JPS63227564A - Production of allylsulfone - Google Patents

Production of allylsulfone

Info

Publication number
JPS63227564A
JPS63227564A JP62063414A JP6341487A JPS63227564A JP S63227564 A JPS63227564 A JP S63227564A JP 62063414 A JP62063414 A JP 62063414A JP 6341487 A JP6341487 A JP 6341487A JP S63227564 A JPS63227564 A JP S63227564A
Authority
JP
Japan
Prior art keywords
formula
atom
allyl
reaction
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62063414A
Other languages
Japanese (ja)
Other versions
JPH0822844B2 (en
Inventor
Toshiki Mori
俊樹 森
Shigeaki Suzuki
繁昭 鈴木
Takashi Onishi
大西 孝志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP62063414A priority Critical patent/JPH0822844B2/en
Priority to DE8888103804T priority patent/DE3862411D1/en
Priority to EP88103804A priority patent/EP0282915B1/en
Priority to US07/168,408 priority patent/US4886916A/en
Priority to DK142888A priority patent/DK142888A/en
Priority to FI881252A priority patent/FI90065C/en
Publication of JPS63227564A publication Critical patent/JPS63227564A/en
Publication of JPH0822844B2 publication Critical patent/JPH0822844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound useful as a drug intermediate in high yield, by reacting a readily obtainable tertiary allyl halide with a phenylsulfinate in the presence of a halogenated tetraalkylammonium salt in an anhydrous system. CONSTITUTION:A tertiary allyl halide shown by formula I (X is Cl, Br or I) and/or a primary allyl halide shown by formula II is reacted with a phenylsulfinate shown by formula III (R is H or lower alkyl; m is Na or K) in the presence of a halogenated tetraalkylammonium salt in an anhydrous system to give an allylsulfone shown by formula IV (double bond does not distinguish stereospecificity). The compound shown by formula IV is useful as a synthetic intermediate for vitamin A acetate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一般式 (式中、Rは水素原子又は低級アルキル基を表わし、二
重結合は立体異性を区別しない)で示されるアリルスル
ホンの製造方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to allyl sulfones represented by the general formula (wherein R represents a hydrogen atom or a lower alkyl group, and the double bond does not distinguish stereoisomerism). Regarding the manufacturing method.

本発明の方法により製造される一般式(1)のアリルス
ルホンは、例えば閉環反応ののち、医薬、、飼料添加剤
として使用されているビタミンAアセテートの合成中間
体に変換することができる(特公昭57−48549号
公報および天寿ら、J−Org*Chsm、@51.3
834(1986)参照)。
The allyl sulfone of general formula (1) produced by the method of the present invention can be converted into a synthetic intermediate for vitamin A acetate, which is used as a pharmaceutical and feed additive, for example, after a ring-closing reaction (especially Publication No. 57-48549 and Tenju et al., J-Org*Chsm, @51.3
834 (1986)).

〔従来の技術〕[Conventional technology]

従来よシ知られている、フェニルスルフィン酸塩を用い
るアリルスルホンの製法を官能幕開に分類すると以下に
示すようになる。
The conventionally known method for producing allyl sulfone using phenyl sulfinate can be classified as functional as shown below.

(J、Wi ldeman、at at、 、 Syn
thesig、 733(1979) )(J、Org
、Chem、、 50.1327(1985) )(特
開昭!58−52267号公報) (%開昭56−86149号公報ン (指股ら、 Chem、Letters、1357(1
981))〔発明が解決しようとする問題点〕 上記のアリルスルホンの合成法のうち、操作性が良好で
比較的よく利用されている方法は(2)であシ、特に第
1級アリルハライドとフェニルスルフィン酸塩との反応
でははとんど定量的に対応するアリルスルホンが生成す
ることが知られている。
(J, Wildeman, at at, , Syn
thesig, 733 (1979)) (J, Org.
, Chem, 50.1327 (1985) ) (Japanese Unexamined Patent Publication No. 58-52267) (% Kokai No. 56-86149)
981)) [Problems to be Solved by the Invention] Among the above-mentioned methods for synthesizing allyl sulfone, the method (2) is one that is easy to operate and is relatively commonly used, especially for primary allyl halides. It is known that the reaction between phenylsulfinate and phenylsulfinate produces the corresponding allylsulfone quantitatively.

しかし表から、(2)で示される反応には、高価力反応
溶媒の使用を必要とし、あるいは水溶性の極性溶媒を用
いて反応を行なった場合には反応後、生成物を取得する
ために抽出溶剤を必要とするなどの欠点がおる。さらに
、反応原料である第1級アリルハライドを安価に合成す
るための方法として、1、ジエンに対するハロダン化水
素の付加(例えばミルセンと塩化水素の反応によるゲラ
ニルクロライド合成) 2、第3級アリルアルコールと塩化チオニルの反応(例
えば、リナロールと塩化チオニルの反応によるゲラニル
クロライド合成) などがあげられるが、これらの反応では第1級アリルハ
ライドの他にかなシの割合の第3Rアリルハライドが副
生ずる。この副生じた第3級アリルハライドは第1級ア
リルハライドと7エニルスルフイン酸塩との反応条件下
で目的とするアリルスルホンをほとんど与えず、アリル
ノ・ライドの収率を合成原料であるジエン又は第3級ア
リルアルコール基準でみた場合、決して満足なものとは
言え力い。
However, from the table, the reaction shown in (2) requires the use of a high-potency reaction solvent, or if the reaction is carried out using a water-soluble polar solvent, it is difficult to obtain the product after the reaction. There are drawbacks such as the need for an extraction solvent. Furthermore, as a method for inexpensively synthesizing primary allyl halide, which is a reaction raw material, 1. Addition of hydrogen halide to diene (for example, synthesis of geranyl chloride by reaction of myrcene and hydrogen chloride) 2. Tertiary allyl alcohol and thionyl chloride (for example, synthesis of geranyl chloride by the reaction of linalool and thionyl chloride), but in these reactions, in addition to the primary allyl halide, 3R allyl halide is produced as a by-product in a small proportion. This by-produced tertiary allyl halide hardly yields the target allyl sulfone under the reaction conditions of the primary allyl halide and the 7-enyl sulfinate, and the yield of allylno-ride is reduced by the diene or 7-enyl sulfinate. If you look at it based on tertiary allyl alcohol standards, it's definitely not satisfactory, but it's strong.

しかして本発明の目的は、安価にかつ容易に入手できる
原料から一般式(Ilで示されるアリルスルホンを収率
よく製造する工業的に有利な方法を提供することにある
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an industrially advantageous method for producing allyl sulfone represented by the general formula (Il) in good yield from inexpensive and easily available raw materials.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、上記の目的は、一般式(IF)(式中
、Xは塩素原子、臭素原子又はヨウ素原子を表わす) で示される第3級アリルハライド及び/又は一般式(2
) (式中、Xは前記定義のとおシである)で示されb第1
級アリルハライドと一般式(IV)(式中、Rは水素原
子又は低級アルキル基を表わし、Mはナトリウム原子又
はカリクム原子である)で示されるフェニルスルフィン
酸塩とをハロゲン化テトラアルキルアンモニウム塩の存
在下無水系で反応させることによシ達成される。
According to the present invention, the above object is achieved by the tertiary allyl halide represented by the general formula (IF) (wherein X represents a chlorine atom, a bromine atom or an iodine atom) and/or by the general formula (2
) (wherein, X is as defined above) and b first
A class allyl halide and a phenyl sulfinate represented by the general formula (IV) (wherein R represents a hydrogen atom or a lower alkyl group, and M is a sodium atom or a potassium atom) are combined into a halogenated tetraalkylammonium salt. This is achieved by reacting in an anhydrous system in the presence of

一般式(1)および(II)においてXは塩素原子、臭
素原子およびヨウ素原子を表わすが、汎用性の点から特
に塩素原子が好ましい、一般式(If)においてXが塩
素原子である場合の化合物(以後、リナリルクロライド
と記す)は、前記したように1)ミルセンへの塩化水素
の付加反応(特開昭60−41623号公報参照)2)
リナロールと塩化チオニルとの反応などの反応において
主生成物であるダラニルクロライドおよびネリルクロラ
イド(以後、両者を併せてrラニルクロライドと記す)
の副生物として得られ(主生成物に対し5〜401程度
生成)、通常、リナリルクロライドとダラニルクロライ
ドは混合物の状態で使用される。
In the general formulas (1) and (II), X represents a chlorine atom, a bromine atom, or an iodine atom, and from the viewpoint of versatility, a chlorine atom is particularly preferred. Compounds in which X is a chlorine atom in the general formula (If) (hereinafter referred to as linalyl chloride) is produced by 1) addition reaction of hydrogen chloride to myrcene (see JP-A No. 60-41623), 2)
Dalanyl chloride and neryl chloride, which are the main products in reactions such as the reaction between linalool and thionyl chloride (hereinafter, both are collectively referred to as r-ranyl chloride)
linalyl chloride and dalanyl chloride are usually used in the form of a mixture.

次に一般式(IV)のRおよびMについて説明する。Next, R and M in general formula (IV) will be explained.

Rは水素原子:メチル基、エチル基、n−faピル基、
l−プロピル基、n−ブチル基、l−ブチル基、t−ブ
チル基かどの低級アルキル基であシ、これらの低級アル
キル基はスルフィン酸塩の位置に対してオルト位(o 
Lメタ位(m−)、およびA/う位(p−)のいづれの
位置に置換されていてもよい。この中で最も好ましいR
は水素原子およびメチル基である。Mはナトリウム原子
およびカリド(2)及び/又は一般式(2)の第1級ア
リルハライドに対して当モル以上、好ましくは当モル乃
至2モル倍量である。
R is a hydrogen atom: methyl group, ethyl group, n-fa pyl group,
It can be any lower alkyl group such as l-propyl group, n-butyl group, l-butyl group, or t-butyl group, and these lower alkyl groups are in the ortho position (o
It may be substituted at either the L-meta position (m-) or the A/o-position (p-). Among these, the most preferable R
are hydrogen atoms and methyl groups. M is at least the equivalent molar amount, preferably from the equivalent molar amount to 2 times the molar amount, relative to the sodium atom and the carido (2) and/or the primary allyl halide of the general formula (2).

また1本発明方法にしたがう反応に用いられるハロゲン
化テトラアルキルアンモニウム塩は4個のアルキル基の
炭素数の合計が8〜32程度の範囲内にあるのがよく、
具体例としてハロダン化テトラ−n−ブチルアンモニウ
ム、ハロダン化テトラーn−ペンチルアンモニウム、ハ
ロダン化ステアリルトリメチルアンモニウム力どを例示
できる。
In addition, in the halogenated tetraalkylammonium salt used in the reaction according to the method of the present invention, the total number of carbon atoms in the four alkyl groups is preferably within the range of about 8 to 32,
Specific examples include tetra-n-butylammonium halide, tetra-n-pentylammonium halide, and stearyltrimethylammonium halide.

ハロダン化に用いられるハロゲン原子のうちで特に好ま
しいのはヨウ素原子であシ、ヨウ素化テトラアルキルア
ンモニウム塩を用いた場合、一般式(式中、Rは水素原
子又は低級アルキル基を表わす) で示されるような第3級アリルスルホンの生成が抑えら
れ、目的とする第1級アリルスルホンを高い収率で得る
ことができる。
Among the halogen atoms used for halodination, an iodine atom is particularly preferred, and when an iodinated tetraalkylammonium salt is used, it is represented by the general formula (wherein R represents a hydrogen atom or a lower alkyl group). This suppresses the formation of tertiary allyl sulfone, which would otherwise occur, and allows the desired primary allyl sulfone to be obtained in high yield.

以下余白 ハロダン化テトラアルキルアンモニウム塩は一般式(I
I)の第3級プリルハライド及び/又は一般式■の第1
級アリルハライドに対して0.1〜30モルチ、好まし
くは0.5〜10モル−の割合で用いられる。
The following margin halodanated tetraalkylammonium salts are represented by the general formula (I
The tertiary prill halide of I) and/or the first of general formula ■
It is used in a proportion of 0.1 to 30 mol, preferably 0.5 to 10 mol, based on the class allyl halide.

本反応には反応溶媒を用いることができ、使用可能な反
応溶媒の例としてヘキサン、ヘプタン、オクタンなどの
脂肪族炭化水素、およびベンゼン、トルエン、キシレン
などの芳香族炭化水素を代表例とする炭化水素系溶媒を
あげることができる。
A reaction solvent can be used in this reaction, and examples of usable reaction solvents include aliphatic hydrocarbons such as hexane, heptane, and octane, and aromatic hydrocarbons such as benzene, toluene, and xylene. Examples include hydrogen-based solvents.

この中でもトルエンが特に好適である。炭化水素系溶媒
を用いて反応を行なった場合、下達するような利点があ
る。
Among these, toluene is particularly suitable. There are several advantages when the reaction is carried out using a hydrocarbon solvent.

1、水に不溶性のため、反応後の後処理の際にそのまま
抽出溶剤として使用することができ、新たに抽出溶剤を
用いる必要がない。
1. Since it is insoluble in water, it can be used as it is as an extraction solvent during post-treatment after the reaction, and there is no need to use a new extraction solvent.

2、極性溶媒(ジメチルホルムアミドなど)に比べ安価
に入手でき、回収、再利用が容易である。
2. It is available at a lower cost than polar solvents (dimethylformamide, etc.) and is easy to recover and reuse.

3、水の存在は目的物であるアリルスルホンの収率を大
巾に低下させる(比較例1参照)。一般にフェニルスル
フィン酸塩は水和物の形で市販されているが、トルエン
などの炭化水素系溶媒を用いることによシ、反応に先た
ち共沸脱水処理を行うことによジフェニルスルフィン酸
塩に同伴する水を容易に系外へ除去することができる。
3. The presence of water greatly reduces the yield of the target allylsulfone (see Comparative Example 1). Generally, phenylsulfinate is commercially available in the form of a hydrate, but it can be converted to diphenylsulfinate by using a hydrocarbon solvent such as toluene or by performing azeotropic dehydration treatment prior to the reaction. Entrained water can be easily removed from the system.

反応温度はθ℃〜150℃、好ましくは50℃〜120
℃の範囲内から選はれる。反応時間は採用する反応条件
によりて大きく変化するが、たとえば反応温度を100
℃付近に保ちながら反応を実施した場合、反応は3時間
以内に終了する。
The reaction temperature is θ°C to 150°C, preferably 50°C to 120°C.
Selected from within the range of ℃. The reaction time varies greatly depending on the reaction conditions employed, but for example, if the reaction temperature is
When the reaction is carried out while being maintained at around 0.degree. C., the reaction is completed within 3 hours.

以下、実施例によシ本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail by way of examples.

実施例1 (1)アリルクロライドの合成 ミルセン188.5& (83fy純度1,16モル)
と塩化銅(1) 0.7 gの混合液に0〜8℃の温良
下、塩化水素ガスをミルセンが消失するまで吸き込み、
その温度でさらに20時間攪拌した。水1ooILlに
あけた後、トルエン100mをいれて抽出し、トルエン
層を水100N、5チ重曹水IQQmA’、水100I
Ltで順次洗浄してさらに溶媒を減圧下で留去すること
によシ油状物235.3Iiを得た。ガスクロマトグラ
フィーの分析の結果このものは第1級アリルクロライド
と第3級アリルクロライドの比が10.8/89.2の
混合物であった。
Example 1 (1) Synthesis of allyl chloride Myrcene 188.5& (83fy purity 1.16 mol)
Hydrogen chloride gas was sucked into a mixture of 0.7 g of copper chloride (1) and copper chloride (1) at a temperature of 0 to 8°C until myrcene disappeared.
Stirring was continued at that temperature for an additional 20 hours. After pouring into 100ml of water, extract by adding 100ml of toluene, and extract the toluene layer with 100N of water, 5ml of sodium bicarbonate solution IQQmA', and 100ml of water.
After successively washing with Lt and further distilling off the solvent under reduced pressure, oily substance 235.3Ii was obtained. As a result of gas chromatography analysis, this product was a mixture of primary allyl chloride and tertiary allyl chloride in a ratio of 10.8/89.2.

ガスクロマトグラフィー分析条件 カラム充填剤PEG 20M、  2 mカラムカラム
温度100℃(2分後に10℃/分で150℃まで昇温
した) (2)アリルスルホンの合成 ベンゼンスルフィン酸ナトリウム2水塩21.5、!i
’ (1,07mot)にトルエン1000Jl17!
を入れ、水分離器を用いて90℃から110℃まで加熱
しながら水を留出させた。その後105℃まで冷却し、
ヨウ累代テトラーn−ブチルアンモニウム塩3.769
 (10,2mmot)をいれ、さらに上記の方法で得
たりナリルクロライドとゲラニルクロライドの混合物2
78.2gを20分かけて滴下し、同温度で2時間攪拌
した。冷却後固形物を炉別したのち、ろ液を1%のチオ
硫酸ナトリウム水100JI/、水100dで洗浄して
溶媒を減圧下で留去することにょシ、油状物287.3
.9を得た。ガスクロマトグラフィーによる分析の結果
、目的とするゲラニルフェニルスルホンは261.2g
(純度9o、9%)であシ、ミルセンからの収率は81
チであった。なお、第1級アリルスルホンと第3級アリ
ルスルホンの比は97.7対2.3でありた。
Gas chromatography analysis conditions Column packing material PEG 20M, 2 m column Column temperature 100°C (After 2 minutes, the temperature was raised to 150°C at a rate of 10°C/min) (2) Synthesis of allyl sulfone Sodium benzenesulfinate dihydrate 21. 5,! i
'Toluene 1000Jl17 for (1,07mot)!
was added, and water was distilled off while heating from 90°C to 110°C using a water separator. Then cooled to 105℃,
Iodine Tetra n-butylammonium salt 3.769
(10.2 mmot), and then the mixture 2 of nalyl chloride and geranyl chloride obtained by the above method.
78.2 g was added dropwise over 20 minutes, and the mixture was stirred at the same temperature for 2 hours. After cooling, the solid matter was separated in a furnace, and the filtrate was washed with 100 JI of 1% sodium thiosulfate water and 100 d of water, and the solvent was distilled off under reduced pressure, resulting in an oily substance of 287.3
.. I got a 9. As a result of gas chromatography analysis, the target geranyl phenyl sulfone was 261.2 g.
(Purity 9o, 9%) The yield from myrcene is 81
It was Chi. The ratio of primary allyl sulfone to tertiary allyl sulfone was 97.7:2.3.

ガスクロマトグラフィー分析条件 カラム充填剤 Themon 1000.1mカラムカ
ラム温度 100℃(10℃/分で250℃まで昇温し
た) 比較例1 実施例1に記載の方法で合成したアリルクロライドを使
用し、トルエンを用いたベンゼンスルフィン酸ナトリウ
ムニ水塩からの水除去操作を行なわなかった以外は実施
例1と同様な方法でゲラニルフェニルスルホンの合成を
行なった。同様の抽出操作ののち、ガスクロマトグラフ
ィーによる分析の結果、ミルセンからゲラニルフェニル
スルホン合成の収率は53.81であシ、第1級アリル
スルホンと第3級アリルスルホンの比は89.9 /1
0.1であった。
Gas chromatography analysis conditions Column packing material Themon 1000.1m column Column temperature 100°C (heated up to 250°C at 10°C/min) Comparative example 1 Allyl chloride synthesized by the method described in Example 1 was used, and toluene was used. Geranyl phenyl sulfone was synthesized in the same manner as in Example 1 except that the water removal operation from sodium benzenesulfinate dihydrate using was not performed. After a similar extraction operation, gas chromatography analysis revealed that the yield of geranylphenyl sulfone synthesis from myrcene was 53.81, and the ratio of primary allyl sulfone to tertiary allyl sulfone was 89.9/ 1
It was 0.1.

実施例2〜5 実施例1に記載の方法で得られたりナリルクロライドと
ゲラニルクロライドの混合物に各種フェニルスルホン酸
塩およびハロダン化テトラアルキルアンモニウム塩を作
用させてアリルスルホンを合成した。結果を表1に示す
。なお、収率はミルセンを基準にして算出したものであ
る。
Examples 2 to 5 Allyl sulfones obtained by the method described in Example 1 or by reacting various phenyl sulfonates and tetraalkylammonium halide salts with a mixture of nalyl chloride and geranyl chloride were synthesized. The results are shown in Table 1. Note that the yield is calculated based on myrcene.

双下奈白 〔発明の効果〕 本発明によれば、安価にかつ容易に入手できる原料から
、ビタミンAアセテートの合成中間体として有用な一般
式(1)で示されるアリルスルホンを好収率で製造する
ことができる。
[Effects of the Invention] According to the present invention, allyl sulfone represented by the general formula (1), which is useful as a synthetic intermediate for vitamin A acetate, can be produced in good yield from raw materials that are inexpensive and easily available. can be manufactured.

Claims (1)

【特許請求の範囲】 1、一般式(II) ▲数式、化学式、表等があります▼(II) (式中、Xは塩素原子、臭素原子又はヨウ素原子を表わ
す) で示される第3級アリルハライド及び/又は一般式(I
II) ▲数式、化学式、表等があります▼(III) (式中、Xは前記定義のとおりである) で示される第1級アリルハライドと一般式(IV)▲数式
、化学式、表等があります▼(IV) (式中、Rは水素原子又は低級アルキル基を表わし、M
はナトリウム原子又はカリウム原子である)で示される
フェニルスルフィン酸塩とをハロゲン化テトラアルキル
アンモニウム塩の存在下無水系で反応させることを特徴
とする一般式( I )▲数式、化学式、表等があります
▼ (式中、Rは水素原子又は低級アルキル基を表わし、二
重結合は立体異性を区別しない) で示されるアリルスルホンの製造法。
[Claims] 1. Tertiary allyl represented by general formula (II) ▲Mathematical formulas, chemical formulas, tables, etc.▼(II) (in the formula, X represents a chlorine atom, a bromine atom, or an iodine atom) halide and/or general formula (I
II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(III) (In the formula, X is as defined above) ▼(IV) (In the formula, R represents a hydrogen atom or a lower alkyl group, and M
is a sodium atom or a potassium atom) in an anhydrous system in the presence of a halogenated tetraalkylammonium salt. ▼ (In the formula, R represents a hydrogen atom or a lower alkyl group, and the double bond does not distinguish stereoisomerism.) A method for producing allyl sulfone.
JP62063414A 1987-03-17 1987-03-17 Method for producing allyl sulfone Expired - Fee Related JPH0822844B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62063414A JPH0822844B2 (en) 1987-03-17 1987-03-17 Method for producing allyl sulfone
DE8888103804T DE3862411D1 (en) 1987-03-17 1988-03-10 METHOD FOR PRODUCING SULPHONES.
EP88103804A EP0282915B1 (en) 1987-03-17 1988-03-10 Process for preparing sulfone compounds
US07/168,408 US4886916A (en) 1987-03-17 1988-03-15 Process for preparing sulfone compounds
DK142888A DK142888A (en) 1987-03-17 1988-03-16 PROCEDURE FOR MAKE SULPHON CONNECTIONS
FI881252A FI90065C (en) 1987-03-17 1988-03-16 Process for the preparation of allylic sulfone compounds and cycloge ranylsulfones

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62063414A JPH0822844B2 (en) 1987-03-17 1987-03-17 Method for producing allyl sulfone

Publications (2)

Publication Number Publication Date
JPS63227564A true JPS63227564A (en) 1988-09-21
JPH0822844B2 JPH0822844B2 (en) 1996-03-06

Family

ID=13228607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62063414A Expired - Fee Related JPH0822844B2 (en) 1987-03-17 1987-03-17 Method for producing allyl sulfone

Country Status (1)

Country Link
JP (1) JPH0822844B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198945A1 (en) * 2014-06-23 2015-12-30 日産化学工業株式会社 Method for producing sulfonyl-bond-containing silane compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133252A (en) * 1975-05-15 1976-11-18 Kuraray Co Ltd Process for preparing cyclic terpene derivatives
JPS51138633A (en) * 1975-05-13 1976-11-30 Ciba Geigy Ag Process for preparing diaryl compound
JPS5852267A (en) * 1981-09-21 1983-03-28 Nissan Chem Ind Ltd Preparation of unsaturated sulfone
JPS58208265A (en) * 1982-05-28 1983-12-03 Ihara Chem Ind Co Ltd Preparation of chloroalkylphenylsulfones

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51138633A (en) * 1975-05-13 1976-11-30 Ciba Geigy Ag Process for preparing diaryl compound
JPS51133252A (en) * 1975-05-15 1976-11-18 Kuraray Co Ltd Process for preparing cyclic terpene derivatives
JPS5852267A (en) * 1981-09-21 1983-03-28 Nissan Chem Ind Ltd Preparation of unsaturated sulfone
JPS58208265A (en) * 1982-05-28 1983-12-03 Ihara Chem Ind Co Ltd Preparation of chloroalkylphenylsulfones

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198945A1 (en) * 2014-06-23 2015-12-30 日産化学工業株式会社 Method for producing sulfonyl-bond-containing silane compound
JPWO2015198945A1 (en) * 2014-06-23 2017-04-20 日産化学工業株式会社 Method for producing silane compound having sulfonyl bond

Also Published As

Publication number Publication date
JPH0822844B2 (en) 1996-03-06

Similar Documents

Publication Publication Date Title
JPS5933584B2 (en) Substituted benzylnitrile derivatives
JPS63227564A (en) Production of allylsulfone
JPH0135809B2 (en)
JPS621927B2 (en)
US4210766A (en) Process for producing 2-halo-4-bromophenols
US4945186A (en) Method of producing 3-bromobenzaldehyde
JPH07300445A (en) Preparation of 4-halo-2'-nitrobutyrophenone compound
JP2553075B2 (en) Method for producing cyclogeranylphenyl sulfone
JP2558275B2 (en) Method for producing geranylphenyl sulfone
JPH03112940A (en) Production of (+-)-4-formyl-alpha-alkylbenzyl alcohol
JP3884572B2 (en) Process for producing tert-butyl 4'-methyl-2-biphenylcarboxylate
JPH0318617B2 (en)
JPH026340B2 (en)
JPH0453860B2 (en)
JP2002536433A (en) Synthesis of mercapto-benzaldehyde
JPS642110B2 (en)
JP2004238368A (en) Process for aza diels-alder reaction
JP3509419B2 (en) Preparation of diaryl carbonate
JPH04182440A (en) Production of 3,5-difluoro-1-bromobenzene
JPS63227565A (en) Production of allylsulfone
KR0183512B1 (en) Process for producing 1-hydroxyisopropylphenylketone
JP2637202B2 (en) Method for producing 3-trifluoromethylbenzenesulfonyl chlorides
JPH02282344A (en) 1-(2-haloethoxy)-4-(2-alkoxyethyl)dialkylbenzenes, its synthetic intermediate and production thereof
JPS591431A (en) Preparation of 4-isobutylstyrene
JPS6126902B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees