JPS63228549A - Microwave polyvalent ion source - Google Patents

Microwave polyvalent ion source

Info

Publication number
JPS63228549A
JPS63228549A JP62061029A JP6102987A JPS63228549A JP S63228549 A JPS63228549 A JP S63228549A JP 62061029 A JP62061029 A JP 62061029A JP 6102987 A JP6102987 A JP 6102987A JP S63228549 A JPS63228549 A JP S63228549A
Authority
JP
Japan
Prior art keywords
magnetic field
plasma
plasma chamber
microwave
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62061029A
Other languages
Japanese (ja)
Other versions
JP2667826B2 (en
Inventor
Kensuke Amamiya
健介 雨宮
Katsumi Tokikuchi
克己 登木口
Kuniyuki Sakumichi
訓之 作道
Hidemi Koike
小池 英已
Takayoshi Seki
孝義 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62061029A priority Critical patent/JP2667826B2/en
Publication of JPS63228549A publication Critical patent/JPS63228549A/en
Application granted granted Critical
Publication of JP2667826B2 publication Critical patent/JP2667826B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To make a large current polyvalent ion beam securable by setting up the drawer slit direction installed on a drawer electrode in accord with a plasma confinement area form to be formed by a composite magnetic field between the magnetic field generated in the ion drawing direction and that generated in and around the outer wall of a plasma chamber. CONSTITUTION:A magnetic field impressed on a plasma chamber 3 is generated by a solenoid coil 1 and a permanent magnet 6. A microwave is led into the plasma chamber 3 through an insulator 4, and the plasma generated in the plasma chamber 3 is drawn out of a drawer electrode system 5, and an ion beam 2 is thus secured. On the other hand, if the direction of a drawer electrode slit 8 is determined in accord with a plasma confinement area sectional form where a composite magnetic field between the axial magnetic field made by the solenoid coil 1 and the magnetic field generated in and around the outer wall of the plasma chamber 3, an ion moves along a line of magnetic force of the composite magnetic field, so that the polyvalent ion generated in plasma heads for the drawer electrode slit 8 so efficiently. A large current polyvalent ion can be therefore made securable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は試料ガスを多価に電離しイオンビームとして効
率良く取得することが可能なマイクロ波イオン源に係り
、特にプラズマ室から大電流の多価イオンビームを引出
すのに好適なマイクロ波多価イオン源に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a microwave ion source that can ionize a sample gas into multivalent ions and efficiently obtain an ion beam. The present invention relates to a microwave multi-charged ion source suitable for extracting a multi-charged ion beam.

〔従来の技術〕[Conventional technology]

マイクロ波イオン源のプラズマ室構造としては、特公昭
57−4056号、同11093号、同11094号、
特公昭59−8959号等に記載されているような同軸
構造、リッジ構造のものや、特公昭53−34461号
に記載されているような円筒構造のものなどがある。
Regarding the plasma chamber structure of a microwave ion source, Japanese Patent Publications No. 57-4056, No. 11093, No. 11094,
There are coaxial structure and ridge structure as described in Japanese Patent Publication No. 59-8959, etc., and cylindrical structure as described in Japanese Patent Publication No. 53-34461.

一方、上記マイクロ波イオン源とは多少異なるが二島−
クリア・インストルメンツ・アンド・メソッズ・イン・
フィジックス・リサーチB10/11(1985年)第
775頁から第778頁(Nucl、工n5tr、an
d Meth、jn Phys、 Res。
On the other hand, although it is slightly different from the microwave ion source mentioned above,
Clear Instruments and Methods in
Physics Research B10/11 (1985) pp. 775-778 (Nucl, Engn5tr, an
d Meth, jn Phys, Res.

B10/11(1985)PP775−778)におい
て論じられている様に、ソレノイドコイルによるイオン
ビーム引出し方向の磁場の他に、プラズマ室外壁に8極
磁場を設けることにより多価イオン引出し電流が大幅に
向上することが分っている。これはECRイオン源と呼
ばれているものである。
B10/11 (1985) PP775-778), in addition to the magnetic field in the ion beam extraction direction by the solenoid coil, by providing an octupole magnetic field on the outer wall of the plasma chamber, the extraction current for multiply charged ions can be significantly increased. I know it will improve. This is called an ECR ion source.

上記マイクロ波イオン源と同様に磁場中のマイクロ波放
電で発生したプラズマからイオンビームとして引き出す
イオン源である。
Like the microwave ion source described above, this is an ion source that extracts an ion beam from plasma generated by microwave discharge in a magnetic field.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上の背景からマイクロ波イオン源においても、多価イ
オン生成効率を上げるため、プラズマ室外周壁に磁石等
を配置する考案がなされてきた。しかしECRイオン源
や多極磁場°の着いたマイクロ波イオン源においては、
大電流ビーム引出しの為のイオン引出しi!!極配置の
最適化は工夫されていなかった。
Based on the above background, ideas have been made to arrange magnets or the like on the outer peripheral wall of the plasma chamber in microwave ion sources as well, in order to increase the efficiency of multiply charged ion production. However, in an ECR ion source or a microwave ion source with a multipolar magnetic field,
Ion extraction i for large current beam extraction! ! Optimization of pole placement was not devised.

本発明の目的は、多極磁場を持つマイクロ波イオン源に
適した引出し電極配置を持つイオン源を提供することに
より、大電流多価イオンビームを取得することにある。
An object of the present invention is to obtain a high-current multiply charged ion beam by providing an ion source with an extraction electrode arrangement suitable for a microwave ion source with a multipolar magnetic field.

〔問題点を解決するための手段〕[Means for solving problems]

マイクロ波イオン源を使って試料ガスの多価イオンを効
率良く発生させる為にはプラズマ室外壁近傍に磁場を発
生させるもの、例えば永久磁石や電磁石を配置すること
により達成される。
Efficient generation of multiply charged ions in a sample gas using a microwave ion source is achieved by placing something that generates a magnetic field, such as a permanent magnet or an electromagnet, near the outer wall of the plasma chamber.

一方発生したプラズマから多価イオンビームを大電流と
して引出す為には、多極磁場を付加した構成に応じた最
適が電極取付は方法を設ける必要がある。この目的はイ
オンビーム引出し方向に発生させた磁場と、プラズマ室
外壁近傍に発生させた磁場との合成磁場で形成するプラ
ズマ閉じ込め領域形状に合わせて、引出し電極上に設け
た引出しスリット方向を配置することにより達成される
On the other hand, in order to extract a multicharged ion beam as a large current from the generated plasma, it is necessary to provide an optimal method for attaching electrodes according to the configuration in which a multipolar magnetic field is added. The purpose of this is to arrange the direction of the extraction slit on the extraction electrode in accordance with the shape of the plasma confinement region formed by the combined magnetic field of the magnetic field generated in the ion beam extraction direction and the magnetic field generated near the outer wall of the plasma chamber. This is achieved by

〔作用〕[Effect]

イオンビームが引出される方向に磁場を印加するソレノ
イドコイルの他に、プラズマ室外壁近傍に別の磁場を発
生させるものを配置すればマイクロ波放電によって発生
したプラズマを有効に閉じ込めることができる。閉じ込
め効率が上るとイオンの寿命が長くなり、このイオンと
マイクロ波放電で発生した高速電子との衝突回数が増し
、多価イオンを効率良く発生させることが可能となる。
In addition to the solenoid coil that applies a magnetic field in the direction in which the ion beam is extracted, if a device that generates another magnetic field is placed near the outer wall of the plasma chamber, the plasma generated by the microwave discharge can be effectively confined. As the confinement efficiency increases, the lifetime of ions becomes longer, and the number of collisions between these ions and high-speed electrons generated by microwave discharge increases, making it possible to efficiently generate multivalent ions.

一方ルノイドコイルによる軸方向磁場と、プラズマ室外
壁近傍に発生させた磁場との合成磁場が形成するプラズ
マ閉じ込め領域断面形状に合わせて、引出し電極スリッ
ト方向を決めれば、イオンは上記合成磁場の磁力線に沿
って運動している為、プラズマ中で発生した多価イオン
は効率良く引出し電極スリットに向かうことになる。従
って効率良く大電流多価イオンビームを取得することが
可能となる。
On the other hand, if the direction of the extraction electrode slit is determined according to the cross-sectional shape of the plasma confinement region formed by the composite magnetic field of the axial magnetic field by the Lunoid coil and the magnetic field generated near the outer wall of the plasma chamber, ions will follow the lines of magnetic force of the composite magnetic field. Because of this movement, the multivalent ions generated in the plasma efficiently move toward the extraction electrode slit. Therefore, it becomes possible to efficiently obtain a large current multiply charged ion beam.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図及び第2図により説明
する。プラズマ室3への印加磁場は、ソレノイドコイル
1と永久磁石6によって発生させる。マイクロ波は絶縁
物4を通してプラズマ室3に導入される。プラズマ室3
で発生したプラズマは引出し電極系5から引出されイオ
ンビーム2を得る。第2図に示した周辺磁石の配列で実
験を行ったところプラズマ粒子が多く存在するプラズマ
閉じ込め形状は7で示す形状になることが、実験的に分
った。このため、引出し電極スリット8の向きを、本実
施例では対向したS極磁石の方向に配置した。なお配列
を同じにしてソレノイドコイルに流す電流の向きだけを
変えると、第2図に斜線で示した形状が45 傾いたプ
ラズマ閉じ込め形状となり、N極方向に細長くなるプラ
ズマ閉じ込め形状となった。との場合は、スリット8の
方向を対向するN極の方向に一致する様に配置した。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. The magnetic field applied to the plasma chamber 3 is generated by the solenoid coil 1 and the permanent magnet 6. Microwaves are introduced into the plasma chamber 3 through the insulator 4. plasma chamber 3
The plasma generated is extracted from an extraction electrode system 5 to obtain an ion beam 2. An experiment was conducted using the arrangement of peripheral magnets shown in FIG. 2, and it was experimentally found that the plasma confinement shape in which many plasma particles exist is the shape shown by 7. For this reason, the direction of the extraction electrode slit 8 was arranged in the direction of the opposing south pole magnet in this embodiment. Note that when the arrangement is the same and only the direction of the current flowing through the solenoid coil is changed, the shape shown by diagonal lines in FIG. 2 becomes a plasma confinement shape that is inclined by 45 degrees, and becomes a plasma confinement shape that becomes elongated in the north pole direction. In this case, the direction of the slit 8 was arranged to match the direction of the opposing north pole.

また、第2図に示したプラズマ閉じ込め形状7に対し、
スリット8を回転させて引出されるイオンビーム電流を
測定したところ、第2図の配置で最大の値が得られた。
Furthermore, for the plasma confinement shape 7 shown in FIG.
When the ion beam current extracted by rotating the slit 8 was measured, the maximum value was obtained with the arrangement shown in FIG. 2.

なお、第1図の実施例でのプラズマ室内径は直径約92
mm、長さは200mmである。またマイクロ波として
は2.45 GHzのものを使用した。ソレノイドコイ
ルで発生する磁場強度としては0.5〜1.5キロガウ
ス、永久磁石としてはサマリウム・コバルト製を使い、
その表面磁束密度は9キロガウスである。第2図の配置
で3kVの引出し電圧を電極に印加したところ、2mm
×40mmのスリット寸法に対し、従来にない1 mA
 / cm2以上の高い引出し電流密度が得られた。本
発明によれば、マイクロ波多価イオン源に対し大電流ビ
ームを効率良く引出せる効果がある0 〔発明の効果〕 本発明によれば、マイクロ波放電によって試料ガスの多
価イオンを発生させることができ、かつ発生させた多価
イオンを効率良くイオンビームとして引出すことができ
るので、高エネルギーイオン打込み装置用イオン源の実
用に際し、性能向上に関し著しい効果がある。
In addition, the plasma chamber inner diameter in the embodiment shown in FIG. 1 is approximately 92 mm in diameter.
mm, and the length is 200 mm. Furthermore, a 2.45 GHz microwave was used. The magnetic field strength generated by the solenoid coil is 0.5 to 1.5 kilogauss, and the permanent magnet is made of samarium cobalt.
Its surface magnetic flux density is 9 kilogauss. When an extraction voltage of 3 kV was applied to the electrode in the arrangement shown in Figure 2, a voltage of 2 mm
Unprecedented 1 mA for a slit size of ×40 mm
A high extraction current density of /cm2 or more was obtained. According to the present invention, it is possible to efficiently extract a large current beam from a microwave multiply charged ion source. [Effects of the Invention] According to the present invention, multiply charged ions of a sample gas can be generated by microwave discharge. Since it is possible to efficiently extract the generated multivalent ions as an ion beam, there is a significant effect in improving the performance of an ion source for a high-energy ion implantation device when put into practical use.

高エネルギーでイオンを打込むことにより、表面奥深く
の材料改質や3次元的な表層改質が可能となる。一方短
時間で必要なイオン1を材料に打込めるということは、
それだけ生産性が向上するということであり、コストが
安く済むことにも連がる。
By implanting ions with high energy, material modification deep into the surface and three-dimensional surface modification are possible. On the other hand, the fact that the necessary ions 1 can be implanted into the material in a short time means that
This means that productivity will improve, which will also lead to lower costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本的な実施例の構成図であり、第2
図は第1図の断面概念図である。 1・・・ソレノイドコイル、2・・・イオンビーム、3
・・・プラズマ室、4・・・絶縁物、5・・・引出し電
極系、6・・・永久磁石、7・・・プラズマ領域、8・
・・引出し電極スリット
FIG. 1 is a configuration diagram of a basic embodiment of the present invention, and FIG.
The figure is a conceptual cross-sectional view of FIG. 1. 1...Solenoid coil, 2...Ion beam, 3
... plasma chamber, 4... insulator, 5... extraction electrode system, 6... permanent magnet, 7... plasma region, 8...
・Extractor electrode slit

Claims (1)

【特許請求の範囲】 1、マイクロ波を供給し試料ガスのプラズマを生成する
プラズマ室、このプラズマ室内に磁場を発生させるソレ
ノイドコイル及びプラズマ室外壁近傍に複数個設けた永
久磁石又は電磁石、プラズマ室からイオンビームを引出
すための引出し電極系とからなるマイクロ波イオン源に
おいて、上記ソレノイドコイルの作る磁場と上記永久磁
石又は電磁石の作る磁場との合成磁場で形成されるプラ
ズマ閉じ込め領域断面形状の長手方向と引出し電極スリ
ット方向とを一致させて配置したことを特徴とするマイ
クロ波多価イオン源。 2、プラズマ室外壁近傍に配置する永久磁石あるいは電
磁石を、イオンビーム引出し方向に沿って二個以上一列
に並べて配置すると共に、これらの一群の極性は全て同
極とし、且つこの様な一群をプラズマ室外壁周方向に沿
って配置したことを特徴とする特許請求の範囲第1項記
載のマイクロ波多価イオン源。 3、プラズマ室外壁周方向に設ける永久磁石又は電磁石
の磁場の極性が交互になるように配置したことを特徴と
する特許請求の範囲第1項記載のマイクロ波多価イオン
源。
[Claims] 1. A plasma chamber that supplies microwaves to generate plasma of sample gas, a solenoid coil that generates a magnetic field in the plasma chamber, a plurality of permanent magnets or electromagnets installed near the outer wall of the plasma chamber, and a plasma chamber. In a microwave ion source consisting of an extraction electrode system for extracting an ion beam from a plasma confinement region, the plasma confinement region is formed by a composite magnetic field of a magnetic field created by the solenoid coil and a magnetic field created by the permanent magnet or electromagnet. A microwave multivalent ion source characterized in that the direction of the extraction electrode slit is aligned with the direction of the slit of the extraction electrode. 2. Two or more permanent magnets or electromagnets placed near the outer wall of the plasma chamber are arranged in a line along the ion beam extraction direction, and the polarity of each group is the same, and such a group is The microwave multivalent ion source according to claim 1, wherein the microwave multivalent ion source is arranged along the circumferential direction of an outdoor wall. 3. The microwave multiply charged ion source according to claim 1, wherein the permanent magnets or electromagnets provided in the circumferential direction of the outer wall of the plasma chamber are arranged so that the polarity of the magnetic field is alternated.
JP62061029A 1987-03-18 1987-03-18 Microwave multi-charged ion source Expired - Lifetime JP2667826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62061029A JP2667826B2 (en) 1987-03-18 1987-03-18 Microwave multi-charged ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62061029A JP2667826B2 (en) 1987-03-18 1987-03-18 Microwave multi-charged ion source

Publications (2)

Publication Number Publication Date
JPS63228549A true JPS63228549A (en) 1988-09-22
JP2667826B2 JP2667826B2 (en) 1997-10-27

Family

ID=13159460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62061029A Expired - Lifetime JP2667826B2 (en) 1987-03-18 1987-03-18 Microwave multi-charged ion source

Country Status (1)

Country Link
JP (1) JP2667826B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160368A (en) * 1999-12-01 2001-06-12 Sumitomo Eaton Noba Kk Ion source
WO2011007546A1 (en) * 2009-07-16 2011-01-20 キヤノンアネルバ株式会社 Ion-beam generating device, substrate processing device, and manufacturing method of electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679900A (en) * 1979-12-05 1981-06-30 Hitachi Ltd Ion source
JPS60140635A (en) * 1983-12-07 1985-07-25 コミツサリア ア レネルジイ アトミツク Multicharge ion source
JPS61151952A (en) * 1984-12-26 1986-07-10 Ulvac Corp Ion source pick-out slit for focused beam generation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679900A (en) * 1979-12-05 1981-06-30 Hitachi Ltd Ion source
JPS60140635A (en) * 1983-12-07 1985-07-25 コミツサリア ア レネルジイ アトミツク Multicharge ion source
JPS61151952A (en) * 1984-12-26 1986-07-10 Ulvac Corp Ion source pick-out slit for focused beam generation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160368A (en) * 1999-12-01 2001-06-12 Sumitomo Eaton Noba Kk Ion source
WO2011007546A1 (en) * 2009-07-16 2011-01-20 キヤノンアネルバ株式会社 Ion-beam generating device, substrate processing device, and manufacturing method of electronic device
JP5216918B2 (en) * 2009-07-16 2013-06-19 キヤノンアネルバ株式会社 Ion beam generator, substrate processing apparatus, and electronic device manufacturing method

Also Published As

Publication number Publication date
JP2667826B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
EP0184812B1 (en) High frequency plasma generation apparatus
RU2344577C2 (en) Plasma accelerator with closed electron drift
US6346768B1 (en) Low energy ion gun having multiple multi-aperture electrode grids with specific spacing requirements
US4587430A (en) Ion implantation source and device
US7439526B2 (en) Beam neutralization in low-energy high-current ribbon-beam implanters
CN104583589A (en) Ion accelerators
EP0639939B1 (en) Fast atom beam source
Goncharov et al. Manipulating large-area, heavy metal ion beams with a high-current electrostatic plasma lens
US6242749B1 (en) Ion-beam source with uniform distribution of ion-current density on the surface of an object being treated
RU149963U1 (en) ION TRIODE FOR NEUTRON GENERATION
JPS63228549A (en) Microwave polyvalent ion source
KR101378384B1 (en) Cyclotron
US20020033446A1 (en) Neutral beam processing apparatus and method
JPH06310297A (en) Generating method and device of low energy neutral particle beam
White et al. CUSPIG Ion Source for Large and Very Large Ribbon Ion Beam Systems
JP3213135B2 (en) Fast atom beam source
JP2804024B2 (en) Microwave ion source
JPH0696680A (en) Metal ion source
JPH04181636A (en) Metal ion source
JP2834147B2 (en) Method of forming charged particle beam
Schlapp et al. A 14 GHz electron-cyclotron-resonance (ECR) ion source for ion-electron collision studies
Spädtke et al. The influence of axial magnetic fields on the extraction of an ion beam from a plasma source
RU2214016C2 (en) Multicasp source of ions with double-stage electric discharge
JPS598949B2 (en) ion source device
JPH06101394B2 (en) Fast atom beam source