JPS63227625A - Copolyester and production thereof - Google Patents

Copolyester and production thereof

Info

Publication number
JPS63227625A
JPS63227625A JP6309587A JP6309587A JPS63227625A JP S63227625 A JPS63227625 A JP S63227625A JP 6309587 A JP6309587 A JP 6309587A JP 6309587 A JP6309587 A JP 6309587A JP S63227625 A JPS63227625 A JP S63227625A
Authority
JP
Japan
Prior art keywords
copolyester
formula
formulas
tables
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6309587A
Other languages
Japanese (ja)
Inventor
Hiroaki Sugimoto
杉本 宏明
Kazuo Hayatsu
早津 一雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP6309587A priority Critical patent/JPS63227625A/en
Publication of JPS63227625A publication Critical patent/JPS63227625A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled copolymer having excellent heat resistance and good melt moldability, by polycondensing p-hydroxybenzoic acid with p- hydroxyphenylacetic acid, etc., in a specific ratio. CONSTITUTION:30-80mol.% compound expressed by formula I or ester-forming derivative thereof is subjected to polycondensation reaction with 0-30% compound expressed by formula II or ester-forming derivative thereof and 20-70% compound expressed by formula III or ester-forming derivative thereof, preferably at 280-350 deg.C for 0.5-10hr to provide the aimed copolymer composed of 30-80% repeating units expressed by formula IV, 0-30% repeating units expressed by formula V and 20-70% repeating units expressed by formula VI and having preferably 250-350 deg.C flow temperature. The polycondensation can be carried out in solid, liquid or suspended conditions and a solvent or catalyst may be used in the polycondensation.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は耐熱性に優れ、且つ、溶融成形性の良好な新し
いコポリエステル及びその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a new copolyester having excellent heat resistance and good melt moldability, and a method for producing the same.

〈従来の技術〉 耐熱性ポリエステルを得る試みは古く、芳香族ジカルボ
ン酸と芳香族ジフェノールとからなる芳香族ポリエステ
ルや芳香族オキシカルボン酸から得られる芳香族ポリエ
ステルについての知見は多い。しかしながら、耐熱性と
成形性は裏腹の関係にあり、例えばp−ヒドロキシ安息
香酸から得られる士O−@−CO+なる繰返し構造単位
を有する芳香族ポリエステル(例えば、住人化学工業■
製のエコノール■E−101)は、高結晶性で800”
Cにおいても全く分解せず極めて熱安定性に優れたポリ
エステルであるが、融点が500”Cを超え、また、溶
解させ得る有機溶媒も無いため成形性が極めて悪い。一
方、ポリエチレンテレブタレート(以下、PETと言う
)に代表されるポリエステルは成形性は優れるものの、
PETの融点は260°Cであり200℃を越える用途
には用いることができなかかる現状に鑑み、本発明の目
的は耐熱性に優れ、且つ、成形性、特に溶融成形性の良
好なコポリエステル及びその製造法を提供すること本発
明者等はかかる問題を解決すべく鋭意検討した結果、8
00℃においても分解が少なく、すなわちN1M減少が
少なく安定で溶融成形性の良好な本発明のコポリエステ
ルに到達した。すなわち、本発明は (1)  下式(5)、0力及び(Qで表わされる繰返
し構造単位の構成割合(モル)が(B)80〜80%、
(B)0〜80%及び((,120〜70%であるコポ
リエステル、ならびに (A)十〇(濾CO+ (B)十〇會CO士 0 十Oべ3X干CHつCO] (但し、pは1または
2の整数) (2)下記(A′)、(B′)及び(C′)で表わされ
る化合物を(A′)80〜80モル%、(B′)0〜8
0モル%及び(C′) 20〜70モル%の割合で重縮
合反応させることからなる。
<Prior Art> Attempts to obtain heat-resistant polyesters have been made for a long time, and there is much knowledge about aromatic polyesters made of aromatic dicarboxylic acids and aromatic diphenols and aromatic polyesters obtained from aromatic oxycarboxylic acids. However, heat resistance and moldability are in a contradictory relationship.
Econol E-101) manufactured by Econol is highly crystalline and has a crystallinity of 800”.
Although it is a polyester that does not decompose at all even in C and has excellent thermal stability, its melting point exceeds 500"C, and there is no organic solvent that can dissolve it, so its moldability is extremely poor. On the other hand, polyester ( Although polyester represented by PET (hereinafter referred to as PET) has excellent moldability,
In view of the current situation where PET has a melting point of 260°C and cannot be used for applications exceeding 200°C, the object of the present invention is to develop a copolyester with excellent heat resistance and moldability, especially melt moldability. To provide a method for producing the same.As a result of intensive study to solve such problems, the present inventors have found 8.
We have achieved a copolyester of the present invention that shows little decomposition even at 00°C, that is, little N1M loss, is stable, and has good melt moldability. That is, the present invention provides (1) the following formula (5), zero force and the constituent ratio (mol) of the repeating structural unit represented by (Q) (B) 80 to 80%,
(B) 0 to 80% and ((, 120 to 70% copolyester, and (A) 10 (filtered CO + (B) 100 CO + 0 100 3X dried CH 2 CO)) (However, (p is an integer of 1 or 2) (2) Compounds represented by (A'), (B') and (C') below (A') 80 to 80 mol%, (B') 0 to 8
It consists of carrying out a polycondensation reaction at a ratio of 0 mol % and (C') 20 to 70 mol %.

(A′)HO<φxCOOH又はそのエステル形成性誘
導体(B′)HO?にOOH又はそのエステル形成性誘
導体(C′) Ha(φΣ十C出うpcOOH(但し、
pは1又は2の整数)又はそのエステル形成性誘導体下
式(5)、@及び(財)で表わされる繰返し構造単位の
構成割合(モル)が(A)80〜80%、(B)0〜8
0%及び(920〜70%であるコポリエステルの製造
法 (A) 十o−@−co+ (B)十〇−@−CO丹 (C)−E−0べβΣ+CHg邦CO+(但し、pは1
または2の整数) である。
(A') HO<φxCOOH or its ester-forming derivative (B') HO? OOH or its ester-forming derivative (C') Ha (φΣ0C pcOOH (however,
(p is an integer of 1 or 2) or its ester-forming derivative The constituent proportion (mol) of the repeating structural unit represented by the following formula (5), @ and (Corporate) is (A) 80 to 80%, (B) 0 ~8
0% and (920-70%) Copolyester manufacturing method (A) 10o-@-co+ (B) 10-@-COtan (C) -E-0beβΣ+CHgJapaneseCO+ (however, p is 1
or an integer of 2).

上述の式(A)、(B)及び(C)で表わされる各繰返
し構造単位の構成割合(モル)が(A) 80〜80%
、(B)0〜80%及び(C) 20〜70%であるコ
ポリエステルは結晶性で耐熱性に優れ、且つ、成形性が
良好である。構造単位(A)の割合が80%を越えると
、コポリエステル中には加熱によって溶融しない部分が
存在するため成形性が不良になり、また、8096未満
ではコポリエステルの耐熱性が不十分である。構造単位
(B)の割合が80%を越えると、コポリエステルの結
晶性が低下し耐熱性が不十分である。構造単位(C)の
割合が70%を越えると、コポリエステルの耐熱性が不
十分となり、また、20%未満ではコポリエステルの成
形性が困難となる。
The constituent proportion (mol) of each repeating structural unit represented by the above formulas (A), (B) and (C) is (A) 80 to 80%
, (B) 0 to 80% and (C) 20 to 70%, the copolyester is crystalline, has excellent heat resistance, and has good moldability. If the proportion of the structural unit (A) exceeds 80%, the copolyester will have a portion that does not melt when heated, resulting in poor moldability, and if it is less than 8096, the copolyester will have insufficient heat resistance. . If the proportion of the structural unit (B) exceeds 80%, the crystallinity of the copolyester will decrease and the heat resistance will be insufficient. If the proportion of the structural unit (C) exceeds 70%, the heat resistance of the copolyester will be insufficient, and if it is less than 20%, the moldability of the copolyester will become difficult.

上述の(A′)で表わされる化合物の例としてp−ヒド
ロキシ安息香酸、p−ホルモキシ安息香酸、p−アセト
キシ安息香酸、p−プロビロキシ安息香酸、p−ヒドロ
キシ安息香酸メチル、p−ヒドロキシ安息香酸フェニル
、p−ヒドロキシ安息香酸ベンジル、p−アセトキシ安
息香酸メチル等をあげることができる。
Examples of the compound represented by (A') above include p-hydroxybenzoic acid, p-formoxybenzoic acid, p-acetoxybenzoic acid, p-probyloxybenzoic acid, methyl p-hydroxybenzoate, and phenyl p-hydroxybenzoate. , benzyl p-hydroxybenzoate, methyl p-acetoxybenzoate, and the like.

上述の(B′〕で表わされる化合物の例としてm−ヒド
ロキシ安息香酸、m−ホルモキシ安息香酸、m−アセト
キシ安息香酸、m−プロビロキシ安息香酸、m−ヒドロ
キシ安息香酸メチル、m−ヒドロキシ安息香酸フェニル
、m−アセトキシ安息香酸ベンジル、m−アセトキシ安
息香酸メチル等をあげることができる。
Examples of the compound represented by (B') above include m-hydroxybenzoic acid, m-formoxybenzoic acid, m-acetoxybenzoic acid, m-probyloxybenzoic acid, methyl m-hydroxybenzoate, and phenyl m-hydroxybenzoate. , benzyl m-acetoxybenzoate, methyl m-acetoxybenzoate, and the like.

上述の(C′)で表わされる化合物の例としてp−ヒド
ロキシフェニル酢酸、p−ヒドロキシフェニルプロピオ
ン酸、p−ホルモキシフェニル酢酸、p−アセトキシフ
ェニル酢酸、p−7セトキシフエニルプロビオン酸、p
−プロビロキシフェニル酢酸、p−プロビロキシフェニ
ルプロビオン酸、p−ヒドロキシフェニル酢酸メチル、
p−ヒドロキシフェニルプロピオン酸エチル、p−ヒド
ロキシフェニル酢酸フェニル、p−アセトキシフェニル
ブロビオン酸メチル等をあげることができる。
Examples of the compound represented by (C') above include p-hydroxyphenylacetic acid, p-hydroxyphenylpropionic acid, p-formoxyphenylacetic acid, p-acetoxyphenylacetic acid, p-7cetoxyphenylprobionic acid, p-
-Probyloxyphenylacetic acid, p-probyloxyphenylprobionic acid, methyl p-hydroxyphenylacetate,
Examples include ethyl p-hydroxyphenylpropionate, phenyl p-hydroxyphenylacetate, and methyl p-acetoxyphenylbrobionate.

なお、(B′)で表わされる化合物の代りにサリチル酸
10〜80モル%を用いて得られるコポリエステルは良
好な物性を示さず、また、(C′)で表わされる化合物
から得られるホモポリエステルは結晶性ではあるものの
、溶融後すぐに分解し良好な成形性を示さなかった。
The copolyester obtained by using 10 to 80 mol% of salicylic acid in place of the compound represented by (B') does not exhibit good physical properties, and the homopolyester obtained from the compound represented by (C') does not exhibit good physical properties. Although it was crystalline, it decomposed immediately after melting and did not exhibit good moldability.

本発明のコポリエステルは、上述の(A′) 、(B′
)及び(C′)で表わされる化合物からなる混合物を重
合槽中で重縮合反応させることによって得られるが、こ
れら化合物の重合徊への仕込みは一括方式でも分割方式
でもよい。反応は常圧、減圧またはそれらの組合せで行
うことができ、プロセスは回分式、連続式またはその組
合せを採用できる。重縮合の様式は塊状、溶液または懸
濁であり、溶媒や触媒を使用することができる。
The copolyester of the present invention has the above-mentioned (A'), (B'
) and (C') are subjected to a polycondensation reaction in a polymerization tank, and these compounds may be added to the polymerization tank either all at once or in portions. The reaction can be carried out at normal pressure, reduced pressure or a combination thereof, and the process can be carried out batchwise, continuously or in a combination thereof. The mode of polycondensation is bulk, solution or suspension, and a solvent and a catalyst can be used.

なお、上述の(A′)、(B′)及び(C)で表わされ
る化合物をより重縮合反応し易い化合物に変える反応(
例えばエステル化反応)を重縮合反応に先立って重縮合
反応を行うのと同一の重合槽で行った後、引続き重縮合
反応を行うこともできる。
In addition, the reaction (
For example, it is also possible to carry out the polycondensation reaction (for example, the esterification reaction) in the same polymerization tank prior to the polycondensation reaction, and then carry out the polycondensation reaction.

本発明における重縮合反応の温度は250〜890℃が
好ましく、より好ましくは280〜850℃である。温
度が260℃より低いと反応は起こりにくく、890°
Cを超えると分解等の副反応が起こる場合がある。多段
階の反応温度を採用してもかまわないし、場合により、
昇温のみで最高温度に達したら直ぐに冷却に入る方法を
採ることもできる。
The temperature of the polycondensation reaction in the present invention is preferably 250 to 890°C, more preferably 280 to 850°C. If the temperature is lower than 260°C, the reaction is difficult to occur, and the temperature is lower than 890°C.
If it exceeds C, side reactions such as decomposition may occur. It is possible to adopt multiple reaction temperatures, and in some cases,
It is also possible to adopt a method in which cooling is started immediately after the maximum temperature is reached by only raising the temperature.

重縮合反応の時間は該反応温度において0.5〜lO時
間が好ましい。
The time for the polycondensation reaction is preferably 0.5 to 10 hours at the reaction temperature.

重縮合反応に用いる溶媒としては、高沸点の炭化水素類
、エーテル類、シリコン油、フッ素油等をあげることが
でき、重縮合用触媒としてはGe1Sn、 5b1Ti
等の金属化合物をあげることができる。また、リン化合
物とアミン化合物を触媒として、溶媒中で重縮合する方
法も採用することができる(特開昭56−45921号
公報参照)。
Examples of the solvent used in the polycondensation reaction include high-boiling hydrocarbons, ethers, silicone oil, fluorine oil, etc., and examples of the polycondensation catalyst include Ge1Sn and 5b1Ti.
Metal compounds such as Furthermore, a method of polycondensation in a solvent using a phosphorus compound and an amine compound as a catalyst can also be adopted (see Japanese Patent Laid-Open No. 45921/1983).

安定剤、添加剤等を存在させて本発明の重縮合反応を行
うこともできる。
The polycondensation reaction of the present invention can also be carried out in the presence of stabilizers, additives, etc.

本発明のコがリエステルのうち溶剤に可溶であるもの、
または、該コポリエステルの末端基を定量できるものに
ついては該コポリエステルの分子量を測定することがで
きる場合があり、好ましい数平均分子量は7,000〜
1,000,000である。しかし、本発明のコポリエ
ステルの場合、度や再現性が良好ひないものがある。そ
こで、得られたコポリエステルの分子鎖に代えてフロ一
温度を採用した。ここで、フロ一温度とは熱可塑性樹脂
の加熱による溶融流動性を表わすものであり、その温度
が低いものほど溶融流動性がより大きく、分子量がより
小さい樹脂であるから成形性が良好である。
Of the polyesters of the present invention, those that are soluble in solvents,
Alternatively, if the terminal group of the copolyester can be quantified, it may be possible to measure the molecular weight of the copolyester, and the preferred number average molecular weight is 7,000 to 7,000.
1,000,000. However, some of the copolyesters of the present invention do not have good strength or reproducibility. Therefore, the flow temperature was used instead of the molecular chain of the obtained copolyester. Here, the flow temperature refers to the melt fluidity of a thermoplastic resin due to heating, and the lower the temperature, the greater the melt fluidity, and the lower the molecular weight, the better the moldability. .

フロ一温度は毛細管型レオメータ−(■高滓製作所製 
フローテスター■ CFT−500型)で測定され、4
°C/ minの昇温速度で加熱溶融されたサンプル樹
月ki7t100kg/cdの荷重のもと内径1wm、
長さ10mのノズルから押出した時、該溶融樹脂の粘度
が48,000ポイズを示す(lO) 点における温度として表わされる。
The flow temperature was measured using a capillary rheometer (manufactured by Takashi Seisakusho).
Measured with flow tester ■ CFT-500 model), 4
The sample was heated and melted at a heating rate of °C/min, with an inner diameter of 1wm under a load of 100kg/cd,
It is expressed as the temperature at the point (lO) at which the viscosity of the molten resin is 48,000 poise when extruded from a nozzle with a length of 10 m.

本発明のコポリエステルのフローffi度1.1200
〜880℃、好ましくは250〜850℃である。
The flow ffi degree of the copolyester of the present invention is 1.1200.
-880°C, preferably 250-850°C.

フロ一温度が200℃未満のものは分子量が低く耐熱性
が劣っており、成形性に問題があったり成形品の物性が
不十分であったりする。又、フロ一温度が880”Cを
超えるものは成形できないことが多く、又、高温にした
時には熱分解の問題が生じてくる。
Those having a flow temperature of less than 200° C. have a low molecular weight and poor heat resistance, and may have problems with moldability or have insufficient physical properties of molded products. Furthermore, it is often impossible to mold products with a flow temperature exceeding 880''C, and problems of thermal decomposition arise when the temperature is raised to high temperatures.

〈発明の効果〉 本発明によれば、上述の式(A)、(B)および(C)
で表わされる繰返し構造単位を特定の割合で含むコポリ
エステルは耐熱性および成形性に優れており、かかるコ
ポリエステルは上述の(A′)、(B′)および(C)
で表わされる化合物を特定の割合で重縮合反応させるこ
とによって得ることができる。後述する比較例で示すよ
うに、モノマーの使用割合が本発明の特定の割合の範囲
外である場合、得られたコポリエステルの成形性および
/または耐熱性は良好でない。これに対して、本発明の
実施例では成形性と耐熱性の共に優れたコポリエステル
が得られるのである。
<Effects of the Invention> According to the present invention, the above formulas (A), (B) and (C)
A copolyester containing a specific proportion of repeating structural units represented by is excellent in heat resistance and moldability;
It can be obtained by polycondensation reaction of the compound represented by in a specific ratio. As shown in the comparative examples described below, when the proportion of monomers used is outside the specific proportion range of the present invention, the moldability and/or heat resistance of the obtained copolyester is not good. In contrast, in the examples of the present invention, copolyesters having excellent moldability and heat resistance are obtained.

本発明のコポリエステルは結晶性であり、高温下での溶
融成形時や使用時において安定である。このコポリエス
テル、及びこのコポリエステルとガラス繊維、マイカ、
タルク、チタン酸カリウム、ウオラストナイト、炭酸カ
ルシウム、シリカ、石英、酸化鉄、グラファイト、炭素
繊維等の無機材料との組成物は機械的性質、電気的性質
、耐薬品性、耐油性にも優れ機械部品、電気・電子部品
、自動車部品等に用いることができる。
The copolyester of the present invention is crystalline and stable during melt molding and use at high temperatures. This copolyester, this copolyester and glass fiber, mica,
Compositions with inorganic materials such as talc, potassium titanate, wollastonite, calcium carbonate, silica, quartz, iron oxide, graphite, and carbon fiber have excellent mechanical properties, electrical properties, chemical resistance, and oil resistance. It can be used for mechanical parts, electrical/electronic parts, automobile parts, etc.

〈実施例〉 以下、本発明の実施例を示すが、本発明はこれに限定さ
れるものでない。
<Examples> Examples of the present invention will be shown below, but the present invention is not limited thereto.

実施例1 いかり型攪拌翼を有し、かつ、重合槽の槽壁と攪拌翼と
のクリアランスの小さい重合槽にp−ヒドロキシ安息香
酸910.8F(A,6モル)、p−ヒドロキシフェニ
ル酢酸1008.2f(A,6モル)および無水酢酸1
480f(14゜5モル)を投入した。内容物を窒素雰
囲気下で攪拌しながら150”Cまで加温し、この温度
で6時間還流させた。その後、攪拌下に820℃まで昇
温し、この温度で8時間重縮合反応させた。昇温時に酢
酸を系外へ留去させたが、この酢酸は上述の両モノマー
のフェノール性水酸基が無水酢酸によってアセチル化さ
れて副生じたもの、及びアセチル化された両モノマーの
重縮合反応によって副生じたものである。その後、真空
ポンプで系がB torrの真空度を保つようにしなが
ら、820℃で更に1時間重合させた。反応混合物を冷
却してから取出し、淡黄褐色のポリマー1681g(理
論収量に対して97.8%)を得た。このものを粉砕機
によって微粉砕し、得られた微粉状のポリマーを270
”Cで12時間減圧乾燥した。
Example 1 910.8 F (A, 6 moles) of p-hydroxybenzoic acid and 1008 F of p-hydroxyphenylacetic acid were placed in a polymerization tank that had an anchor-type stirring blade and had a small clearance between the tank wall and the stirring blade. .2f (A, 6 mol) and acetic anhydride 1
480f (14°5 mol) was charged. The contents were heated to 150"C with stirring under a nitrogen atmosphere, and refluxed at this temperature for 6 hours. Thereafter, the temperature was raised to 820°C with stirring, and a polycondensation reaction was carried out at this temperature for 8 hours. Acetic acid was distilled out of the system when the temperature was raised, but this acetic acid was a by-product of acetylation of the phenolic hydroxyl groups of both monomers mentioned above with acetic anhydride, and a polycondensation reaction of both acetylated monomers. This was a by-product.Then, while maintaining the system at B torr with a vacuum pump, polymerization was further carried out at 820°C for 1 hour.The reaction mixture was cooled and taken out, and 1681 g of light yellowish brown polymer was obtained. (97.8% of the theoretical yield).This material was finely pulverized using a pulverizer, and the resulting finely powdered polymer was 270%
"C" for 12 hours under reduced pressure.

乾燥されたポリマーのフロ一温度は295℃であった。The flow temperature of the dried polymer was 295°C.

また、このポリマーを空気中において10℃/分の昇温
速度で加熱した時、800℃までの重量減少は見られず
、2.5%の重量減少を示す温度(以下、2.5%減量
温度という)は405”Cであった。このポリマーを径
20■のスクリュー型押出機で溶融押出成形して黄褐色
の成形品を得た。この成形品の切片について、■高滓製
作所製の熱機械分析装置TMA−DT−80型を用い昇
温速度10°C/分、荷重209の条件下で測定した針
侵入温度は880”Cであった。なお、この測定条件は
Vi ca を軟化点測定の荷重的10〜に相当する。
Furthermore, when this polymer was heated in air at a heating rate of 10°C/min, no weight loss was observed up to 800°C, and the temperature at which it showed a 2.5% weight loss (hereinafter referred to as 2.5% weight loss The polymer temperature was 405"C. This polymer was melt-extruded using a screw extruder with a diameter of 20mm to obtain a yellow-brown molded product. The needle penetration temperature measured using a thermomechanical analyzer TMA-DT-80 model under conditions of a temperature increase rate of 10°C/min and a load of 209 was 880''C. Note that this measurement condition corresponds to V ca of 10 to 10 in terms of the load of softening point measurement.

実施例2〜8、比較例1〜2 実施例1と同じ装置を用い、p−ヒドロキシ安息香酸と
p−ヒドロキシフェニル酢酸の使用割合(モル比)を9
0/10(比較例1)、65/85(実施例2)、85
/65(実施例8)、10/90(比較例2)とし実施
例1と同様に重縮合を行なった。実施例1も含めて結果
を下表に示すが、本発明に基くコポリエステルの優れて
いることがわかる。
Examples 2 to 8, Comparative Examples 1 to 2 Using the same equipment as in Example 1, the usage ratio (molar ratio) of p-hydroxybenzoic acid and p-hydroxyphenylacetic acid was 9.
0/10 (Comparative Example 1), 65/85 (Example 2), 85
/65 (Example 8) and 10/90 (Comparative Example 2), and polycondensation was carried out in the same manner as in Example 1. The results, including those of Example 1, are shown in the table below, and it can be seen that the copolyester according to the present invention is superior.

* p−ヒドロキシ安息香酸/p−ヒドロキシフェニル
酢酸実施例4 実施例1と同じ装置を用い、p−ヒドロキシ安息香酸フ
ェニル1412N(A,6モル)、m−ヒドロキシ安息
香酸フェニル885f(1,8モル)およびp−ヒドロ
キシフヱニル酢酸フェニル8214(8,6モル)を仕
込み、実施例1と同様にして重縮合反応によって副生ず
るフェノールを除去しながら重合を行なった。本例にお
ける各モノマーの使用割合(モル比)は順に55/15
/80である。淡黄褐色のポリマーx482F(理論収
量に対して99.5%)を得た。実施例1と同様の後処
理をしてフロ一温度288°Cのポリマーを得た。この
ポリマーの800℃までの重量減少は0.0%であり、
2.5%減量温度は895”Cと安定であった。偏光下
に25℃/分で昇温しでいくと、880℃以上で溶融異
方性を示した。
* p-Hydroxybenzoic acid/p-hydroxyphenylacetic acid Example 4 Using the same equipment as in Example 1, p-hydroxybenzoic acid phenyl 1412N (A, 6 mol), m-hydroxybenzoic acid phenyl 885f (1.8 mol) ) and p-hydroxyphenyl acetate phenyl 8214 (8.6 mol) were charged, and polymerization was carried out in the same manner as in Example 1 while removing phenol by-produced by the polycondensation reaction. In this example, the usage ratio (molar ratio) of each monomer was 55/15.
/80. A light tan polymer x482F (99.5% of the theoretical yield) was obtained. The same post-treatment as in Example 1 was carried out to obtain a polymer having a flow temperature of 288°C. The weight loss of this polymer up to 800°C is 0.0%,
The 2.5% weight loss temperature was stable at 895''C. When the temperature was increased at 25°C/min under polarized light, melting anisotropy was exhibited at 880°C or higher.

実施例5 実施例1と相似の装置にp−ヒドロキシ安息香酸188
F(1,0モル)、p−ヒドロキシフェニルプロピオン
酸166f(1,0モル)および無水酢酸224IC2
,2モル)を仕込み、窒素雰囲気下に820℃まで昇温
し、この温度で2時間重合したあと系を12 torr
の減圧にして更に80分間重合した。反応混合物を冷却
したあと粉砕し、得られた粉状物を260 ”Cで12
時間減圧乾燥することによって、粉状のポリマー286
IC理論収量に対して94.4%)を得た。
Example 5 p-hydroxybenzoic acid 188 was added to an apparatus similar to Example 1.
F (1,0 mol), p-hydroxyphenylpropionic acid 166f (1,0 mol) and acetic anhydride 224IC2
, 2 mol) was charged, the temperature was raised to 820°C under a nitrogen atmosphere, and after polymerization at this temperature for 2 hours, the system was heated to 12 torr.
Polymerization was further carried out for 80 minutes under reduced pressure. The reaction mixture was cooled and then ground, and the resulting powder was heated at 260"C for 12
By drying under reduced pressure for an hour, powdered polymer 286
94.4% of the theoretical IC yield was obtained.

とのポリマーは加熱によって溶融させることができ、フ
ロ一温度は292℃、800°Cまでの重量減少は0.
0%、そして2.5%減量温度は887℃であった。
The polymer can be melted by heating, the flow temperature is 292°C, and the weight loss up to 800°C is 0.
The 0% and 2.5% weight loss temperatures were 887°C.

(17完)(17 completed)

Claims (2)

【特許請求の範囲】[Claims] (1)下式(A)、(B)及び(C)で表わされる繰返
し構造単位の構成割合(モル)が(A)30〜80%、
(B)0〜30%及び(C)20〜70%であるコポリ
エステル。 (A)▲数式、化学式、表等があります▼ (B)▲数式、化学式、表等があります▼ (C)▲数式、化学式、表等があります▼(但し、pは 1または2の整数)
(1) The constituent proportion (mol) of repeating structural units represented by the following formulas (A), (B) and (C) is (A) 30 to 80%,
(B) 0-30% and (C) 20-70% copolyester. (A) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (B) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (C) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (However, p is an integer of 1 or 2)
(2)下記(A′)、(B′)及び(C′)で表わされ
る化合物を(A′)30〜80モル%、(B′)0〜3
0モル%及び(C′)20〜70モル%の割合で重縮合
反応させることからなる (A′)▲数式、化学式、表等があります▼又はそのエ
ステル形成性誘導体(B′)▲数式、化学式、表等があ
ります▼又はそのエステル形成性誘導体(C′)▲数式
、化学式、表等があります▼(但し、pは1又は2 の整数)又はそのエステル形成性誘導体 下式(A)、(B)及び(C)で表わされる繰返し構造
単位の構成割合(モル)が(A)30〜80%、(B)
0〜30%及び(C)20〜70%であるコポリエステ
ルの製造法。 (A)▲数式、化学式、表等があります▼ (B)▲数式、化学式、表等があります▼ (C)▲数式、化学式、表等があります▼(但し、pは
1ま たは2の整数)
(2) Compounds represented by (A'), (B') and (C') below (A') 30 to 80 mol%, (B') 0 to 3
(A') ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ or its ester-forming derivative (B') ▲ Numerical formula, There are chemical formulas, tables, etc. ▼ or its ester-forming derivatives (C') ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼ (where p is an integer of 1 or 2) or its ester-forming derivatives (formula (A)), The constituent ratio (mol) of the repeating structural units represented by (B) and (C) is (A) 30 to 80%, (B)
A method for producing a copolyester having 0 to 30% and (C) 20 to 70%. (A) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (B) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (C) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (However, p is an integer of 1 or 2)
JP6309587A 1987-03-17 1987-03-17 Copolyester and production thereof Pending JPS63227625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6309587A JPS63227625A (en) 1987-03-17 1987-03-17 Copolyester and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6309587A JPS63227625A (en) 1987-03-17 1987-03-17 Copolyester and production thereof

Publications (1)

Publication Number Publication Date
JPS63227625A true JPS63227625A (en) 1988-09-21

Family

ID=13219401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6309587A Pending JPS63227625A (en) 1987-03-17 1987-03-17 Copolyester and production thereof

Country Status (1)

Country Link
JP (1) JPS63227625A (en)

Similar Documents

Publication Publication Date Title
EP0060531B2 (en) A process for producing an aromatic polyester composition
JP2013508498A (en) Totally aromatic liquid crystal polyester resin compound, method for producing the resin compound, component for optical pickup, and method for producing the component
JP4644933B2 (en) Method for producing molten liquid crystalline resin
JPH0352921A (en) Highly heat-resistant and wholly aromatic thermotropic polyester, synthesizing method thereof, and application in prducing molded article, filament, and film therfrom
JP2830118B2 (en) Aromatic polyester and method for producing the same
JPH02127424A (en) Production of aromatic polyester
JP2533328B2 (en) Aromatic polyester
JPS63227625A (en) Copolyester and production thereof
JPS59207924A (en) Production of aromatic polyester
JPH024608B2 (en)
KR20100080085A (en) Wholly aromatic liquid crystalline polyester resin with enhanced viscosity stability, and method for preparing same and resin compound comprising the resin
KR101582808B1 (en) Methods for preparing wholly aromatic liquid crystalline polyester resin and wholly aromatic liquid crystalline polyester resin compound with enhanced physical properties
JPH0251523A (en) Aromatic polyester
JPH04249528A (en) Liquid crystalline polyester and liquid crystalline polyesteramide excellent in melt stability, and their preparation
JPH03152124A (en) Production of aromatic polyester
JP3052144B2 (en) Method for producing aromatic polyester
JPS63234026A (en) Copolyester and production thereof
WO2022244576A1 (en) Melt-processing material and melt-processed article
JPH01138226A (en) Aromatic polyester
JP2003020385A (en) Resin composition for optical pickup part
JP2757506B2 (en) Method for producing aromatic polyester
JPH024610B2 (en)
JPH07278282A (en) Preparation of aromatic polyester
JPH1135683A (en) Wholly aromatic polyimide precursor powder and its production
JPH0466259B2 (en)