JPS63227075A - Gas laser device - Google Patents

Gas laser device

Info

Publication number
JPS63227075A
JPS63227075A JP6150287A JP6150287A JPS63227075A JP S63227075 A JPS63227075 A JP S63227075A JP 6150287 A JP6150287 A JP 6150287A JP 6150287 A JP6150287 A JP 6150287A JP S63227075 A JPS63227075 A JP S63227075A
Authority
JP
Japan
Prior art keywords
resonator
laser device
gas laser
cathode electrodes
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6150287A
Other languages
Japanese (ja)
Inventor
Takashige Sato
佐藤 隆重
Shuzo Yoshizumi
吉住 修三
Setsuo Terada
寺田 節夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6150287A priority Critical patent/JPS63227075A/en
Publication of JPS63227075A publication Critical patent/JPS63227075A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/034Optical devices within, or forming part of, the tube, e.g. windows, mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To miniaturize a laser oscillator by using a ceramics board consisting of a sintered alumina as a ceramic flange. CONSTITUTION:An output mirror 3, cathode electrodes 4, 5 and a reflecting mirror 6 are set up directly to ceramic flanges 1, 2 composed of sintered alumina mounted opposed at a right angle with an optical axis without insulators, and the ceramic flanges are connected by main pipes 7, 8 made up of the alloyed steel of iron, nickel and cobalt as a low expansion material. An anode electrode 10 is fitted at the central section of both cathode electrodes 4, 5 through an insulator 9 in the main pipes 7, 8, and discharge tubes 11, 12 are each attached among both cathode electrodes 4, 5 and the anode electrode 10, thus manufacturing a resonator. Accordingly, a laser oscillator can be compacted.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は金属加工用、医療用としてのガスレーザ装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas laser device for metal processing and medical use.

従来の技術 従来のガスレーザ装置の共振器は第2図に示すように内
部を油冷したメインパイプ13の両端部にアルミニウム
製の板厚40〜8orrrInのメインフランジ14.
15を取付け、前記メインフランジに絶縁物16.17
,18.19を介して出力鏡3、カソード電極4、カソ
ード電極6、反射鏡6を固定し、さらに絶縁ガイシ9を
介して前記メインパイプの中央部にアノード電極1oを
取付け、このアノード電極1oとカソード電極4,5の
間に放電管11.12を設けている。
2. Description of the Related Art As shown in FIG. 2, the resonator of a conventional gas laser device has a main flange 14 made of aluminum and having a thickness of 40 to 8 mm at both ends of a main pipe 13 whose interior is cooled with oil.
15 and insulators 16 and 17 on the main flange.
, 18 and 19, the output mirror 3, the cathode electrode 4, the cathode electrode 6, and the reflecting mirror 6 are fixed, and the anode electrode 1o is attached to the center of the main pipe via the insulating insulator 9. A discharge tube 11.12 is provided between the cathode electrodes 4 and 5.

前記の出力鏡3、カソード電極4,5、反射鏡6、アノ
ード電j10を0.1〜0.2四〇亘線精度をもつ光軸
系の中で高出力レーザ光2oを取出している。
A high-power laser beam 2o is extracted from the output mirror 3, cathode electrodes 4, 5, reflecting mirror 6, and anode electrode j10 in an optical axis system having a 0.1 to 0.2 40-line accuracy.

一般にガスレーザ装置は、そのレーザ発振に伴って、電
気入力エネルギーの80〜90チは熱エネルギーとして
共振器から放熱され、その熱により前記光軸に狂いが生
じるのを防がなければならない。
Generally, in a gas laser device, 80 to 90 degrees of electrical input energy is radiated from the resonator as thermal energy during laser oscillation, and it is necessary to prevent the optical axis from being deviated by the heat.

第2図に示すメインパイプ13は外径が140〜160
間、肉厚6〜10団の鉄パイプであり、パイプ内に30
±2℃に温度コントロールされた絶縁油を通し、さらに
肉厚40〜80間のメインフランジ14.15との組合
せ構成で光軸が狂うのを防いでいる。
The main pipe 13 shown in Fig. 2 has an outer diameter of 140 to 160 mm.
It is an iron pipe with a wall thickness of 6 to 10 groups, and there are 30
The optical axis is prevented from going awry by passing insulating oil whose temperature is controlled to ±2°C and combining it with the main flange 14.15 with a wall thickness of 40 to 80 mm.

発明が解決しようとする問題点 しかしながら、上記従来のガスレーザ装置ではその光軸
系の直線精度を維持するために、温度コントロールされ
た冷却用油が必要であり、メインバイブ13も強度を上
げるために、外径140〜160喘のものが必要であり
、共振器のコンパクト化、軽量化の障害となっていた。
Problems to be Solved by the Invention However, in order to maintain the linear accuracy of the optical axis system in the above-mentioned conventional gas laser device, temperature-controlled cooling oil is required, and the main vibrator 13 is also required in order to increase the strength. , an outer diameter of 140 to 160 mm is required, which has been an obstacle to making the resonator more compact and lighter.

また、メインフランジ14.15も強度、軽量化を狙い
として40〜80閣のアルミニウム製とし、カソード電
極4,6、出力鏡3、反射鏡6とは電気的絶縁距離を考
慮して長さSowmの前記絶縁物16 、17゜18.
19を介していた。これらの絶縁物16゜1了、18,
19 4個分の長さも共振器のコンパクト花に障害とな
っていた。
In addition, the main flange 14.15 is also made of 40 to 80 mm aluminum with the aim of strength and weight reduction, and the length of the cathode electrodes 4, 6, output mirror 3, and reflector 6 is set so that the length is set in consideration of electrical insulation distance. Said insulator 16, 17°18.
It was through 19. These insulators 16°1, 18,
19 The length of 4 pieces was also an obstacle to the compact flower of the resonator.

さらに、上記共振器でレーザ発振させたところ。Furthermore, the above resonator was used to oscillate a laser.

共振器の熱変形に伴う出力の変動率はレーザ出力値に対
して±2%以内となり、加工性能向上のためにはさらに
改善が必要であった。
The rate of variation in output due to thermal deformation of the resonator was within ±2% of the laser output value, and further improvements were required to improve processing performance.

問題点を解決するための手段 上記問題点を解決するために本発明は、共振器の一方の
カソード電極と反射鏡、他方のカソード側電極と出力鏡
とを、光軸に直角に対面して設けた一対のセラミック板
にそれぞれ配置し、前記一対のセラミック板を低熱膨張
材で連結しかつ前記低熱膨張材に絶縁物を介し、前記両
カソード電極間の中央部位置にアノード電極を配置した
ものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a structure in which one cathode electrode and the reflecting mirror of the resonator, and the other cathode side electrode and the output mirror facing each other perpendicularly to the optical axis. The anode electrode is arranged on a pair of ceramic plates provided, the pair of ceramic plates are connected with a low thermal expansion material, and an insulator is interposed between the low thermal expansion material and an anode electrode is placed at a central position between the cathode electrodes. It is.

作用 本発明は上記構成によりセラミック板が絶縁物そのもの
であり、また、ガスレーザ装置の構成部品としては機械
強度は大きく、熱膨張係数も小さいためレーザ発振器の
コンパクト化につながる。
According to the present invention, the ceramic plate is an insulator itself due to the above-mentioned structure, has high mechanical strength as a component of a gas laser device, and has a small coefficient of thermal expansion, so that the laser oscillator can be made more compact.

さらに、一対のセラミック板を連結するのに低膨張合金
を使ったため、従来の鉄パイプに温度コントロールした
冷却油を流し、鉄パイプの熱膨張量を押える構成に替わ
って、油冷することなしに両カソード電極、反射鏡、出
力鏡の直線性で構成するガスレーザ装置の光軸を一定に
保つことができる。
Furthermore, since a low expansion alloy was used to connect the pair of ceramic plates, instead of the conventional configuration in which temperature-controlled cooling oil is poured into the iron pipe to suppress the amount of thermal expansion of the iron pipe, it is possible to eliminate the need for oil cooling. The optical axis of the gas laser device constituted by the linearity of both cathode electrodes, the reflecting mirror, and the output mirror can be kept constant.

実施例 本発明の一実施例を第1図に示す。Example An embodiment of the present invention is shown in FIG.

第1図に示すように、光軸と直角に対面して設けたアル
ミナ焼成物の厚さ25#のセラミック7ランジ1.2に
絶縁物を介さず、直接に出力鏡3、カソード電極4,6
1反射鏡6を取付け、このセラミックフランジ1を低膨
張材である外径50m、肉厚S順、長さ1.2mの鉄、
ニッケル、コバルトの合金鋼のメインバイブ7.8で連
結し、がっ、このメインバイブ7.8に絶縁ガイシ9を
介して両カソード電極4.5の中央部にアノード電極1
oを設け、両カソード電極4,5とアノ−・ド電極10
間にそれぞれ放電管11.12を付けて共振器とした。
As shown in FIG. 1, the output mirror 3, cathode electrode 4, 6
1 reflector 6 is installed, and this ceramic flange 1 is made of low-expansion material made of iron with an outer diameter of 50 m, wall thickness in order of S, and length of 1.2 m.
A main vibe 7.8 made of nickel and cobalt alloy steel is connected to the main vibe 7.8, and an anode electrode 1 is connected to the center of both cathode electrodes 4.5 via an insulating insulator 9.
o, both cathode electrodes 4, 5 and anode electrode 10 are provided.
Discharge tubes 11 and 12 were attached between each of them to form a resonator.

本実施例によれば、セラミックフランジとして使用した
アルミナ焼成物のセラミック板構成で絶縁物15,16
,17.18の合計長さ相当分だけ共振器長を短かくで
きる。また、メインバイブ7.8を鉄、ニッケル、コバ
ルトの合金鋼としているので複合効果として熱膨張に伴
う共振器の光軸を安定に保つことができ、従来の光軸ズ
レに伴うレーザ出力の変動率が±1.6%であったのに
対して、本実施例では±0.66%を達成できた。
According to this embodiment, the insulators 15 and 16 are made of a ceramic plate made of fired alumina used as a ceramic flange.
, 17.18, the resonator length can be shortened by an amount equivalent to the total length of . In addition, since the main vibrator 7.8 is made of iron, nickel, and cobalt alloy steel, the combined effect is that the optical axis of the resonator can be kept stable due to thermal expansion. While the ratio was ±1.6%, this example achieved ±0.66%.

またレーザ出力の変動率は鋼板の切断加工においては、
その加工性能(切断面粗度、光沢)の制約から、±1チ
以下が望まれるが、本実施例によれば、アルミナ焼成物
のセラミック板と鉄、ニッケル、コバルトの低膨張合金
鋼の組合せで構成した共振器において、熱変形に伴う共
振器の光軸ズレを従来比で捧〜■と小さくでき、出力変
動率も従来例の±1.6%に対して±1.0係以下とで
きた。
In addition, the fluctuation rate of laser output is
Due to constraints on machining performance (cut surface roughness, gloss), ±1 inch or less is desired, but according to this example, a ceramic plate made of fired alumina and a low expansion alloy steel of iron, nickel, and cobalt are combined. In the resonator configured with this, the optical axis deviation of the resonator due to thermal deformation can be reduced to ~■ compared to the conventional example, and the output fluctuation rate is also less than ±1.0 coefficient, compared to ±1.6% in the conventional example. did it.

さらに本実施例においては熱膨張係数が0.5×1σ6
/°Cの鉄、ニッケル、コバルトの低膨張合金をメイン
バイブに用いたが、1.1X10 /’Cの鉄、ニッケ
ル合金のメインパイプでも出力変動率±1チ以下を達成
し得た。
Furthermore, in this example, the coefficient of thermal expansion is 0.5×1σ6
/°C low expansion alloy of iron, nickel, and cobalt was used for the main vibe, but even with the main pipe made of iron and nickel alloy of 1.1X10 /'C, an output fluctuation rate of ±1 inch or less could be achieved.

さらに、熱膨張係数0.6 X 10−5/’Cのアル
ミナ焼成物のセラミック板を実施例としたが、その他、
1.2 X 10−5/’C以下のセラミック板であれ
ば出力変動率を±1%以下とできた。
Furthermore, although a ceramic plate made of fired alumina with a thermal expansion coefficient of 0.6 x 10-5/'C was used as an example, other examples include
With a ceramic plate of 1.2 x 10-5/'C or less, the output fluctuation rate could be kept below ±1%.

発明の詳細 な説明から明らかなように、本発明によればレーザ発振
器の小型化を図ることができるとともに、ガスレーザ装
置の光軸を一定に保つことができる。
As is clear from the detailed description of the invention, according to the present invention, it is possible to downsize the laser oscillator and to keep the optical axis of the gas laser device constant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による共振器の構成図、第2
図は従来例の共振「構成図である。 3・・・・・・出力鏡、4.6・・・・・・カソード電
極、6・・・・・・反射鏡、7.8・・・・・・低熱膨
張合金製メインパイプ、9・・・・・・絶縁ガイシ、1
o・・・・・・アノード電極、11.12・°°・・・
放電管、13・・・°°・鉄パイプ製メインパイプ、1
4,16°゛°゛・°アルミニウム製メインフランジ、
16,17.18.19・・・・・・絶縁物、2o・・
・・パ・レーザ光。
FIG. 1 is a configuration diagram of a resonator according to an embodiment of the present invention, and FIG.
The figure is a configuration diagram of a conventional resonance system. 3...Output mirror, 4.6...Cathode electrode, 6...Reflector, 7.8... ...Low thermal expansion alloy main pipe, 9...Insulation insulator, 1
o...Anode electrode, 11.12.°°...
Discharge tube, 13...°° Main pipe made of iron pipe, 1
4.16°゛°゛・°aluminum main flange,
16,17.18.19... Insulator, 2o...
...Pa laser light.

Claims (3)

【特許請求の範囲】[Claims] (1)共振器の光軸上に放電電極を持ち、共振器の一方
のカソード電極と反射鏡、他方のカソード電極と出力鏡
とを、前記光軸に直角に対面して設けた一対のセラミッ
ク板にそれぞれ配設し、前記一対のセラミック板を低熱
膨張材で連結しかつ前記低熱膨張材に絶縁物を介し、前
記両カソード電極間の中央部にアノード電極を配設した
ガスレーザ装置。
(1) A pair of ceramics having a discharge electrode on the optical axis of the resonator, and one cathode electrode and a reflecting mirror of the resonator, and the other cathode electrode and output mirror facing each other at right angles to the optical axis. A gas laser device in which the pair of ceramic plates are connected to each other by a low thermal expansion material, and an anode electrode is provided in the center between the two cathode electrodes with an insulator interposed between the low thermal expansion material.
(2)低熱膨張材を、ニッケルと鉄との合金またはコバ
ルトとニッケルと鉄との合金とした特許請求の範囲第1
項記載のガスレーザ装置。
(2) Claim 1 in which the low thermal expansion material is an alloy of nickel and iron or an alloy of cobalt, nickel, and iron.
The gas laser device described in Section 1.
(3)セラミック板をアルミナ焼成物とした特許請求の
範囲第1項記載のガスレーザ装置。
(3) The gas laser device according to claim 1, wherein the ceramic plate is a fired alumina material.
JP6150287A 1987-03-17 1987-03-17 Gas laser device Pending JPS63227075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6150287A JPS63227075A (en) 1987-03-17 1987-03-17 Gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6150287A JPS63227075A (en) 1987-03-17 1987-03-17 Gas laser device

Publications (1)

Publication Number Publication Date
JPS63227075A true JPS63227075A (en) 1988-09-21

Family

ID=13172931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6150287A Pending JPS63227075A (en) 1987-03-17 1987-03-17 Gas laser device

Country Status (1)

Country Link
JP (1) JPS63227075A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001093380A1 (en) * 2000-05-30 2001-12-06 Matsushita Electric Industrial Co., Ltd. Laser oscillating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010594A (en) * 1973-05-25 1975-02-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010594A (en) * 1973-05-25 1975-02-03

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001093380A1 (en) * 2000-05-30 2001-12-06 Matsushita Electric Industrial Co., Ltd. Laser oscillating device
US6895030B1 (en) 2000-05-30 2005-05-17 Matsushita Electric Industrial Co., Ltd. Laser oscillating device
US6944200B2 (en) 2000-05-30 2005-09-13 Matsushita Electric Industrial Co., Ltd. Laser oscillator

Similar Documents

Publication Publication Date Title
EP0275023B1 (en) Carbon dioxide slab laser
US4625317A (en) Internal mirror laser
US5220576A (en) Slab or stripline laser
JPH09507725A (en) Flatness control type thermal lens
US6603794B2 (en) System and method for laser beam coupling between waveguide and optics
US3564452A (en) Laser with stable resonator
JPH04259270A (en) High-output strip waveguide laser
JPS63227075A (en) Gas laser device
US5231644A (en) Slab or stripline gas laser
US4759027A (en) Gas laser
EP0585482B1 (en) Slab laser with composite electrode
US6853668B1 (en) CO2 slab laser
JPH06188484A (en) Strip waveguide laser
US4912719A (en) Ion laser tube
US4129836A (en) Frequency stable boron nitride channel laser
JPH02219289A (en) Laser resonator
US4907242A (en) Gas laser apparatus having a low pressure buffer gas
JP2598009B2 (en) Metal vapor laser oscillation tube
JPS62210685A (en) Electrode supporting structure of silent discharge excitation laser oscillator
JPS5984486A (en) Inner mirror type gas laser tube
JPS61180488A (en) Ion laser tube
JPS63278391A (en) Lateral exciting type waveguide laser
JPH0521012A (en) Collector body structure for microwave tube
JPS62595B2 (en)
Juyal et al. Miniaturized Air Cooled Co 2 Waveguide Laser