JPS63227710A - Method for heating raw material in arc furnace - Google Patents

Method for heating raw material in arc furnace

Info

Publication number
JPS63227710A
JPS63227710A JP62062121A JP6212187A JPS63227710A JP S63227710 A JPS63227710 A JP S63227710A JP 62062121 A JP62062121 A JP 62062121A JP 6212187 A JP6212187 A JP 6212187A JP S63227710 A JPS63227710 A JP S63227710A
Authority
JP
Japan
Prior art keywords
raw material
heating
furnace
fuel
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62062121A
Other languages
Japanese (ja)
Inventor
Saburo Sugiura
杉浦 三朗
Junichi Tsubokura
坪倉 淳一
Tetsuo Okamoto
岡本 徹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP62062121A priority Critical patent/JPS63227710A/en
Publication of JPS63227710A publication Critical patent/JPS63227710A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To efficiently heat raw material and to effectively reduce the power cost by injecting liquid fuel from a fuel injecting hole arranging at lower position than the molten metal surface in an arc furnace and burning by oxygen supplying in the furnace. CONSTITUTION:In the arc furnace 22 charging the raw material 14 of scrap, etc., the liquid fuel is injected from the injecting hole 10 arranging at the furnace bottom part 12. Together with this, the oxygen is supplied from a supply tube 15 and the above fuel is burnt. Then, preceded the above combustion, it is desirable that ignition of the liquid fuel is made to facilitate by supplying coke 16 in the furnace bottom part 12. By the combustion of the liquid fuel, the raw material 14 is efficiency heated from the inside without any oxidation thereof. This heating is executed as preceding with arc heating or as paralleling with it. Further, it is desirable that the raw material heating from upper side is used by arranging burner 15 at the position of above the molten metal surface together with the above heating. The heating of the row material 14 is changed to the arc heating at the time of reaching the prescribed temp. with <=1,000 deg.C average temp. of the raw material 14, and it is desirable to promote the refining by blowing N2 gas, etc., from the fuel injecting hole 10.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はアーク炉における原料の加熱方法に関し、詳
しくは電力コストを低減するための技術手段に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for heating raw materials in an arc furnace, and more particularly to technical means for reducing power costs.

(従来の技#i) 電気溶解炉としてのアーク炉は、炉内に装入したスクラ
ップ等原料と電極との間にアークを発生させて、そのア
ーク熱により原料を溶解するものであり、全操業費の約
40%を電力コストが占めている。
(Conventional Technique #i) An arc furnace as an electric melting furnace generates an arc between raw materials such as scrap charged into the furnace and an electrode, and melts the raw materials with the arc heat. Electricity costs account for approximately 40% of operating costs.

ところで我国における電力コストは諸外国に比べて極め
て高く、それ故に電力コストの低減は国際的競争に勝つ
ために重要な課題となっている。
Incidentally, the cost of electricity in Japan is extremely high compared to other countries, and therefore reducing electricity costs has become an important issue in order to win international competition.

このような要請の下に、従来よりかかるアーク炉操業に
おいて電力コストを低減するための種々の試みか行われ
ている。その−環として炉内に装入した原料をバーナに
より補助加熱することか行われており、工業的にある程
度定着している。具体的に言えば、第6図に示すように
アーク炉の内部にバーナ100を突入させて炉内に装入
した原料102をバーナ100の燃焼熱により予熟し、
以て原料溶解に必要な電力エネルギーを節減するのであ
る。
Under these demands, various attempts have been made to reduce the electric power cost in the operation of such arc furnaces. As part of this process, auxiliary heating of the raw material charged into the furnace is carried out using a burner, and this method has been established to some extent industrially. Specifically, as shown in FIG. 6, a burner 100 is inserted into the arc furnace, and the raw material 102 charged into the furnace is pre-ripened by the combustion heat of the burner 100.
This saves the electrical energy required for melting raw materials.

(発明が解決しようとする問題点) しかしながらこのような方法で原料を予熱した場合、原
料の表面部分のみを局部的に強く加熱してしまうために
、原料表面の酸化を促進してしまりたり、原料の棚温現
象を惹起するなどの不具合を生ずる。
(Problems to be Solved by the Invention) However, when the raw material is preheated using this method, only the surface portion of the raw material is heated locally, which may promote oxidation of the raw material surface. This causes problems such as shelf temperature phenomenon of raw materials.

またこの他、末法は原料の表面部分を加熱するにすぎず
、しかもバーナから出た高温の燃焼ガスか上方へと逃げ
てしまって原料との間で十分に熱交換されることなく排
気されてしまい、このために加熱効率が悪くなってエネ
ルギーコストの低減に十分寄与しない問題かある。
In addition, the powder method only heats the surface of the raw material, and moreover, the high-temperature combustion gas from the burner escapes upwards and is exhausted without sufficient heat exchange with the raw material. Therefore, there is a problem in that the heating efficiency deteriorates and the heating efficiency does not sufficiently contribute to the reduction of energy costs.

(問題点を解決するための手段) 本発明はこのような問題点を解決するために為されたも
のてあり、その要旨は、アーク炉内に装入した原料を溶
かしたときの溶湯面よりも下側の部位において炉内に開
口する燃料噴出口を設け、該燃料噴出口から液体燃料を
噴出させるとともに炉内に酸素を供給して該噴出した液
体燃料を燃焼させ、その燃料熱によって炉内の原料をア
ーク加熱に先行して若しくはアーク加熱と併行して加熱
することにある。
(Means for Solving the Problems) The present invention has been made to solve these problems, and its gist is that the surface of the molten metal when the raw material charged into the arc furnace is melted. A fuel spout opening into the furnace is provided in the lower part of the fuel jet, and liquid fuel is spouted from the fuel spout, and oxygen is supplied into the furnace to burn the spouted liquid fuel, and the fuel heat is used to burn the jetted liquid fuel. The purpose is to heat the raw materials in the interior prior to or in parallel with arc heating.

本発明によれば、アーク炉内に装入したスクラップ等原
料を効率良く加熱することかできる。
According to the present invention, raw materials such as scrap charged into an arc furnace can be efficiently heated.

本発明では炉内の原料を溶解した時の溶湯面(厳密には
スラブ面。以下シルレベルとする)よりも下側の部位に
燃料噴出口を形成してそこから液体燃料を噴出・燃焼さ
せるようにしているため、炉内の原料が表面側からでは
なく内部から加熱されることとなるからである。
In the present invention, a fuel spout is formed below the molten metal surface (strictly speaking, the slab surface, hereinafter referred to as sill level) when the raw materials in the furnace are melted, and liquid fuel is spouted and burned from there. This is because the raw material inside the furnace is heated from the inside rather than from the surface side.

本発明においては、シルレベル以下の部位であればどこ
に燃料噴出口を形成しても良いか、特に第1図(A)に
具体例を示すように燃料噴出口10を炉底部12に形成
した場合、即ち供給管15から酸素を供給しつつ液体燃
料を炉底部12から上に吹き上げて燃焼させた場合には
、炉内の原料14が従来熱の届き難かった下側から加熱
されることになり、しかも燃焼ガスか原料14と十分に
接触しつつ炉上部へと立ち上っていって熱交換か十分に
行われるため、原料14か効率的に加熱されるようにな
る。またこの他、液体燃料を複数の個所から噴出させて
燃焼させるようにすれば、炉内の原料14か複数個所に
おいて加熱されるようになり、加熱効率が一段と高めら
れる。
In the present invention, the fuel nozzle may be formed anywhere below the sill level, especially when the fuel nozzle 10 is formed at the bottom of the furnace 12 as shown in a specific example in FIG. 1(A). That is, when the liquid fuel is blown up from the furnace bottom 12 and combusted while supplying oxygen from the supply pipe 15, the raw material 14 in the furnace will be heated from the bottom, where heat conventionally cannot reach. Moreover, the combustion gas rises to the upper part of the furnace while fully contacting the raw material 14, and sufficient heat exchange occurs, so that the raw material 14 can be heated efficiently. In addition, if the liquid fuel is ejected from a plurality of locations and combusted, the raw material 14 in the furnace will be heated at a plurality of locations, and the heating efficiency will be further improved.

尚スクラップ(冷材)等原料14を挿入した直後の燃焼
初期においては原料14か未だ冷たく、しかも液体燃料
か真直ぐ上に噴出されることから燃焼状況が悪い場合も
ある。この場合において第1図(A)、に示すように例
えば製鋼の際に加炭材として加えられるコークス16を
噴出口10を覆うように配置しておくと、燃焼をスムー
ズに行わせることができる。噴出口10から噴出された
液体燃料かコークス16に当って炉内に万遍なく分散さ
れるとともに、出鋼直後のアーク炉においてコークス1
6はすぐに赤熱するため、噴出した液体燃料が速やかに
燃焼するようになるからてある。
In the early stage of combustion immediately after the raw material 14, such as scrap (cold material), is inserted, the raw material 14 is still cold, and furthermore, the combustion condition may be poor because the liquid fuel is jetted straight upward. In this case, if coke 16, which is added as a recarburizer during steel manufacturing, is placed so as to cover the spout 10, as shown in FIG. 1(A), combustion can be carried out smoothly. . The liquid fuel ejected from the spout 10 hits the coke 16 and is evenly dispersed in the furnace, and the coke 1 is released in the arc furnace immediately after tapping.
6 quickly becomes red hot, so the liquid fuel that is spouted out burns quickly.

本発明においては、アーク炉か1基しかない場合におい
て、生産能率を高めるために液体燃料の燃焼による原料
加熱と本来のアーク加熱とを併行して行うことができる
。この場合炉内の原料を上下両側から加熱することとな
り原料を効率的に加熱することができる。
In the present invention, when there is only one arc furnace, raw material heating by combustion of liquid fuel and original arc heating can be performed in parallel to increase production efficiency. In this case, the raw material in the furnace is heated from both the upper and lower sides, and the raw material can be heated efficiently.

ところで燃料噴出口からの液体燃料の噴出・燃焼を停止
した後、N2、 Arガス等の不活性ガスを噴出口から
噴出させることが実用上有利であり、これによって原料
溶湯が噴出口に侵入するのを阻止して噴出口の閉塞を防
止し得るのみならず、不活性ガスによる溶湯攪拌効果に
より、溶湯温度及び成分の均一化を図れる−と共に、ス
ラグ−メタル反応を促進することができる。而して噴出
口からの不活性ガスの噴出を考えた場合、かかる噴出口
を例えば第2図に示すように多数の細管18の束によっ
て形成し、これら多数の細管18から不活性ガスを噴出
させるよう・にすることが望ましい、以下具体的に例を
挙げて説明すると、ガス流体理論によれば細管n木から
のガスの流量は次式にて規定される。
By the way, it is practically advantageous to blow out an inert gas such as N2 or Ar gas from the fuel injection port after stopping the injection and combustion of the liquid fuel from the fuel injection port, thereby causing the raw material molten metal to enter the injection port. Not only can this prevent clogging of the jet nozzle, but also the molten metal stirring effect by the inert gas can equalize the temperature and components of the molten metal and promote the slag-metal reaction. When considering the spouting of inert gas from a jet nozzle, the jet nozzle is formed by a bundle of many thin tubes 18, for example, as shown in FIG. 2, and the inert gas is spouted from these many thin tubes 18. It is desirable that the flow rate of the gas from the n-tube tree is defined by the following equation, according to the gas-fluid theory.

V = 958 x 10−P o(kg/am”) 
n−s o(c+s”)・・(1) ココテ、V:ガス流量(Nm’/分) 、PG :供給
圧(kg/cm2)、 S o : 1本の管の内部断
面a (am”)である。
V = 958 x 10-P o (kg/am”)
n-s o (c+s")...(1) Cocote, V: Gas flow rate (Nm'/min), PG: Supply pressure (kg/cm2), S o: Internal cross section of one pipe a (am") ).

一方噴出口におけるガスの見掛線速度は次式で表わされ
る。
On the other hand, the apparent linear velocity of gas at the nozzle is expressed by the following equation.

v = V/(n s o)・104/60= 958
 X 10−3・10’/60・Po    ・・(2
)ここでV:見掛線速度(m/秒)である。
v = V/(ns o)・104/60= 958
X 10-3・10'/60・Po...(2
) where V: apparent linear velocity (m/sec).

本発明者等の実験によれば、噴出口における見掛線速度
■が音速度以上(v>340m/秒)でないと細管か閉
塞されてしまうことが確認されており、そこでこの値を
上式に入れてPoを求めるとP。>2.13となり、P
oが2気圧以上でないと噴出口が閉塞されることになる
According to experiments conducted by the inventors, it has been confirmed that if the apparent linear velocity at the jet nozzle is not higher than the sound velocity (v > 340 m/sec), the tube will become occluded. If you put it in and find Po, it will be P. >2.13, P
If o is not 2 atmospheres or more, the outlet will be blocked.

他方噴出口からのガス噴出に基く攪拌エネルギーは次式 %式%(3) で表わされ、この値が120ワツト/トン以下でないと
過大なスプラッシュ、即ち溶湯表面からの溶湯の飛散か
激しくなって実操業上支障が生じる。
On the other hand, the stirring energy based on the gas ejected from the nozzle is expressed by the following formula % formula % (3), and if this value is not less than 120 watts/ton, there will be excessive splash, that is, the molten metal will scatter violently from the molten metal surface. This will cause problems in actual operation.

この結果噴出口からのガスの噴出量、細管の寸法は自ず
と制約され、例えば溶鋼重量W=3トン、溶鋼温度T=
1873°に、溶鋼深さh=0.4mとした場合には第
3式からV −0,13ONm37分以下となり、これ
を(1)式に入れてns。
As a result, the amount of gas ejected from the nozzle and the dimensions of the thin tube are naturally restricted. For example, the weight of molten steel W = 3 tons, the temperature of molten steel T =
When the molten steel depth h = 0.4 m at 1873°, the third equation gives V −0,13ONm37 minutes or less, which is entered into equation (1) to obtain ns.

を求めるとn S o ” 0.0452となる。ここ
でnx2とすればS。= 0.0221iとなり、直径
に換算するとD=1.6mmφとなる。即ち内径が16
 amφの管を用いる必要がある。
If we calculate n S o ” 0.0452, here, if nx2, then S. = 0.0221i, and when converted to diameter, D = 1.6 mmφ. That is, the inner diameter is 16
It is necessary to use an amφ tube.

一方90トン炉を考えた場合、h=1.3mとして同様
の計算をするとD=1.1mmφとなる。
On the other hand, when considering a 90-ton furnace, if h = 1.3 m and the same calculation is performed, D = 1.1 mmφ.

このように、噴出口の閉塞を防止しつつ過度のスプラッ
シュを抑えながらガス噴出を行おうとすると、1本の管
径は細くするのが実用的ということになる。
In this way, in order to eject gas while preventing clogging of the ejection port and suppressing excessive splash, it is practical to reduce the diameter of each pipe.

さて本発明は加熱燃料として重油、灯油等液体燃料を用
いるものであるが、かかる燃料としてプロパンなどの気
体燃料を用いることも原理的には可能である。しかしな
がらかかる気体燃料を用いた場合、上記のように噴出口
を形成する管の径が(細く)制限されることから、エネ
ルギーの供給量が液体燃料の場合に比べて著しく少なく
なり(約1/10程度)、この意味で気体燃料を用いる
ことは実用的な面からは難しい0本発明において液体燃
料を用いるのはこのような事情に基づく。
Although the present invention uses liquid fuel such as heavy oil or kerosene as the heating fuel, it is also possible in principle to use gaseous fuel such as propane as such fuel. However, when such gaseous fuel is used, the diameter of the pipe forming the jet nozzle is limited (to be thin) as described above, so the amount of energy supplied is significantly smaller (approximately 1/ In this sense, it is difficult to use gaseous fuel from a practical standpoint.The reason why liquid fuel is used in the present invention is based on these circumstances.

上述のように、アーク炉が1基しかない場合には、液体
燃料の燃焼に基づく加熱とアーク加熱とを併行して行な
うようにすると生産能率を低下させずに電力コストの低
減を図ることができる。しかしながら原料加熱の際の熱
効率を考えた場合、一般的には比較的低温領域において
液体燃料の燃焼による加熱を先ず行い、原料が一定温度
に達したと4ろでアーク加熱に切り替えるようにした方
が有利である。この場合において生産能率を低下させな
いためには第1図に示すようにアーク炉を2基用い、而
して第1図(A)に示すように一方のアーク炉22にお
いて液体燃料の燃焼による予熱を行なう間、第1図(B
)に示すように他方のアーク炉24において電極20へ
の通電によるアーク加熱を行ない、これら予熱とアーク
加熱とを2つのアーク炉22.24間で交互に行なうよ
うにすれば、従来の生産能率を維持しつつ加熱エネルギ
ーをより効果的に節減することが可能となる。その具体
的な理由は、燃料の燃焼火炎の温度が約2000℃程度
であるのに対してアーク加熱の場合は約3000℃と高
く、両者の間に相当の温度差があることに基づく。第3
図は燃料の燃焼による加熱とアーク加熱とを併行して行
なった場合の燃料消費量と電力原単位の低減量との関係
を示したものであるが、図示のように燃料の消費量が増
えるにつれて(燃焼による加熱時間が長くなるにつれて
)電力原単位の低減率は低下して行くことが解る。この
ことは燃料の燃焼のみにより原料を加熱した時の原料平
均温度と熱効率との関係を示した第4図に明瞭に表われ
ている。図中Aは90トンアーク炉において炉底部から
液体燃料を噴き上げて原料を加熱する一方、3本の微粉
炭バーナ26(第1図(A))を用いて原料を上方から
加熱したときの原料温度−熱効率曲線であり、そしてこ
の曲線Aが1ooo’c近傍で急激に立ち下かっている
ことから解るように、原料温度か1000℃以上になる
と燃料の燃焼による加熱においては加熱効率が著しく低
下してしまう。そしてこの結果から見れば、始めに液体
燃料の燃焼による加熱を行ない、原料温度か1000 
’C以下の所定温度に達したところでアーク加熱に切り
科えるのか有利ということになるのである。
As mentioned above, if there is only one arc furnace, heating based on liquid fuel combustion and arc heating can be performed in parallel to reduce electricity costs without reducing production efficiency. can. However, when considering the thermal efficiency when heating raw materials, it is generally better to first heat the raw materials by burning liquid fuel in a relatively low temperature range, and then switch to arc heating at a certain temperature when the raw materials reach a certain temperature. is advantageous. In this case, in order not to reduce production efficiency, two arc furnaces are used as shown in Figure 1, and one arc furnace 22 is preheated by combustion of liquid fuel as shown in Figure 1 (A). While doing this, Figure 1 (B
), if arc heating is performed by energizing the electrode 20 in the other arc furnace 24, and these preheating and arc heating are performed alternately between the two arc furnaces 22 and 24, the production efficiency can be improved compared to the conventional one. It becomes possible to save heating energy more effectively while maintaining the The specific reason for this is that the temperature of the combustion flame of fuel is about 2000°C, whereas the temperature of arc heating is as high as about 3000°C, and there is a considerable temperature difference between the two. Third
The figure shows the relationship between fuel consumption and reduction in electricity consumption when heating by fuel combustion and arc heating are performed simultaneously, but as shown in the figure, fuel consumption increases. It can be seen that as the heating time by combustion becomes longer, the reduction rate of the electric power consumption rate decreases. This is clearly shown in FIG. 4, which shows the relationship between the average temperature of the raw material and thermal efficiency when the raw material is heated only by combustion of fuel. In the figure, A indicates the raw material temperature when the raw material is heated from above using three pulverized coal burners 26 (Fig. 1 (A)) while liquid fuel is jetted up from the bottom of the furnace to heat the raw material in a 90-ton arc furnace. - This is a thermal efficiency curve, and as can be seen from the fact that this curve A drops sharply near 1ooo'c, heating efficiency decreases significantly when the raw material temperature reaches 1000°C or higher when heating by burning fuel. Put it away. Based on this result, heating by combustion of liquid fuel is performed first, and the temperature of the raw material is 1,000 yen.
It is advantageous to be able to cut off arc heating when the temperature reaches a predetermined temperature below 'C.

尚、同図中Bはバーナ26による加熱のみを行なった場
合の原料温度−熱効率曲線であり、このBと上述のAと
を比較することにより、液体燃料による加熱とバーナ加
熱とを併用すると熱効率を効果的に高め得ることか解る
。このことは炉内原料の上部の温度と下部の温度とを比
べてみれば明らかである。第5図は90)−ンアーク炉
において上部より3木の微粉炭バーナ26(第1図(A
))を用いて予め350°Cに予熱された原料を加熱し
た場合(微粉炭消費量65 kg/分)の原料各部(上
部、中部、最下部)の温度変化(加熱時間に対する)を
示している0図示のようにバーナ26のみによる加熱で
は原料の表面温度か1500°C近くになっても下部は
300〜400°C程度の低い温度にしかなっていない
In addition, B in the figure is the raw material temperature-thermal efficiency curve when only heating is performed by the burner 26, and by comparing this B with the above-mentioned A, it is found that the thermal efficiency is increased when heating by liquid fuel and burner heating are used together. Understand how you can effectively increase your This becomes clear when comparing the temperature of the upper part of the raw material in the furnace with the temperature of the lower part. Figure 5 shows 90) - three wood pulverized coal burners 26 from the top in the arc furnace (Figure 1 (A)
)) is used to heat the raw material preheated to 350°C (pulverized coal consumption 65 kg/min). As shown in the figure, when heating is performed only by the burner 26, even if the surface temperature of the raw material reaches nearly 1500°C, the lower part only reaches a low temperature of about 300 to 400°C.

従って上方からの加熱エネルギーの一部を下からの加熱
エネルギーに廻せば、原料を効率的に加熱することがで
きるのである。
Therefore, if part of the heating energy from above is transferred to heating energy from below, the raw material can be heated efficiently.

以上本発明の詳細な説明したが、本発明はその主旨を逸
脱しない範囲において当業者の知識に基づき様々な変形
を加えた態様で実施することが可能である。
Although the present invention has been described in detail above, the present invention can be implemented with various modifications based on the knowledge of those skilled in the art without departing from the spirit thereof.

(発明の効果) このように、本発明はシルレベル以下の部位においてア
ーク炉内に開口する燃料噴出口を設けてここから液体燃
料を噴出させ、その燃焼エネルギーによって原料を補助
加熱するようにしたものである。
(Effects of the Invention) As described above, the present invention provides a fuel injection port opening into the arc furnace at a portion below the sill level, from which liquid fuel is ejected, and the combustion energy is used to supplementally heat the raw material. It is.

かかる本発明は、原料の局部加熱に基づく酸化、棚吊り
等を抑えつつアーク炉操業における電力コストを効果的
に低減することかでき、しかも補助加熱の際の熱効率も
良好であるなど優れた効果を奏する。
The present invention has excellent effects such as being able to effectively reduce power costs in arc furnace operation while suppressing oxidation and shelving caused by local heating of raw materials, and also having good thermal efficiency during auxiliary heating. play.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る原料加熱方法の一実施状憇を説明
するための説明図であり、第2図は本発明における燃料
噴出口の一形態を示す要部斜視図である。第3図乃至第
5図は本発明ないしその一実施態様における利点を説明
するだめの図であって、このうち第3図は燃料の燃焼に
よる加熱とアーク加熱とを併行して行なった場合の電力
原単位の変化を示す図であり、第4図はアーク炉内の原
料に対して液体燃料による加熱及びバーナ加熱を行なっ
た場合の熱効率を示す図であり、第5図はバーナ加熱の
みを行なった場合の原料各部の温度を示す図である。第
6図は補助燃焼法として従来性われている方法の一例を
示す図である。 10、燃料噴出口 12:炉底部 14:原料    22.24:アーク炉26:ハーナ 燃 孝子C1/1on) S 間(タフ“)
FIG. 1 is an explanatory view for explaining an embodiment of the raw material heating method according to the present invention, and FIG. 2 is a perspective view of essential parts showing one embodiment of the fuel injection port according to the present invention. Figures 3 to 5 are diagrams for explaining the advantages of the present invention or one embodiment thereof, and Figure 3 shows the case where heating by fuel combustion and arc heating are performed simultaneously. Figure 4 is a diagram showing changes in power consumption. Figure 4 is a diagram showing thermal efficiency when raw materials in an arc furnace are heated with liquid fuel and burner heating. Figure 5 is a diagram showing thermal efficiency when only burner heating is performed on the raw material in the arc furnace. It is a figure which shows the temperature of each part of a raw material when carrying out this process. FIG. 6 is a diagram showing an example of a conventional auxiliary combustion method. 10, Fuel spout 12: Furnace bottom 14: Raw material 22.24: Arc furnace 26: Harna fuel Takako C1/1on) S (tough)

Claims (6)

【特許請求の範囲】[Claims] (1)アーク炉内に装入した原料を溶かしたときの溶湯
面よりも下側の部位において炉内に開口する燃料噴出口
を設け、該燃料噴出口から液体燃料を噴出させるととも
に炉内に酸素を供給して該噴出した液体燃料を燃焼させ
、その燃料熱によって炉内の原料をアーク加熱に先行し
て若しくはアーク加熱と併行して加熱することを特徴と
するアーク炉における原料加熱方法。
(1) Provide a fuel spout that opens into the furnace at a location below the molten metal surface when the raw material charged into the arc furnace is melted, and liquid fuel is spouted from the fuel spout and flows into the furnace. A method for heating raw materials in an arc furnace, characterized in that oxygen is supplied to burn the ejected liquid fuel, and the raw material in the furnace is heated by the heat of the fuel prior to or in parallel with arc heating.
(2)前記燃料噴出口をアーク炉の炉底部に設け、前記
液体燃料を該炉底部より吹き上げて前記炉内の原料を下
側から加熱することを特徴とする特許請求の範囲第1項
に記載のアーク炉における原料加熱方法。
(2) The fuel injection port is provided at the bottom of the arc furnace, and the liquid fuel is blown up from the bottom of the furnace to heat the raw material in the furnace from below. The raw material heating method in the described arc furnace.
(3)前記燃料噴出口を複数個所に設け、前記炉内の原
料を該複数個所において加熱することを特徴とする特許
請求の範囲第1項若しくは第2項に記載のアーク炉にお
ける原料加熱方法。
(3) A method for heating raw material in an arc furnace according to claim 1 or 2, characterized in that the fuel injection ports are provided at a plurality of locations, and the raw material in the furnace is heated at the plurality of locations. .
(4)前記アーク炉内に原料を装入した後前記液体燃料
の燃焼による予熱をアーク加熱に先行して若しくはアー
ク加熱と併行して行い、該原料の平均温度が1000℃
以下の所定の温度に達したところで通常のアーク加熱に
移行することを特徴とする特許請求の範囲第1項乃至第
3項の何れかに記載のアーク炉における原料加熱方法。
(4) After charging the raw material into the arc furnace, preheating by combustion of the liquid fuel is performed prior to or in parallel with arc heating, and the average temperature of the raw material is 1000°C.
4. A method of heating raw material in an arc furnace according to any one of claims 1 to 3, characterized in that normal arc heating is started when the following predetermined temperature is reached.
(5)前記溶湯面よりも上側の部位にバーナを配置し、
該バーナによる上方からの原料加熱を前記液体燃料の燃
焼による加熱と併せて行うことを特徴とする特許請求の
範囲第1項乃至第4項の何れかに記載のアーク炉におけ
る原料加熱方法。
(5) placing a burner above the molten metal surface;
5. A method for heating a raw material in an arc furnace according to any one of claims 1 to 4, characterized in that the raw material is heated from above by the burner in conjunction with heating by combustion of the liquid fuel.
(6)前記燃料噴出口からの液体燃料の噴出停止後、続
いて該噴出口からN_2、Arガス等不活性ガスを噴出
させて炉内の溶湯を攪拌し、以て溶湯温度及び成分の均
一化、スラグ−メタル反応の促進を行うことを特徴とす
る特許請求の範囲第1項乃至第5項の何れかに記載のア
ーク炉における原料加熱方法。
(6) After the injection of liquid fuel from the fuel injection port is stopped, inert gas such as N_2 and Ar gas is subsequently ejected from the fuel injection port to stir the molten metal in the furnace, thereby making the temperature and composition of the molten metal uniform. 6. A method for heating raw materials in an arc furnace according to any one of claims 1 to 5, characterized in that the slag-metal reaction is accelerated.
JP62062121A 1987-03-17 1987-03-17 Method for heating raw material in arc furnace Pending JPS63227710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62062121A JPS63227710A (en) 1987-03-17 1987-03-17 Method for heating raw material in arc furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62062121A JPS63227710A (en) 1987-03-17 1987-03-17 Method for heating raw material in arc furnace

Publications (1)

Publication Number Publication Date
JPS63227710A true JPS63227710A (en) 1988-09-22

Family

ID=13190911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62062121A Pending JPS63227710A (en) 1987-03-17 1987-03-17 Method for heating raw material in arc furnace

Country Status (1)

Country Link
JP (1) JPS63227710A (en)

Similar Documents

Publication Publication Date Title
CA2198901C (en) Method and apparatus for electric steelmaking
US5843368A (en) Apparatus for electric steelmaking
US7858018B2 (en) Mounting enclosure for burners and particle injectors on an electric arc furnace
US6372010B1 (en) Method for metal melting, refining and processing
ITUD950003A1 (en) MELTING PROCEDURE FOR ELECTRIC ARC OVEN WITH ALTERNATIVE ENERGY SOURCES AND RELATED ELECTRIC ARC OVEN
RU2474760C2 (en) Method to generate burning by means of assembled burner and assembled burner
US6749661B2 (en) Method for melting and decarburization of iron carbon melts
AU715437B2 (en) A burner
KR20170096188A (en) Method for manufacturing molten iron by electric furnace
KR100359121B1 (en) Facility and method for arc-melting cold iron source
JPH0726318A (en) Operation of electric furnace for steelmaking
JP6172720B2 (en) Starting the smelting process
JPH0611262A (en) Operation of vertical type kiln
WO2009145084A1 (en) Gas cupola for melting metal
JPS63227710A (en) Method for heating raw material in arc furnace
JP4372838B2 (en) Improved energy input method for bulk scrap
JP2000274958A (en) Metallic fusion furnace and metallic fusion method
TWI817466B (en) Electric furnaces and steelmaking methods
JPH1114263A (en) Metal melting furnace and metal melting method
CN102312043A (en) Electric arc furnace steelmaking oxygen supply process, and electric arc furnace steelmaking method by using oxygen supply process
JPH1123156A (en) Fusion furnace for metal, and fusion method for metal
JPH10310814A (en) Method for melting cold iron source and melting equipment thereof
KR20050002407A (en) Scrap iron raw material dissolution method of twin Shell electric furnace
JPH0293012A (en) Method for hating iron scrap in converter
JPS61195909A (en) Method for melting iron scrap in converter