resin or acrylic resin, and has a horizontal piece 8 and a vertical piece 9 formed into a flat plate at approximately right angles. are combined so that they intersect. The reason why the mounting base 6 is made of a material with a low radiation absorption coefficient is to allow the radiation from the radiation source to pass through it well and to prevent shadow images from remaining due to the radiation. .

上記取付台6の上面には、ファントム部材7が固定され
ている。このファン1−ム部材7は、放射線源からの放
射線の照射による放射線検出器の入射投影面に対する実
際の結像点を計測するためのもので、支持部材10と、
多数の結像点計測部材11.11.・・とを組み合わせ
て成る。上記支持部材10は、後述の結像点計、11す
部材11,11゜・・・を配列固定するもので、放射線
吸収係数が低くかつ剛性の高い材料、例えば合成樹脂あ
るいはアクリル樹脂などで薄い細長平板状に形成されて
いる。なお、この支持部材10が放射線吸収係数の低い
材料でできているのは、放射線源からの放射線の照射に
対してその放射線をよく透過し、放射線による陰影像が
残らないようにするためである。
A phantom member 7 is fixed to the upper surface of the mounting base 6. This fan 1-mem member 7 is for measuring the actual image formation point on the incident projection plane of the radiation detector due to radiation irradiation from the radiation source, and includes a support member 10,
A large number of imaging point measuring members 11.11. It consists of a combination of... The support member 10 is for arranging and fixing the image forming dot meter, 11, 11°, etc., which will be described later, and is made of a thin material with a low radiation absorption coefficient and high rigidity, such as synthetic resin or acrylic resin. It is formed into an elongated flat plate. The reason why this support member 10 is made of a material with a low radiation absorption coefficient is to allow the radiation to pass through well when irradiated from a radiation source, and to prevent shadow images caused by the radiation from remaining. .

また、剛性の高い材料でできているのは、平面性を維持
して結像点計測部材11,11.・・・が照射放射線に
対して一定の位置となるように保持させるためである。
The imaging point measuring members 11, 11. are made of a highly rigid material while maintaining flatness. . . is held at a constant position with respect to the irradiation radiation.

上記支持部材10の表面または肉厚内部には、多数の結
像点計測部材11,11.・・・が固定されている。こ
の結像点計測部材11は、放射線源からの放射線の照射
による結像点を計測するためのもので、放射線吸収係数
の高い材料1例えば鋼で直径の小さい球状に形成されて
おり、上記支持部材10の長手方向に沿って互いに隣接
する間隔Cを所要量だけ等間隔にあけて一直、線上に並
んで固定されている。上記結像点計測部材11の大きさ
は、放射線の照射により画像として結像した状態で数画
素程度となる大きさとされており2例えば直径0.1〜
5ml程度である。これは、この程度の大きさが画像と
しての結像点のピークが出易いからである。また、上記
隣接する結像点計測部材11゜11間の間隔Cは、その
間の結像点計測部材11が存在しない任意位置での該結
像点計測部材11の結像位置をその近傍の結像点から補
間により求められる間隔とされており、例えば5〜50
nm程度である。なお、この結像点計測部材11が放射
線吸収係数の高い材料でできているのは、放射線源から
の放射線の照射に対してその放射線をよく吸収し、その
結像点が画像として十分認識できるようにするためであ
る。また、結像点計測部材11を球状としたのは、球は
どの方向から見てもその形状は同じであると共にその中
心も同じであり、放射線源の各方向からの放射線の照射
に対して結像点計測部材11の結像点の大きさが常に向
じとなり、その中心位置も各結像点で一致するからであ
る。なお、上記結像点計測部材11は、必ずしも球状で
ある必要はなく、例えば−辺の長さがO01〜1.0m
程度の小物体であるならば、球状以外の形状であっても
よい。
On the surface or inside the support member 10, there are a number of imaging point measuring members 11, 11. ...is fixed. This image forming point measuring member 11 is for measuring an image forming point due to radiation irradiation from a radiation source, and is made of a material 1 having a high radiation absorption coefficient, such as steel, and is formed into a spherical shape with a small diameter, and is made of a material 1 having a high radiation absorption coefficient, such as steel, and is formed into a spherical shape with a small diameter. The members 10 are arranged and fixed in a straight line along the longitudinal direction with equal intervals C between adjacent members by a required amount. The size of the image-forming point measuring member 11 is such that the image formed by radiation irradiation is approximately several pixels 2, for example, a diameter of 0.1~
It is about 5 ml. This is because a peak of the imaging point as an image is likely to appear when the size is around this level. Further, the distance C between the adjacent image forming point measuring members 11° 11 is such that the image forming position of the image forming point measuring member 11 at an arbitrary position where no image forming point measuring member 11 exists therebetween is determined by the distance C between the adjacent image forming point measuring members 11. The interval is determined by interpolation from the image point, for example, 5 to 50
It is about nm. Note that the image point measuring member 11 is made of a material with a high radiation absorption coefficient because it absorbs radiation well when irradiated from a radiation source, and the image point can be sufficiently recognized as an image. This is to ensure that. In addition, the reason why the imaging point measuring member 11 is made spherical is because a sphere has the same shape and the same center no matter which direction it is viewed from, so that it can be easily irradiated with radiation from each direction of the radiation source. This is because the size of the image forming point of the image forming point measuring member 11 is always in the opposite direction, and the center position thereof is also the same at each image forming point. Note that the imaging point measuring member 11 does not necessarily have to be spherical; for example, the length of the − side is O01 to 1.0 m.
As long as it is a small object, it may have a shape other than spherical.

そして、上記のように形成されたファントム部材7は、
第1図に示すように、取付台6の水平片8と垂直片9と
が囲む空間内で、上記結像点計測部材11,11.・・
・の配列方向が適宜傾斜するように、その支持部材10
が上記水平片8に対して角度αで傾斜して立てかけられ
、接着剤等により固定されている。なお、傾斜角度αは
、0″<α<90°の範囲で計測の目的に合わせて適宜
の角度とすればよい。
The phantom member 7 formed as described above is
As shown in FIG. 1, the image forming point measuring members 11, 11.・・・
・The supporting member 10 is arranged so that the arrangement direction of the supporting member 10 is appropriately inclined.
is leaning against the horizontal piece 8 at an angle α, and is fixed with an adhesive or the like. Incidentally, the inclination angle α may be set to an appropriate angle within the range of 0″<α<90° depending on the purpose of measurement.

次に、このように構成された計測ファントム12を用い
て任意断層面の断層像の再構成に必要な各投影データの
シフト量の抽出について説明する。
Next, extraction of the shift amount of each projection data necessary for reconstructing a tomographic image of an arbitrary tomographic plane using the measurement phantom 12 configured as described above will be explained.

まず、放射線源と放射線検出器との相対運動が直線軌道
方式の場合は、被検体を寝載する天板の上面に、第1図
に示す計測ファントム12を、矢印A、Cで示す放射線
源と放射線検出器との相対運動の方向に対して、ファン
トム部材7の結像点計測部材11,11.・・・の配列
方向が直交するようにセットする。このとき、上記結像
点計測部材1F、、11.・・・の上記相対運動に関す
る中心線13に沿う高さ方向の間隔は、例えば10nv
nとなるように間隔Cを決めて配列されている。このよ
うな状態で、第2図に示すように、ファントム部材7を
被写体として放射線源1を矢印A方向に移動しながら放
射線を照射すると共に放射線検出器2を矢印B方向に相
対移動し、各投影位置毎に順次撮影する。そして、この
ようにして撮影された上記ファントム部材7の投影画像
は、一般に第3図(a)、(b)、(C)に示すように
なる。すなわち、同図(a)及び(c)は、それぞれ第
2図に示す放射線源1の方向1a及びICから放射線を
照射したもので、最大曝射角時の投影画像Ia、Icで
あり、同図(b)は、放射線源1がファントム部材7の
真上に位置する方向1bから放射線を照射したもので、
最小曝射角時の投影画像Ibである。そして、第2図に
おいて載断面3上に位置する成る結像点計測部材11a
の放射線検出器2の入射投影面に対する結像点はa□l
 821 a3となり、その入射投影面上の結像位置は
各投影画像上a〜Icにおいて不変である。一方、上記
載断面3以外の任意断層面4上に位置する他の結像点計
測部材11bの放射線検出器2の入射投影面に対する結
像点はb工l b21 b、となり、その入射投影面上
の結像位置は各投影画像Ia〜Ic毎に異なっている。
First, if the relative movement between the radiation source and the radiation detector is in a linear trajectory, the measurement phantom 12 shown in FIG. and the radiation detector, the imaging point measuring members 11, 11 . Set the arrangement directions of ... to be orthogonal. At this time, the image forming point measuring members 1F, 11. The distance in the height direction along the center line 13 regarding the relative movement of... is, for example, 10 nv.
They are arranged with a determined interval C so that the distance is n. In this state, as shown in FIG. 2, the radiation source 1 is moved in the direction of arrow A to irradiate the phantom member 7 with radiation, and the radiation detector 2 is relatively moved in the direction of arrow B, and each Photographs are taken sequentially for each projection position. The projected images of the phantom member 7 photographed in this manner are generally as shown in FIGS. 3(a), (b), and (C). That is, Figures (a) and (c) are projection images Ia and Ic at the maximum exposure angle when radiation is irradiated from the direction 1a of the radiation source 1 and the IC shown in Figure 2, respectively. In Figure (b), the radiation source 1 irradiates radiation from the direction 1b located directly above the phantom member 7.
This is a projection image Ib at the minimum exposure angle. Then, in FIG. 2, an imaging point measuring member 11a located on the mounting surface 3
The image point on the incident projection plane of the radiation detector 2 is a□l
821 a3, and the image formation position on the incident projection plane remains unchanged in each projection image a to Ic. On the other hand, the image forming point of the other image forming point measuring member 11b located on the arbitrary tomographic plane 4 other than the above-mentioned cross section 3 with respect to the incident projection plane of the radiation detector 2 is b 1 b21 b, and the incident projection plane The upper imaging position differs for each projection image Ia to Ic.

ここで、上記結像点計測部材11 a、 1 l b。Here, the imaging point measuring members 11a, 1lb.

・・・の各投影画像Ia=Icにおける結像点a□〜a
、i+l)t〜b 3 t・・・の位置を画素以下の精
度で正確に検出するには、次のようにすればよい。まず
、投影画像データの各画素の濃度にしきい値を設定し、
このしきい値以下または以上のものを全体のしきい値と
するしきい値処理を施す。こうすることにより、結像点
計測部材11a、llb、・・・と背景部分を明確に分
離することができる。次に、背景部分と分離された結像
点計測部材11a、11b、・・・の結像部分の各々に
対して結像点領域を設定し、この結像点領域内のすべて
の画素(IIj)の濃度Tijに対して ΣTij     ΣTij を計算することにより、上記結像点領域の重心の座標(
x+y)を求める。そして、この重心の座標(x、y)
を結像点計測部材11 a、 1 l b。
. . . Imaging points a□ to a in each projected image Ia=Ic
, i+l)t~b 3 t... can be accurately detected with sub-pixel accuracy by the following procedure. First, a threshold is set for the density of each pixel of the projection image data,
Threshold processing is performed in which a value below or above this threshold is used as the overall threshold. By doing so, it is possible to clearly separate the imaging point measuring members 11a, llb, . . . from the background. Next, an imaging point area is set for each of the imaging parts of the imaging point measuring members 11a, 11b, . . . separated from the background part, and all pixels (IIj ), by calculating ΣTij ΣTij for the density Tij of
Find x+y). And the coordinates (x, y) of this center of gravity
The imaging point measuring members 11a, 1lb.

・・・の投影画像上の結像点の位置とする。このように
して、すべての結像点計測部材11a、llb。
... is the position of the imaging point on the projected image. In this way, all the imaging point measuring members 11a, llb.

・・・の結像点領域について重心の座標(xt y)を
求めることにより、各結像点計測部材11a、11b、
・・・の結像点a1〜a3t b1〜b 31・・・の
位置を画素以下の精度で正確に検出することができる。
By determining the coordinates (xt y) of the center of gravity for the imaging point regions of..., each imaging point measuring member 11a, 11b,
It is possible to accurately detect the positions of the imaging points a1 to a3t, b1 to b31, and so on with an accuracy of less than a pixel.

このようにして、各結像点計測部材11a、11b、・
・・の結像点の位置は正確に検出することができるが、
上記結像点計測部材11a、llb。
In this way, each imaging point measuring member 11a, 11b, .
Although the position of the imaging point of ... can be detected accurately,
The above-mentioned image forming point measuring members 11a, llb.

・・・が存在しない任意位置での該結像点計測部材11
の結像位置は、その近傍の実在する結像点計測部材の結
像点、例えば点a工と点b4とから補間処理により例え
ば高さ1+n+nの単位で求めればよい。
The image forming point measuring member 11 at an arbitrary position where ... does not exist.
The imaging position may be determined in units of height 1+n+n by interpolation processing from the imaging points of existing imaging point measuring members in the vicinity, for example, point a and point b4.

このとき、第2図からも明らかなように、上方に位置す
る結像点計測部材11については、放射線検出器2の入
射投影面に結像する間隔が、上方へ行くに従って拡大さ
れるので、この拡大率の補正を所要の演算式により補正
してやる必要がある。
At this time, as is clear from FIG. 2, for the imaging point measuring member 11 located above, the interval at which the image is formed on the incident projection plane of the radiation detector 2 increases as it goes upward. It is necessary to correct this magnification factor using a required arithmetic expression.

以上のようにして、各投影画像Ia〜Icにおいて、フ
ァントム部材7の結像点計測部材11a。
As described above, the image forming point measuring member 11a of the phantom member 7 in each of the projection images Ia to Ic.

11b、・・・の結像点a1〜a31 b□〜b31・
・・の位置が正確に検出されたところで1例えば第2図
における結像点計測部材11bを通り、載断面3に平行
な任意断層面4の断層像を再構成するには、第3図(1
))の投影画像Ibにおける結像点b2の位置を基準と
して、例えば同図(a)の投影画像Iaにおいてはq□
だけシフトし、同図(c)の投影画像Icにおいてはb
3b2だけシフトさせればよい。これにより、任意の高
さの断層面の断層像を再構成するときのシフト量が求め
られる。
11b,... imaging points a1 to a31 b□ to b31・
When the position of ... has been accurately detected, for example, in order to reconstruct a tomographic image of an arbitrary tomographic plane 4 that passes through the imaging point measuring member 11b in FIG. 1
)) Based on the position of the imaging point b2 in the projection image Ib of (a), for example, in the projection image Ia of FIG.
In the projected image Ic of the same figure (c), b
It is only necessary to shift by 3b2. As a result, the amount of shift when reconstructing a tomographic image of a tomographic plane at an arbitrary height is determined.

なお、前記第(1)式は、第6図における距雛すの関数
となっている。すなわち、載断面3の位置によって結像
点のずれidの値も変化することとなる。従って、ファ
ントム部材7を一つの載断面3のみに置いて計測しただ
けでは不十分である。
Note that the above-mentioned equation (1) is a function of the distance in FIG. That is, the value of the deviation id of the imaging point also changes depending on the position of the mounting surface 3. Therefore, it is insufficient to place the phantom member 7 on only one mounting surface 3 and measure it.

そこで、適当な値ごとに載断面3を移動して設定し、前
記第(1)式によりずれ量dを求めておき、飛び越えた
間の載断面については補間によりずれff1dを求める
ようにする。このようにして、第6図におけるあらゆる
す、ΔZに対応するすべての載断面において、そこから
任意の高さだけ離れた断層面の断層像を再構成するため
のシフト量を求めることができる。そして、このように
求めたシフト量のデータをテーブル化してシフトテーブ
ルを作成し、これをメモリに記憶しておき、必要に応じ
て所要のシフト量のデータを読み出してシフト処理すれ
ばよい。
Therefore, the loading surface 3 is moved and set by appropriate values, and the deviation amount d is determined by the above equation (1), and the deviation ff1d is determined by interpolation for the loading surface between the jumps. In this way, for all the loaded planes corresponding to ΔZ in FIG. 6, the amount of shift for reconstructing the tomographic image of the tomographic plane separated by an arbitrary height can be determined. Then, a shift table is created by tabulating the shift amount data obtained in this way, and this is stored in a memory, and the required shift amount data is read out and shifted as necessary.

第4図は本発明の第二の実施例を示す斜視図である。こ
の実施例は、ファントム部材7を取付台6の垂直片9の
一側面に対して密着させて接着剤等により固定したもの
である。この場合は、上記ファントム部材7の結像点計
測部材11,11゜・・・の配列方向を取付台6の上面
に対して直立させることができる。このように構成され
た計測ファントム12′は、放射線源と放射線検出器と
の相対運動が矢印りで示すように円軌道等を描く曲線軌
道方式の放射線像撮影装置について使用するものである
。そして、被検体を寝載する天板の上面に、第4図に示
す計測ファントム12′を、矢印りで示す放射線源と放
射線検出器との相対運動に関する中心線14に対して、
上記ファントム部材7の結像点計測部材11,11.・
・・の配列方向を−Mさせてセットし、該ファントム部
材7を被写体として放射線源を矢印り方向に回転させな
がら放射線を照射して撮影すればよい。これにより、各
結像点計測部材11,11.・・・の結像点の位置が重
なることなく、第3図と同様の投影画像が得られる。従
って、その後は、第1図に示す第一の実施例の場合と同
様に処理してシフト量を求めればよい。
FIG. 4 is a perspective view showing a second embodiment of the present invention. In this embodiment, the phantom member 7 is brought into close contact with one side of the vertical piece 9 of the mounting base 6 and fixed with an adhesive or the like. In this case, the arrangement direction of the imaging point measuring members 11, 11°, . The measurement phantom 12' configured in this manner is used in a curved trajectory type radiation imaging apparatus in which the relative motion between the radiation source and the radiation detector draws a circular trajectory or the like as shown by the arrow. Then, the measurement phantom 12' shown in FIG. 4 is placed on the top surface of the top plate on which the subject is placed, with respect to the center line 14 regarding the relative movement between the radiation source and the radiation detector, which is indicated by the arrow.
Image forming point measuring members 11, 11 of the phantom member 7.・
The phantom member 7 may be set with its arrangement direction set at -M, and the radiation source may be irradiated and photographed while rotating the radiation source in the direction of the arrow. As a result, each imaging point measuring member 11, 11. The positions of the imaging points of . . . do not overlap, and a projection image similar to that shown in FIG. 3 can be obtained. Therefore, after that, the shift amount can be determined by performing the same processing as in the first embodiment shown in FIG.

第5図は上記第二の実施例の変形例を示す斜視図である
。この変形例は、多数の結像点計測部材11.11.・
・・を直接取付台6の垂直片9の表面または肉厚内部に
一直線上に並べて固定し、これをファントム部材7′と
したものである。この場合は、第4図に示す支持部材1
oを省略することができる。
FIG. 5 is a perspective view showing a modification of the second embodiment. This modification includes a large number of imaging point measuring members 11.11.・
... are directly arranged and fixed in a straight line on the surface or thick inside of the vertical piece 9 of the mounting base 6, and this is used as the phantom member 7'. In this case, the support member 1 shown in FIG.
o can be omitted.

〔発明の効果〕〔Effect of the invention〕

本発明は以上のように構成されたので、一度の撮影によ
り任意断層面の断層像を再構成できる放射線像撮影装置
において、放射線源1と放射線検出器2との相対運動の
正確な動きがわからない場合でも1本発明の計測ファン
トム12.12’ 。
Since the present invention is configured as described above, in a radiographic imaging apparatus capable of reconstructing a tomographic image of an arbitrary tomographic plane by one-time imaging, the exact relative movement between the radiation source 1 and the radiation detector 2 is not known. Even if one measurement phantom of the invention 12.12'.

12′を被写体としてそのファントム部材7,7′の投
影画像を撮影することにより、任意断層面の断層像を再
構成するために必要なシフト量を直接抽出することがで
きる。従って、従来のようにいちいち曝射角θを計測す
る必要はなく、また前記第(1)式により計算して截断
面と任意断層面との間の結像点のずれ量を求めることも
なく、容易かつ迅速に各投影データのシフト量を抽出す
ることができる。また、ファントム部材7,7′の結像
点計測部材11は、放射線吸収係数の高い材料で小物体
に形成されているので、その結像点の位置が正確に検出
でき、その結果、上記各投影データのシフト量を高精度
に抽出することができる。
By taking projection images of the phantom members 7, 7' using 12' as a subject, it is possible to directly extract the amount of shift required to reconstruct a tomographic image of an arbitrary tomographic plane. Therefore, there is no need to measure the exposure angle θ every time as in the past, and there is no need to calculate the amount of deviation of the imaging point between the cut plane and the arbitrary tomographic plane by calculating using the above formula (1). , it is possible to easily and quickly extract the shift amount of each projection data. In addition, since the imaging point measuring member 11 of the phantom members 7, 7' is formed into a small object made of a material with a high radiation absorption coefficient, the position of the imaging point can be detected accurately, and as a result, each of the above-mentioned The shift amount of projection data can be extracted with high precision.

従って、得られた任意断層面の断層像に画像ボケが生ず
ることがなく、良好な診断情報を得ることができる。
Therefore, image blur does not occur in the obtained tomographic image of an arbitrary tomographic plane, and good diagnostic information can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による放射線像撮影装置用の計測ファン
トムの実施例を示す斜視図、第2図は放射線像撮影装置
により上記計測ファントムを被写体として撮影する状態
を示す説明図、第3図は上記撮影により得られた投影画
像を示す説明図、第4図は本発明の第二の実施例を示す
斜視図、第5図は第二の実施例の変形例を示す斜視図、
第6図は従来の放射線像撮影装置における任意断層面の
断層像を再構成するためのシフト量を求める状態を示す
説明図である。 1・・・放射線源、 2・・・放射線検出器、 3・・
・截断面、 4・・・任意断層面、 6・・・取付台、
 7゜7′・・・ファントム部材、 8・・・水平片、
 9・・・垂直片、 10・・・支持部材、 11・・
・結像点計測部材、   12.12’、12’・・・
計測ファントム、C・・・間隔、 α・・・傾斜角度、
  Ia〜Ia・・・投影画像、 a工〜a、・・・結
像点、 b□〜b3・・・結像点。
FIG. 1 is a perspective view showing an embodiment of a measurement phantom for a radiographic imaging device according to the present invention, FIG. 2 is an explanatory diagram showing a state in which the measurement phantom is photographed as a subject by the radiographic imaging device, and FIG. An explanatory diagram showing a projection image obtained by the above photographing, FIG. 4 is a perspective view showing a second embodiment of the present invention, and FIG. 5 is a perspective view showing a modification of the second embodiment.
FIG. 6 is an explanatory diagram showing a state in which a shift amount for reconstructing a tomographic image of an arbitrary tomographic plane is determined in a conventional radiographic imaging apparatus. 1... Radiation source, 2... Radiation detector, 3...
・Cut section, 4...Arbitrary fault plane, 6...Mounting stand,
7゜7′...Phantom member, 8...Horizontal piece,
9... Vertical piece, 10... Supporting member, 11...
・Image point measurement member, 12.12', 12'...
Measurement phantom, C...interval, α...angle of inclination,
Ia~Ia...Projected image, a~a,...Image formation point, b□~b3...Image formation point.

Claims (1)

【特許請求の範囲】[Claims] 放射線吸収係数の高い材料で小物体に形成された多数の
結像点計測部材を、放射線吸収係数が低くかつ剛性の高
い材料でできた平板状の支持部材の表面または内部に、
互いに隣接する間隔を所要量だけあけて一直線上に配列
固定して成るファントム部材を、放射線吸収係数の低い
材料でできた取付台の上面に上記結像点計測部材の配列
方向が直立または傾斜するように固定したことを特徴と
する放射線像撮影装置用の計測ファントム。
A large number of imaging point measuring members made of a small object made of a material with a high radiation absorption coefficient are mounted on or inside a flat support member made of a material with a low radiation absorption coefficient and high rigidity.
Phantom members arranged and fixed in a straight line with a required distance between adjacent ones are placed on the upper surface of a mounting base made of a material with a low radiation absorption coefficient, and the arrangement direction of the imaging point measuring member is upright or inclined. A measurement phantom for a radiographic imaging device, characterized in that it is fixed as shown in FIG.
JP62063997A 1987-03-20 1987-03-20 Measuring phantom for radiation image pickup apparatus Pending JPS63230151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62063997A JPS63230151A (en) 1987-03-20 1987-03-20 Measuring phantom for radiation image pickup apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62063997A JPS63230151A (en) 1987-03-20 1987-03-20 Measuring phantom for radiation image pickup apparatus

Publications (1)

Publication Number Publication Date
JPS63230151A true JPS63230151A (en) 1988-09-26

Family

ID=13245413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62063997A Pending JPS63230151A (en) 1987-03-20 1987-03-20 Measuring phantom for radiation image pickup apparatus

Country Status (1)

Country Link
JP (1) JPS63230151A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458215U (en) * 1988-10-26 1992-05-19
JP2002505437A (en) * 1998-03-05 2002-02-19 ウェイク フォレスト ユニバーシティ Method and apparatus for three-dimensional image generation using tomographic computed tomography

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458215U (en) * 1988-10-26 1992-05-19
JP2002505437A (en) * 1998-03-05 2002-02-19 ウェイク フォレスト ユニバーシティ Method and apparatus for three-dimensional image generation using tomographic computed tomography
JP4816991B2 (en) * 1998-03-05 2011-11-16 ウェイク フォレスト ユニバーシティ Method and apparatus for 3D image generation using tomographic computer tomography

Similar Documents

Publication Publication Date Title
JP3511450B2 (en) Position calibration method for optical measuring device
JP4551919B2 (en) Tomographic inspection system and method
US10945690B2 (en) Scanning X-ray apparatus with full-field detector
CN103069252B (en) For the inclination sensor of device with determine the method for gradient of device
JP5798810B2 (en) Image correlation displacement sensor
CN105997113A (en) Radiation imaging system and radiography system
JP2012200567A (en) Radiographic system and radiographic method
CN103796589A (en) X-ray CT apparatus
FI124875B (en) X-ray correction method and device
CN110398215A (en) Image processing apparatus and method, system, article manufacturing method, storage medium
US9622714B2 (en) System and method for photographic determination of multichannel collimator channel pointing directions
JP5834194B2 (en) Torque measuring device and program
US7680623B2 (en) Measuring system, computing device and computer readable medium having program executing to perform measuring a region-in-object
JP2005058758A (en) Method and apparatus for correction of x-ray image
JPS63230151A (en) Measuring phantom for radiation image pickup apparatus
US7499579B2 (en) Method and program for comparing the size of a feature in sequential x-ray images
JP5012045B2 (en) X-ray CT system
CN104203106B (en) Radiographic equipment
JP2841728B2 (en) SPECT device
JPS5839688Y2 (en) Deep measurement device for X-ray stereoscopic imaging
JP5675167B2 (en) Nuclear medicine diagnostic equipment
JPH0517669Y2 (en)
JPS63102748A (en) Television tomographic imaging apparatus
JPH0534131A (en) Method and apparatus for processing image
JPS6271873A (en) Emission ct device