JPS63227731A - Manufacture of porous amorphous-alloy compact - Google Patents

Manufacture of porous amorphous-alloy compact

Info

Publication number
JPS63227731A
JPS63227731A JP5879487A JP5879487A JPS63227731A JP S63227731 A JPS63227731 A JP S63227731A JP 5879487 A JP5879487 A JP 5879487A JP 5879487 A JP5879487 A JP 5879487A JP S63227731 A JPS63227731 A JP S63227731A
Authority
JP
Japan
Prior art keywords
alloy
pressure
amorphous
porous amorphous
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5879487A
Other languages
Japanese (ja)
Other versions
JPH05455B2 (en
Inventor
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Takao Yokumoto
貴生 浴本
Takeshi Yamamoto
毅 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sailor Pen Co Ltd
Original Assignee
Sailor Pen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sailor Pen Co Ltd filed Critical Sailor Pen Co Ltd
Priority to JP5879487A priority Critical patent/JPS63227731A/en
Publication of JPS63227731A publication Critical patent/JPS63227731A/en
Publication of JPH05455B2 publication Critical patent/JPH05455B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily manufacture a porous amorphous-alloy compact having high strength, by subjecting an amorphous alloy with a specific grain size to pressure sintering by specifying temp. and pressure, respectively. CONSTITUTION:The amorphous-alloy grains granulated by means of an agitation water cooling method, etc., are classified, and a pressing die is filled with the alloy grains of >=450mu grain size. At this time, as to the shape of the alloy grains, a flat flaky shape or irregular shape is preferred to a complete spherical shape. Subsequently, the alloy grains are heated to a temp. between (initial crystallization temp. -100 deg.C) and 100 deg.C, compacted at a pressure of >=100MPa, preferably >=400MPa, held for about 60-1,800sec, and pressure-sintered so as to be formed into a porous amorphous-alloy compact. Moreover, it is preferable that pressurization alone is temporarily released after pressure sintering and holding is applied at the above heating temp. for about 60-1,800sec to carry out no-load annealing. In this way, the porous amorphous-alloy compact having high porosity and strength can be easily manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多孔質アモルファス合金圧着体の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a pressed porous amorphous alloy body.

〔従来技術とその問題点〕[Prior art and its problems]

アモルファス合金は、従来の結晶金JiAに比べ。 Amorphous alloy compared to conventional crystalline gold JiA.

高強度、高耐摩耗性、高耐食性、高’11磁率などの優
れた特性を示し、コー業材料として注目を集めており、
すでに実用化されているものも多い、しかし、アモルフ
ァス合金が得られる形状は、現在のところ、if Vf
F状、 an線状、粉末状などに限られており、このア
モルファス合金がより広範囲に利用されるためには、形
状上の制約を克服することが重要である。このため、任
意の形状のバルク状アモルファス合金を得るために、衝
撃銃法、爆薬法、加圧焼結法などによる粉体圧着条件の
検討がなされているが、衝撃銃法や爆薬法は特殊な装置
を必要とし、工程が複雑で生産性が低い問題点があるた
めに、従来の粉末冶金技術を導入できて量産性が高い加
圧焼結法が注目されている。
It exhibits excellent properties such as high strength, high wear resistance, high corrosion resistance, and high '11 magnetic coefficient, and is attracting attention as a coating material.
Many of them have already been put into practical use, but at present, the shape that allows amorphous alloys to be obtained is if Vf
It is limited to F-shaped, annular-shaped, powdered, etc. shapes, and in order for this amorphous alloy to be used more widely, it is important to overcome the shape limitations. Therefore, in order to obtain bulk amorphous alloys of arbitrary shapes, powder compaction conditions have been investigated using the impact gun method, explosive method, pressure sintering method, etc.; Because of the problems of requiring specialized equipment, complicated processes, and low productivity, the pressure sintering method, which can incorporate conventional powder metallurgy technology and has high mass productivity, is attracting attention.

しかしながら、アモルファス状態を維持しながら、粉体
を加圧焼結する必要があるために、加圧時に結晶化開始
温度以上には温度を上げられない。
However, since it is necessary to pressurize and sinter the powder while maintaining an amorphous state, the temperature cannot be raised above the crystallization initiation temperature during pressurization.

このため、従来の結晶合金粉末の加圧焼結とは異なり、
結晶化開始温度以下で生じるアモルファス合金特有の著
しい粘性変形を利用することが試みられている。しかし
ながら、加圧中にアモルファス合金の粘性が増加してし
まい、十分な加圧焼結が困難になることが判明した。そ
の結果、アモルファス合金圧粉体の成形可能な加圧条件
を十分に検討する必要があった。
Therefore, unlike conventional pressure sintering of crystalline alloy powder,
Attempts have been made to utilize the significant viscous deformation characteristic of amorphous alloys that occurs below the crystallization initiation temperature. However, it has been found that the viscosity of the amorphous alloy increases during pressurization, making it difficult to perform sufficient pressure sintering. As a result, it was necessary to thoroughly examine the pressurizing conditions under which the amorphous alloy green compact could be formed.

ところで、アモルファス合金粉末を用いた多孔質圧着体
が得られれば、軽量であって高耐摩耗性や高耐食性、高
透磁率などの優れた特性を有する新しい材料が得られる
可能性があり、ろ過材、触媒材料、複合材料の骨材、磁
性体コア材などへの応用が考えられる。しかし、従来の
技術ではこの多孔質圧着体を製造するのが困難であり、
しかも強度が非常に弱いものしか得られなかった。
By the way, if a porous compressed body using amorphous alloy powder can be obtained, it is possible to obtain a new material that is lightweight and has excellent properties such as high wear resistance, high corrosion resistance, and high magnetic permeability. Possible applications include materials, catalyst materials, aggregates for composite materials, and magnetic core materials. However, it is difficult to manufacture this porous crimped body using conventional techniques;
Moreover, only a product with very low strength could be obtained.

〔発明の目的〕[Purpose of the invention]

そこで本発明は、強度の高い多孔質アモルファス合金圧
着体を加圧焼結により製造する方法を開発して、アモル
ファス特有の物性を利用した新しい工業材料を製造する
方法を確立することを目的とする。
Therefore, the purpose of the present invention is to develop a method for manufacturing a high-strength porous amorphous alloy compressed body by pressure sintering, and to establish a method for manufacturing a new industrial material that utilizes the physical properties unique to amorphous. .

〔発明の構成とその作用〕[Structure of the invention and its operation]

本発明者らは、強度の大きい多孔質アモルファス合金圧
着体を得るための各種の条件を鋭意調査研究した結果1
本発明を完成したものであり、その構成は、450μm
以上に分級されたアモルファス合金粒子を結晶化開始温
度のl OO℃以下から100℃までの温度に加熱して
100 M P a以上の圧力で加圧することを特徴と
する。
As a result of intensive investigation and research into various conditions for obtaining a porous amorphous alloy crimped body with high strength, the present inventors found that
The present invention has been completed, and its structure is 450 μm
The method is characterized in that the amorphous alloy particles classified as described above are heated to a temperature from below the crystallization start temperature of 100°C to 100°C and pressurized at a pressure of 100 MPa or more.

使用するアモルファス合金粒子は、種々の急冷凝固装置
によって製造することができる0例えば、攪拌水中冷却
法により造粒させると粒径がおよそ100μm以上のア
モルファス球状合金粒子が得られる。このようなアモル
ファス球状合金粒子を加圧用ダイスに充填し、所定温度
に加熱して所定時間加圧焼結する0本発明の特徴は45
0μm以上に分級された大きなアモルファス合金粒子を
用いることにあり、これを加圧すると、細かい粒子より
も粒子間の接触面で大きな接触荷重が生じて粘性変形が
起り、また1表面の酸化被膜が破壊されて密着性が増大
する。従って、加圧温度が、例えば、100℃程度の極
めて低い温度であっても加圧焼結出来るようになり、許
容温度範囲が広くなるために焼結体の製造が非常に容易
になるとともに、密着性が大きいために、空隙率が大き
いにもかかわらず強度の高い多孔質アモルファス合金圧
着体を製造できる。なお、加圧温度が結晶化開始温度か
ら100℃以下の温度より高い温度であれば、空隙率が
小さくなり、目的の多孔質焼結体にならない、4507
日n未満の粒径では、合金粒子間の接触面での接触(1
r重が小さく、表面の酸化被IEJが破壊されに<<、
シかも粘性変化が容易に生じないために、加圧焼結可能
な温度は結晶化開始温度に近い極めて狭い範囲に限定さ
れ、焼結体の強度が低くて空隙率も小さくなる0合金粒
子の形状は完全な球状よりも偏平なフレイク状ないし不
規則形状の方か密着強度が強くなるので好ましい0次に
、加圧力は少なくとも100 M P a以上が必要で
あり、100MPa以下では良好な圧着体が得られない
、好ましくは400 M P a以上の加圧力がよいが
、この加圧力をあまり大きくしても粒子の圧着性の向上
は少ない、一方、加圧時間は温度が高いほど短時間です
むが、概ね3秒以上。
The amorphous alloy particles used can be produced by various rapid solidification apparatuses. For example, amorphous spherical alloy particles having a particle size of approximately 100 μm or more can be obtained by granulation by a stirring water cooling method. The present invention has 45 characteristics: such amorphous spherical alloy particles are filled into a press die, heated to a predetermined temperature, and sintered under pressure for a predetermined time.
The reason is that large amorphous alloy particles classified to 0 μm or more are used, and when these are pressurized, a larger contact load is generated at the contact surface between the particles than that of fine particles, causing viscous deformation, and the oxide film on one surface is Destruction increases adhesion. Therefore, pressure sintering can be performed even if the pressure temperature is extremely low, for example, about 100°C, and the permissible temperature range is widened, making it very easy to manufacture sintered bodies. Because of the high adhesion, it is possible to produce a porous amorphous alloy compressed body with high strength despite having a large porosity. Note that if the pressing temperature is higher than 100°C or less from the crystallization start temperature, the porosity will be small and the desired porous sintered body will not be obtained.
For grain sizes less than 1 day, contact at the interface between alloy particles (1
The r weight is small and the oxidized IEJ on the surface is not destroyed.
However, since viscosity changes do not easily occur, the temperature at which pressure sintering can be performed is limited to an extremely narrow range close to the crystallization start temperature, and the sintered body has low strength and porosity, resulting in low alloy particles. It is preferable to have a flat flake or irregular shape rather than a perfect sphere because the adhesion strength will be stronger.The pressing force must be at least 100 MPa or more, and if it is less than 100 MPa, a good crimped body is obtained. It is preferable to use a pressure of 400 MPa or more, but even if this pressure is increased too much, there will be little improvement in the adhesion of the particles.On the other hand, the higher the temperature, the shorter the pressure time. However, it is generally more than 3 seconds.

好ましくは60〜1800秒がよく、これ以上いたずら
に長くしても効果が少ないばかりか加圧中に結晶化する
危険性がある。
Preferably, the time is 60 to 1800 seconds; if the time is unnecessarily extended beyond this, not only will the effect be less, but there is a risk of crystallization during pressurization.

以上の加圧条件で良好な焼結体かえられるが。A good sintered body can be obtained under the above pressure conditions.

アモルファス合金に特有の性質のために、加圧の過程で
合金の粘性が増加して変形が十分に起らなくなる現象が
兄出され、このために緻密化が停滞する傾向がある。従
って、加圧処理を行った後に、一旦加圧のみを解除し、
その加熱温度でさらに60〜1800秒程度保持して無
負荷焼きなましを行うのが好ましい、この焼きなましに
よって粘性の増大が緩和され、再び加圧すると加圧力が
十分に伝達されて密着強度も大きくなる。必要に応じて
、この加圧と焼きなましの操作を繰り返して多段階加圧
焼結を行い、所定の空隙率と強度を有する多孔質アモル
ファス合金圧着体を製造することができる。
Due to the unique properties of amorphous alloys, the viscosity of the alloy increases during the pressurization process, resulting in a phenomenon in which sufficient deformation does not occur, and densification tends to stagnate. Therefore, after performing pressure treatment, only the pressure is released,
It is preferable to perform no-load annealing by holding the heating temperature for another 60 to 1800 seconds.This annealing alleviates the increase in viscosity, and when pressurized again, the pressure is sufficiently transmitted and the adhesion strength increases. If necessary, this pressing and annealing operation is repeated to perform multi-step pressure sintering, thereby producing a porous amorphous alloy compressed body having a predetermined porosity and strength.

以上に述べた製造方法により1例えば、Pd−Ni−8
i、Pd−Ni−8i−B、Pd−Cu−8i、Pd−
Cu−8i−T3.Pd−N1−P。
By the manufacturing method described above, 1, for example, Pd-Ni-8
i, Pd-Ni-8i-B, Pd-Cu-8i, Pd-
Cu-8i-T3. Pd-N1-P.

Pd−N1−P−B、 Pt−N1−P、 Pt−Ni
 −P −Ijなどの貴金属合金をはじめ、F e −
P−C、F e −S i −B 、 G o −S 
i −B 、 G o −Fe−8i−B、Co−Fe
−P−C,Fe−Zr、Go−Zr、Fe−Go−Zr
なとの鉄族磁性合金、Ni−Zr、pt−Zr合金など
の多孔質アモルファス合金圧着体を得ることができる。
Pd-N1-P-B, Pt-N1-P, Pt-Ni
Including noble metal alloys such as -P -Ij, Fe -
P-C, Fe-Si-B, Go-S
i-B, Go-Fe-8i-B, Co-Fe
-P-C, Fe-Zr, Go-Zr, Fe-Go-Zr
A compressed body of porous amorphous alloy such as iron group magnetic alloy, Ni-Zr, and pt-Zr alloy can be obtained.

〔実施例〕〔Example〕

以下に実施例によって本発明を具体的に説明する。 The present invention will be specifically explained below using Examples.

実施例1 合金組成がN i 114 P d ts P *a 
(N iが64原子%、Pdが16原子%、Pが20原
子%をこのように表示する。以下同じ、)の溶湯を攪拌
水中冷却法により造粒した。第1図は攪拌水中冷却装置
の概略図を示す、溶融炉や保温炉などの炉体1内に合金
の溶湯2を充填する。炉体1の底面には内径が300μ
mのノズル3を取付け、溶湯2の上面を0゜4 M P
 aのアルゴンガスで加圧す葛、冷却槽6の底面中央に
攪拌機5が設置され、内部には冷却水4が入っている。
Example 1 Alloy composition is N i 114 P d ts P *a
A molten metal (hereinafter expressed as 64 at% Ni, 16 at% Pd, and 20 at% P; the same applies hereinafter) was granulated by a stirring water cooling method. FIG. 1 shows a schematic diagram of a stirred water cooling device, in which a molten metal 2 of an alloy is filled into a furnace body 1 such as a melting furnace or a heat-retaining furnace. The bottom of the furnace body 1 has an inner diameter of 300μ.
Attach the nozzle 3 of m and press the top surface of the molten metal 2 at 0°4 M P
A stirrer 5 is installed at the center of the bottom of the cooling tank 6, and cooling water 4 is contained inside.

そして、攪拌機5を動作させれば所定の流速で冷却水4
が回転する。しかして。
When the stirrer 5 is operated, the cooling water 4 is heated at a predetermined flow rate.
rotates. However.

攪拌機5を動作させて冷却水4を流速が1.7m/Sで
回転させ、溶湯2をl1m/sの流速で連続的に冷却水
4内に注入し、アモルファス球状合金粒子を得た。これ
を450〜1000μmに分級し、これ以外の大きさの
ものを除外した。
The stirrer 5 was operated to rotate the cooling water 4 at a flow rate of 1.7 m/s, and the molten metal 2 was continuously injected into the cooling water 4 at a flow rate of 11 m/s to obtain amorphous spherical alloy particles. This was classified into 450-1000 micrometers, and the thing of size other than this was excluded.

第2図は、ホットプレス装置の概略図であるが、炉体7
内にはモリブデンヒータ8が多数配設されており、中央
にはマルエージング鋼製のダイス9が配置されている。
FIG. 2 is a schematic diagram of the hot press equipment, and the furnace body 7
A large number of molybdenum heaters 8 are arranged inside, and a maraging steel die 9 is arranged in the center.

ダイス9の温度は熱電対lOによって測定される。この
ダイス9内に分級した合金粒子11を充填して所定温度
に加熱し、同じくマルエージング鋼製のラム12にて上
下から600MPaの圧力で1800秒間加圧した。そ
して、加圧のみを解除した無負荷焼きなましを1800
秒間行った後に、再び同じ条件で加圧した。
The temperature of the die 9 is measured by a thermocouple lO. This die 9 was filled with classified alloy particles 11, heated to a predetermined temperature, and pressurized from above and below at a pressure of 600 MPa for 1800 seconds using a ram 12 also made of maraging steel. Then, no-load annealing with only the pressure removed was performed at 1800
After a few seconds, pressure was applied again under the same conditions.

この加圧温度TPは、結晶化開始温度Tx以下の種々の
温度に変化させ、多孔質アモルファス合金圧着体を得ら
れる温度条件を求めた。その結果、多孔質アモルファス
合金圧着体は、Tp=100℃でも得ることができた。
The pressurizing temperature TP was varied to various temperatures below the crystallization start temperature Tx, and temperature conditions under which a porous amorphous alloy compact could be obtained were determined. As a result, a porous amorphous alloy pressed body could be obtained even at Tp=100°C.

そして、その特性は、空隙率が48%、圧縮強度が2.
3 0Pa、ビッカース硬度が700DPNであった。
Its characteristics include a porosity of 48% and a compressive strength of 2.
30 Pa, and Vickers hardness was 700 DPN.

このように、加圧温度Tpが極めて低い温度で製造が可
能であり、得られた多孔質アモルファス合金圧着体は。
In this way, the porous amorphous alloy compacted body obtained can be manufactured at an extremely low pressurizing temperature Tp.

空隙率と圧縮強度が大きく、ろ過材、触媒材料や電極材
料などの用途に幅広く利用することができる。
It has high porosity and compressive strength, and can be used in a wide range of applications such as filter media, catalyst materials, and electrode materials.

実施例2 以下の条件で実施例1と同様に多孔質アモルファス合金
圧着体を製造したが、その特性は下記の通りであった。
Example 2 A porous amorphous alloy crimped body was produced in the same manner as in Example 1 under the following conditions, and its properties were as follows.

合金種117   Pd、、Cu5Si1.B。Alloy type 117 Pd, Cu5Si1. B.

冷却方法  攪拌水中冷却法 分   級   1000〜1600μm加圧圧力  
600 M P a 加圧時間  600秒 焼きなまし 600秒 焼きなまし後に同条件で再加圧 加圧温度Tp=150℃ 空隙率 53% 圧縮強度  2.0GPa ビッカース硬度 450D1’N 実施例1と同様に低い加圧温度゛1゛pで製造でき、空
隙率と強度の大きい多孔質アモルファス合金圧着体を得
ることができた。
Cooling method Cooling method in stirred water Classification 1000-1600μm Pressure
600 MPa Pressure time 600 seconds annealing After 600 seconds annealing, re-pressing under the same conditions Pressing temperature Tp = 150°C Porosity 53% Compressive strength 2.0GPa Vickers hardness 450D1'N Low pressure as in Example 1 It was possible to obtain a porous amorphous alloy pressed body that could be produced at a temperature of 1 p and had a high porosity and strength.

実施例3 以下の条件で多孔質アモルファス合金圧着体を製造した
が、用いたアモルファス合金粒子はキャビテーション法
により造粒した。第3図はキャビテーション造粒装置の
概略図を示す1石英管るつぼ14内で合金15を溶融し
た後、るつぼ14先端の小孔16よりシリコン窒化物製
の一対のロール14の間隙(約200μm)に噴出する
と、溶湯は粒状に分断される。この分断された粒子はタ
ンク17の液体によって急冷される。
Example 3 A porous amorphous alloy pressed body was manufactured under the following conditions, and the amorphous alloy particles used were granulated by a cavitation method. FIG. 3 shows a schematic diagram of a cavitation granulation device. After melting alloy 15 in a quartz tube crucible 14, a small hole 16 at the tip of the crucible 14 is inserted into the gap (approximately 200 μm) between a pair of silicon nitride rolls 14. When ejected, the molten metal is divided into particles. The separated particles are rapidly cooled by the liquid in the tank 17.

合金種類  Go−BSltaBts 分   級   450μm以下 加圧圧力  950 M P a 加圧時間  600秒 加圧温度Tp=400℃ (’l’x=500℃) 空隙率 77% 圧縮強度  2.5GPa ビッカース硬度 850DPN 実施例1と同様に空vK率と強度の大きい多孔質アモル
ファス合金圧着体を得ることができた。
Alloy type Go-BSltaBts Classification 450μm or less Pressure pressure 950 MPa Pressure time 600 seconds Pressure temperature Tp = 400℃ ('l'x = 500℃) Porosity 77% Compressive strength 2.5GPa Vickers hardness 850DPN Implementation As in Example 1, a porous amorphous alloy crimped body with a high void vK ratio and high strength could be obtained.

比較例1 以下の条件で多孔質アモルファス合金圧着体を製造した
が、その特性は下記の通りであった。
Comparative Example 1 A porous amorphous alloy crimped body was manufactured under the following conditions, and its properties were as follows.

合金種類  Ni@4Pd1. P、。Alloy type Ni@4Pd1. P.

冷却方法  攪拌水中冷却法 分   級   100〜300 tt m加圧圧力 
 600 M P a 加圧時間  1800秒 焼きなまし 1800秒 焼きなまし後に同条件で再加圧 加圧温度Tp=220〜370℃ 空隙率 20% 圧縮強度  1 、3〜1 、6 G P aビッカー
ス硬度 650〜670DPNこの比較例では1合金粒
子が小さいために、良好な結果を得るための加圧温度′
1゛Pが高くて範囲が狭く、空隙率と強度も低かった。
Cooling method Cooling method in stirred water Classification 100-300 tt m Pressure
600 MPa Pressure time 1800 seconds annealing Re-pressing under the same conditions after 1800 seconds annealing Pressing temperature Tp = 220-370℃ Porosity 20% Compressive strength 1, 3-1, 6 GPa Vickers hardness 650-670DPN In this comparative example, since the alloy particles are small, the pressing temperature '
1゛P was high and the range was narrow, and the porosity and strength were also low.

比較例2 以下の条件で多孔質アモルファス合金圧着体を製造した
が、その特性は下記の通りであった。
Comparative Example 2 A porous amorphous alloy crimped body was produced under the following conditions, and its properties were as follows.

合金種1!i   P d7.c usS1x++I3
z冷却方法  攪拌水中冷却法 分   級   200〜400μm 加圧圧力  600 M P a 加圧時間  1800秒 焼きなまし 行わず 加圧温度’rp=260〜420℃ 空隙率 24% 圧縮強度  1.2〜1.4GPa ビッカース硬度 400〜450DPNこの比較例でも
1合金粒子が小さいために、良好な結果を得るための加
圧温度Tpが高くて範囲が狭く、空隙率と強度も低かっ
た。
Alloy type 1! i P d7. c usS1x++I3
z Cooling method Stirred water cooling method Classification 200-400μm Pressure pressure 600MPa Pressure time 1800 seconds Annealing No pressurization temperature rp = 260-420℃ Porosity 24% Compressive strength 1.2-1.4GPa Vickers hardness: 400 to 450 DPN Also in this comparative example, since the 1 alloy particles were small, the pressing temperature Tp required to obtain good results was high and narrow, and the porosity and strength were also low.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、450μm以上に分級
されたアモルファス合金粒子を使用して100 M P
 a以上の圧力で加圧するので、100℃程度の極めて
低い温度で合金粒子を圧着することが可能になり、製造
が容易で、かつ空隙率と強度が大きく、工業的に極めて
有用な多孔質アモルファス合金圧着体の製造方法を確立
することができる。
As explained above, the present invention uses amorphous alloy particles classified to 450 μm or more to produce 100 M P
Since it is pressurized at a pressure higher than a, it is possible to compress alloy particles at an extremely low temperature of about 100°C, and it is easy to manufacture, and has a high porosity and strength, making it an industrially extremely useful porous amorphous material. A method for manufacturing a pressed alloy body can be established.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は攪拌水中冷却装置の概略図、第2図はホットプ
レス装置の概略図、第3図はキャビテーション造粒装置
の概略図である。 1・・・溶融炉  2・・・溶湯   3・・・ノズル
4・・・冷却水  5・・・攪拌機  6・・・冷却水
槽7・・・炉体   8・・・ヒータ  9・・・ダイ
スlO・・・熱電対  11・・・合金粒子 12・・
・ラム13・・・るつぼ  14・・・ロール  15
・・・合金16・・・小孔   17・・・タンク出願
人 増   本      健 セーラー万年筆株式会社
FIG. 1 is a schematic diagram of a stirring water cooling device, FIG. 2 is a schematic diagram of a hot press device, and FIG. 3 is a schematic diagram of a cavitation granulation device. 1... Melting furnace 2... Molten metal 3... Nozzle 4... Cooling water 5... Stirrer 6... Cooling water tank 7... Furnace body 8... Heater 9... Dice lO ...Thermocouple 11...Alloy particle 12...
・Rum 13... Crucible 14... Roll 15
...Alloy 16...Small hole 17...Tank Applicant Masumoto Ken Sailor Fountain Pen Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 450μm以上に分級されたアモルファス合金粒子を結
晶化開始温度の100℃以下から100℃までの温度に
加熱して100MPa以上の圧力で加圧することを特徴
とする多孔質アモルファス合金圧着体の製造方法。
A method for producing a pressed porous amorphous alloy body, which comprises heating amorphous alloy particles classified to 450 μm or more from a crystallization start temperature of 100° C. to 100° C. and pressurizing the particles at a pressure of 100 MPa or more.
JP5879487A 1987-03-16 1987-03-16 Manufacture of porous amorphous-alloy compact Granted JPS63227731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5879487A JPS63227731A (en) 1987-03-16 1987-03-16 Manufacture of porous amorphous-alloy compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5879487A JPS63227731A (en) 1987-03-16 1987-03-16 Manufacture of porous amorphous-alloy compact

Publications (2)

Publication Number Publication Date
JPS63227731A true JPS63227731A (en) 1988-09-22
JPH05455B2 JPH05455B2 (en) 1993-01-06

Family

ID=13094482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5879487A Granted JPS63227731A (en) 1987-03-16 1987-03-16 Manufacture of porous amorphous-alloy compact

Country Status (1)

Country Link
JP (1) JPS63227731A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7597840B2 (en) * 2005-01-21 2009-10-06 California Institute Of Technology Production of amorphous metallic foam by powder consolidation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7597840B2 (en) * 2005-01-21 2009-10-06 California Institute Of Technology Production of amorphous metallic foam by powder consolidation
USRE47748E1 (en) * 2005-01-21 2019-12-03 California Institute Of Technology Production of amorphous metallic foam by powder consolidation

Also Published As

Publication number Publication date
JPH05455B2 (en) 1993-01-06

Similar Documents

Publication Publication Date Title
KR100829648B1 (en) Process for producing alloy containing dispersed oxide
JP3884618B2 (en) Method of uniaxial compression of agglomerated spherical metal powder
AU724707B2 (en) Pressed body of amorphous magnetically soft alloy powder and process for producing same
JPH08209263A (en) Compacted article and its production
US3811878A (en) Production of powder metallurgical parts by preform and forge process utilizing sucrose as a binder
CA1152715A (en) Method of producing large objects from rapidly quenched non-equilibrium powders
US3297415A (en) Dispersion strengthened ultra-fine wires
JPS63227731A (en) Manufacture of porous amorphous-alloy compact
JP3325390B2 (en) Metal powder for manufacturing parts by compression molding and sintering and method for manufacturing the powder
JPH02145703A (en) High strength alloy steel powder for powder metallurgy
US4569822A (en) Powder metal process for preparing computer disk substrates
EP1091819A1 (en) Aqueous molding compositions for powders of stainless steel, intermetallic compounds and/or metal matrix composites
JPS63227730A (en) Manufacture of high-density amorphous compact
US5494541A (en) Production of aluminum alloy
US6967001B2 (en) Method for sintering a carbon steel part using a hydrocolloid binder as carbon source
JPS5913037A (en) Production of w-ni-fe sintered alloy
JPS59177301A (en) Aluminum or alloy powder and powder forging method
RU2032496C1 (en) Method of obtaining aluminides of transition metals
JPH02259029A (en) Manufacture of aluminide
US3199331A (en) Process for the extrusion of ultra-fine wires
JPH055881B2 (en)
RU2158779C1 (en) Method of production of metal-matrix composite
JPS6263601A (en) Production of rolling material for ni-ti alloy
JPH07278693A (en) Production of tungsten-based sintered heavy alloy
JPS63166901A (en) Fe-si-a alloy powder