JPS63227066A - Ballast type semiconductor light-emitting element and manufacture thereof - Google Patents

Ballast type semiconductor light-emitting element and manufacture thereof

Info

Publication number
JPS63227066A
JPS63227066A JP62059999A JP5999987A JPS63227066A JP S63227066 A JPS63227066 A JP S63227066A JP 62059999 A JP62059999 A JP 62059999A JP 5999987 A JP5999987 A JP 5999987A JP S63227066 A JPS63227066 A JP S63227066A
Authority
JP
Japan
Prior art keywords
light emitting
thickness
stress
semiconductor light
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62059999A
Other languages
Japanese (ja)
Inventor
Koichi Nitta
康一 新田
Naoto Mogi
茂木 直人
Tadashi Komatsubara
小松原 正
Masaru Nakamura
優 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62059999A priority Critical patent/JPS63227066A/en
Publication of JPS63227066A publication Critical patent/JPS63227066A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To inhibit a deterioration factor due to stress by bringing the thickness of an insulator to 3000Angstrom or less and bringing the thickness of a heat sink layer to 1-6mum. CONSTITUTION:Currents are constricted by SiO2 or SiNx as an insulating film 17 formed at a forming temperature of 350 deg.C or less and in thickness of 3000Angstrom or less, and a heat sink layer 21 shaped at a forming temperature of 200 deg.C or less and in thickness of 1-6mum is included. The title light-emitting element is manufactured in order of processes in which an insulating layer is shaped in order to reduce stress, the insulating film 17 is removed partially and a first electrode 19 is shaped, the heat sink layer 21 is formed, a second electrode 22 is shaped and a beam-extracting hole 23 is bored. Accordingly, stress resulting from structure deteriorating the light-emitting element and stress generated when the element is manufactured can be reduced.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、バラス型半導体発光素子のストレスを軽減
する構造及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a structure for reducing stress in a ball-type semiconductor light emitting device and a manufacturing method thereof.

(従来の技術) 従来から、光通信システムにおいて、短距離(<1(l
Kw)、小容量(<100Mb/s)、低価格のシステ
ムの発光源には、半導体レーザ(LD)よりも、温度安
定性、駆動回路を含めた経済性及び信頼性等の点で優れ
ている発光ダイオード(L[ED)が適している。
(Prior Art) Conventionally, in optical communication systems, short distance (<1(l)
Kw), small capacity (<100 Mb/s), and low-cost system light emitting sources are superior to semiconductor lasers (LDs) in terms of temperature stability, economy including drive circuits, and reliability. A light emitting diode (L[ED) is suitable.

光通信システムの光源は、特性が良い事と同時にffl
頼性が高い事が必要である。
The light source for optical communication systems has good characteristics and at the same time ffl
It needs to be highly reliable.

発光ダイオードの長寿命化達成のためには、良好な成長
結晶を得ると同時に、歪み、応力等の発生を最小限にと
どめる必要がある。
In order to extend the life of a light emitting diode, it is necessary to obtain a well-grown crystal and at the same time to minimize the occurrence of distortion, stress, etc.

発光ダイオードの寿命を制限する要因として、歪みが寄
与している事が明らかになっている。即ち、ヘテロエピ
タキシャル成長時や不純物ドープによる僅かな格子定数
変化に基づく歪み、素子の電極取り付は及びヒートシン
ク材料への素子取り付は時に導入される歪み等がある。
It has become clear that distortion plays a role in limiting the lifespan of light emitting diodes. That is, there are distortions caused by slight lattice constant changes during heteroepitaxial growth or impurity doping, and distortions that are sometimes introduced when attaching electrodes of devices and attaching devices to heat sink materials.

これらを極力減少する事により発光ダイオードは、長寿
命が達成できる。
By reducing these as much as possible, the light emitting diode can achieve a long life.

発光ダイオードの製造工程に於て結晶内へ導入される歪
み、応力等は、転位の発生を招く事になり、 EL像で
認められる暗線(Dark Line)の発生源となる
とともに、動作中に暗線の成長を促進する。
Strain, stress, etc. introduced into the crystal during the manufacturing process of light emitting diodes lead to the generation of dislocations, which are the source of dark lines observed in EL images, and also cause dark lines to appear during operation. promote the growth of

ダブルへテロ(DH)接合型発光ダイオードにおいて、
急速に劣化した素子には主に発光領域内に<100>方
向及び<110>方向を持つ非発光の暗線欠陥(以下D
LDと称す)が観察された。また、これらのDLDは発
生する方位によってその発生原因が異なる事が判明して
いる。即ち、<100>DLDは通電電流及び発光ダイ
オード素子自体の発する発光によって励起された点欠陥
の上昇運転により転位が増殖されて発生し、また<11
0>r)LDはへテロ接合の持つ格子定数と熱膨張係数
差に起因する歪み、通電にともなう熱歪み等、ストレス
によって結晶がすベリを起こし、転位が増殖されて発生
する。一般に。
In double hetero (DH) junction type light emitting diode,
Rapidly degraded devices mainly have non-emissive dark line defects (hereinafter referred to as D
LD) was observed. Furthermore, it has been found that the causes of these DLDs differ depending on the direction in which they occur. In other words, <100> DLD is generated by multiplication of dislocations due to upward operation of point defects excited by a current and the light emitted by the light emitting diode element itself, and <11>
0>r) LDs are caused by stress such as strain caused by the difference in lattice constant and thermal expansion coefficient of a heterojunction, thermal strain caused by electrical conduction, etc., which cause the crystal to become flattened and dislocations to multiply. in general.

10’dyne/cJ近い応力が発光ダイオード結晶に
加わったまま通電すると、結晶表面の弱い部分から転位
が導入され、活性層に到達した後、伸長する。
When electricity is applied while a stress of approximately 10'dyne/cJ is applied to a light emitting diode crystal, dislocations are introduced from weak parts of the crystal surface, reach the active layer, and then elongate.

これらOLDの中で、<100>方位のものは、転位の
少ない基板を使用し、成長結晶の完全性を高める事によ
って欠陥を除去しDLDの発生を抑制する事が可能であ
るが、<100>方位のものは現在の技術では除去する
事が困難である。
Among these OLDs, for those with <100> orientation, it is possible to remove defects and suppress the occurrence of DLD by using a substrate with few dislocations and improving the integrity of the grown crystal. > directions are difficult to remove with current technology.

たとえば、第4図(a)  (d)に、従来のバラス型
発光ダイオードの代表的な製造方法を示す。第5図に従
来の製造方法による応力分布を示す。まず、第4図(a
)に示すごと< N−GaAs基板41上にN−GaA
sバッファ層42、N−GaAlAsクラッド層43、
P−GaAs活性層44、P−GaAlAsクラッド層
45. P−GaAsコンタクト層46を順に成長形成
した。次に、第4図(b)に示すごとく、基板41の裏
面側を研磨し、 300−350μm厚さの基板41を
厚さ100μm程度まで薄くし、基板41の裏面側にA
uGe及びAuをそれぞれ5000人、1000人形成
しN側電極52を形成した。次に、フォトレジストをマ
スクとして直径150pの円形にN側電極52をエツチ
ング除去する1次に、第4図(c)に示すごとく、前記
第4図(b)に示した状態でNH4O+1−I+20□
系エツチング液を用い、N側電極52をマスクとして基
板41及びバッファ層42を前記クラッド層43に至る
深さまで、エツチング除去し、光取り出し窓53を形成
した。次に、第4図(d)に示すごとくコンタクト層4
6上の全面に電流狭窄層となる絶縁層5in2膜47を
CVD法により形成した後、フォトレジストをマスクと
して光取り出し窓53に対向して、直径30−の円形に
5in2膜47をエツチング除去する。次に、フォトレ
ジスト上の全面にAuZnからなるオーミック電極(コ
ンタクト金属)49を厚さ2000−5000人形成し
た後、フォトレジストを除去しPs電極49を形成する
0次に、P側電極49上及びSiO□膜47上の全面に
P側型横取り出し面50としてCr(1000人)、A
u (5000人)を順次形成した後、ヒートシンク層
としてAu51を形成する。第5図(a)−(b)は、
応力解析に使用したバラス型発光ダイオードの断面図及
び、従来の製造方法による場合のバラス型発光ダイオー
ドの<100>方向の応力分布図である。差分法による
3次元応力解析を行った。
For example, FIGS. 4(a) and 4(d) show a typical manufacturing method for a conventional ballast type light emitting diode. FIG. 5 shows the stress distribution according to the conventional manufacturing method. First, Figure 4 (a
) <N-GaAs on the N-GaAs substrate 41
s buffer layer 42, N-GaAlAs cladding layer 43,
P-GaAs active layer 44, P-GaAlAs cladding layer 45. A P-GaAs contact layer 46 was successively grown. Next, as shown in FIG. 4(b), the back side of the substrate 41 is polished to reduce the thickness of the 300-350 μm substrate 41 to about 100 μm, and A
The N-side electrode 52 was formed by forming 5000 and 1000 pieces of uGe and Au, respectively. Next, as shown in FIG. 4(c), the N-side electrode 52 is removed by etching into a circular shape with a diameter of 150p using the photoresist as a mask. □
Using an etching solution, the substrate 41 and buffer layer 42 were etched away to a depth up to the cladding layer 43 using the N-side electrode 52 as a mask, thereby forming a light extraction window 53. Next, as shown in FIG. 4(d), the contact layer 4
After forming an insulating layer 5in2 film 47 to serve as a current confinement layer on the entire surface of the insulating layer 6 by CVD, the 5in2 film 47 is etched away in a circular shape with a diameter of 30 mm facing the light extraction window 53 using a photoresist as a mask. . Next, after forming an ohmic electrode (contact metal) 49 made of AuZn on the entire surface of the photoresist to a thickness of 2000 to 5000, the photoresist is removed and a Ps electrode 49 is formed. And on the entire surface of the SiO□ film 47, Cr (1000 people), A
After sequentially forming 5000 layers, Au51 is formed as a heat sink layer. Figures 5(a)-(b) are
They are a cross-sectional view of a ballad type light emitting diode used for stress analysis, and a stress distribution diagram in the <100> direction of the ballad type light emitting diode when a conventional manufacturing method is used. Three-dimensional stress analysis was performed using the finite difference method.

第5図(b)に示すごとく、従来の製造方法で形成した
バラス型発光ダイオードの場合、 5in2膜の電流注
入窓(直径30μm)から発生する応力及び光取り出し
窓から発生する応力を低減できず、10”dyne/a
lを超す応力が活性層に掛かる。このままの状態で通電
すると結晶表面の弱い部分から転位が導入され、活性層
まで転位が伸長し、劣化することになる。
As shown in Figure 5(b), in the case of a ballad type light emitting diode formed using the conventional manufacturing method, it is not possible to reduce the stress generated from the current injection window (diameter 30 μm) of the 5in2 film and the stress generated from the light extraction window. , 10”dyne/a
A stress exceeding 1 is applied to the active layer. If current is applied in this state, dislocations will be introduced from the weak parts of the crystal surface, and the dislocations will extend to the active layer, resulting in deterioration.

(発明が解決しようとする問題点) 本発明は、上述のストレスによる劣化要因を抑制するた
め有用なバラス型半導体発光素子の構造及び製造方法を
提供する事を目的とするものである。
(Problems to be Solved by the Invention) An object of the present invention is to provide a structure and a manufacturing method of a ball-type semiconductor light emitting device that is useful for suppressing the deterioration factors due to stress as described above.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明のバラス型半導体発光素子は、形成温度350℃
以下、厚さ3000Å以下で形成された絶縁膜であるS
iO□又は5iN)(で電流狭窄を行い、形成温度20
0℃以下、厚さ1〜6趨で形成されたヒートシンク層を
含む構造となっている。
(Means for Solving the Problems) The ball type semiconductor light emitting device of the present invention has a formation temperature of 350°C.
Hereinafter, S is an insulating film formed with a thickness of 3000 Å or less.
iO□ or 5iN) (current confinement was performed at a formation temperature of 20
The structure includes a heat sink layer formed at a temperature of 0° C. or less and with a thickness of 1 to 6 layers.

また、ストレスを少なくするため、製造工程に於て、絶
縁層を形成し、部分的に絶縁膜を除去し第1の電極を形
成し、ヒートシンク層を形成し、第2の電極を形成し、
光取り出し穴を開ける工程の順で製造する。
In addition, in order to reduce stress, in the manufacturing process, an insulating layer is formed, the insulating film is partially removed to form a first electrode, a heat sink layer is formed, a second electrode is formed,
Manufactured in the order of drilling holes for light extraction.

(作  用) 本発明によれば発光素子に劣化を及ぼす構造に起因する
応力及び素子製造時に発生する応力を十分低減できる。
(Function) According to the present invention, it is possible to sufficiently reduce the stress caused by the structure that degrades the light emitting element and the stress generated during the manufacturing of the element.

(実 施 例) 以下1図面を参照しながら本発明の詳細な説明する。第
1図は、本発明の実施例のバラス型発光ダイオードの構
造を示す断面図、第2図(a) −(f)は、上記発光
ダイオードの製造工程を示す断面図である。まず、第2
図(a)に示すとと(N−GaAs基板11上にN−G
aAsバッファ層12、N−GaAlAsクラッド層1
3、P−GaAs活性層14、P−GaAlAsクラッ
ド層15、P−GaAsコンタクト層16をMOCVD
法により上記類に成長形成した。ここで、各層の混晶比
、キャリア濃度及び厚さ等は下記第1表に示す通りであ
る。
(Example) The present invention will be described in detail below with reference to one drawing. FIG. 1 is a sectional view showing the structure of a ballad type light emitting diode according to an embodiment of the present invention, and FIGS. 2(a) to 2(f) are sectional views showing the manufacturing process of the light emitting diode. First, the second
As shown in Figure (a), (N-G
aAs buffer layer 12, N-GaAlAs cladding layer 1
3. MOCVD the P-GaAs active layer 14, P-GaAlAs cladding layer 15, and P-GaAs contact layer 16.
The above-mentioned types were grown and formed by the method. Here, the mixed crystal ratio, carrier concentration, thickness, etc. of each layer are as shown in Table 1 below.

N型ドーパントとしてはSs、 P型ドーパントとして
はZnを用いた。
Ss was used as the N-type dopant, and Zn was used as the P-type dopant.

なお、次に、第1ff(b)に示すごとくコン591〜
層16上の全面に電流狭窄層となる絶縁膜SiO□膜1
7をCVD法により、形成温度300℃以下、厚さ30
00Å以下で形成した後、フォトレジスト18をマスク
としてふっ化アンモニウム溶液を用い、直径30μmの
円形にSin、膜17をエツチング除去する1次に、第
2図(c)に示すごとくフォトレジスト18上の全面に
AuZnからなるオーミック電極(コンタクト金属)1
9を厚さ1000−2000人形成した後、フォトレジ
スト18を除去し第1の電極であるP側電極19を形成
する。次に、第2図(d)に示すごとくP側電極I9上
及びSin、膜17上の全面にP側電極数り出し而20
としてCr(1000人)、Au (5000人)を順
次形成した後。
In addition, next, as shown in the first ff(b), the controllers 591 to 591
An insulating film SiO□ film 1 serving as a current confinement layer is formed on the entire surface of the layer 16.
7 by the CVD method at a forming temperature of 300°C or less and a thickness of 30°C.
After forming the film to a thickness of 00 Å or less, the film 17 is etched away using an ammonium fluoride solution using the photoresist 18 as a mask in a circular shape with a diameter of 30 μm. In the first step, as shown in FIG. Ohmic electrode (contact metal) 1 made of AuZn on the entire surface of
9 to a thickness of 1,000 to 2,000 layers, the photoresist 18 is removed and a P-side electrode 19, which is a first electrode, is formed. Next, as shown in FIG. 2(d), the number of P-side electrodes 20 is counted out on the entire surface of the P-side electrode I9 and the Sin film 17.
After sequentially forming Cr (1000 people) and Au (5000 people).

ヒートシンク層としてAu21を形成温度200℃以下
、厚さ1〜6μmで形成する。その後、基板11の裏面
側を研磨し、300−350Jun厚さの基Fillを
厚さ801程度まで薄くした0次いで、第2図(e)に
示すごとく基Fi11の裏面側にAuGe及びAuをそ
れぞれ5000人、1000人形成し第2の電極である
N側電極22を形成した。次に、フォトレジストをマス
クとしてオーミック電極19に対向して直径150.の
円形にN側電極22をエツチング除去する。次に、第2
図(f)に示すごとく、前記第2図(e)に示した状態
でNi+4(4)1−■20.系エツチング液を用い、
N側電極22をマスクとして基板11及びバッファ層1
2を前記クラッド層13に至る深さまで、エツチング除
去し、光取り出し窓23を形成した。第3図(a) −
(b)は、応力解析に使用したバラス型発光ダイオード
の断面図及び、本発明の製造方法による場合と本発明範
囲外の製造方法による場合のバラス型発光ダイオードの
<110>方向の応力分布図である。差分法による3次
元応力解析を行った。第3図(b)に示すごとく、本発
明による場合では、S10□膜の窓による応力及び光取
り出し窓から発生する応力を十分低減できる。尚、本発
明は、上述のGaAlAs系半導体材料に限定されない
Au21 is formed as a heat sink layer at a formation temperature of 200° C. or less and a thickness of 1 to 6 μm. After that, the back side of the substrate 11 was polished and the base Fill with a thickness of 300-350 Jun was reduced to a thickness of about 801 cm. Next, as shown in FIG. 2(e), AuGe and Au were respectively deposited on the back side of the base Fill 11. 5000 people and 1000 people were formed to form the N-side electrode 22 which is the second electrode. Next, using a photoresist as a mask, a diameter of 150. The N-side electrode 22 is etched away in a circular shape. Next, the second
As shown in FIG. 2(f), in the state shown in FIG. 2(e), Ni+4(4)1-■20. Using a system etching solution,
Using the N-side electrode 22 as a mask, the substrate 11 and the buffer layer 1 are
2 was removed by etching to a depth reaching the cladding layer 13 to form a light extraction window 23. Figure 3(a) -
(b) is a cross-sectional view of the ballad type light emitting diode used in the stress analysis, and stress distribution diagrams in the <110> direction of the ballad type light emitting diode in the case of the manufacturing method of the present invention and the case of the manufacturing method outside the scope of the present invention. It is. Three-dimensional stress analysis was performed using the finite difference method. As shown in FIG. 3(b), in the case of the present invention, the stress caused by the window of the S10□ film and the stress generated from the light extraction window can be sufficiently reduced. Note that the present invention is not limited to the above-mentioned GaAlAs-based semiconductor material.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように本発明によれば1発光素子に劣化
を及ぼす構造に起因する応力及び素子製造時に発生する
応力を十分低減でき、信頼性の高いバラス型発光ダイオ
ードを得る事が出来る。
As described above, according to the present invention, it is possible to sufficiently reduce the stress caused by the structure that degrades one light emitting element and the stress generated during the manufacture of the element, and it is possible to obtain a highly reliable ballad type light emitting diode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のバラス型発光ダイオードの断
面図、第2図は本発明の実施例方法に係わるバラス型発
光ダイオードの製造工程を示す断面図、第3図は応力解
析に使用したバラス型発光ダイオードの断面図及び本発
明の製造方法による場合のバラス型発光ダイオードの<
110>方向の応力分布図、第4図は従来の方法に係わ
るバラス型発光ダイオードの製造コニ程を示す断面図、
第5図は応力解析に使用したバラス型発光ダイオードの
断面図及び従来の製造方法による場合のバラス型発光ダ
イオードの<110>方向の応力分布図である。 11、4l−N−GaAs基板 12、42−N−GaAsバッファ層 13、43=−N−GaAIAsクラッド層14、4”
1=P−GaAs活性層 15、45−P−GaAIAsクラッド層16、46−
P−GaAsコンタクト層17、47・・・SiO□膿
18・・・フォトレジスト19、49・・・第1の電極
であるP@電極20、50・・・P制電横取り出し面 21、51・・・ヒートシンク層 22、52・・・第2の電極であるN(II!I電極2
3、53・・・光取り出し窓 第  3 図 第  4 図 第  5 図
Fig. 1 is a cross-sectional view of a ballast type light emitting diode according to an embodiment of the present invention, Fig. 2 is a sectional view showing the manufacturing process of a ballast type light emitting diode according to an embodiment method of the present invention, and Fig. 3 is used for stress analysis. A cross-sectional view of a ballast type light emitting diode and a cross sectional view of a ballast type light emitting diode produced by the manufacturing method of the present invention.
110> direction stress distribution diagram, FIG. 4 is a sectional view showing the manufacturing process of a ballad type light emitting diode according to the conventional method,
FIG. 5 is a cross-sectional view of the ballad type light emitting diode used in the stress analysis and a stress distribution diagram in the <110> direction of the ballad type light emitting diode in the case of a conventional manufacturing method. 11, 4l-N-GaAs substrate 12, 42-N-GaAs buffer layer 13, 43=-N-GaAIAs cladding layer 14, 4''
1=P-GaAs active layer 15, 45-P-GaAIAs cladding layer 16, 46-
P-GaAs contact layer 17, 47...SiO□pus 18...Photoresist 19, 49...P@electrode 20, 50, which is the first electrode...P antistatic lateral extraction surface 21, 51 ... Heat sink layers 22, 52 ... N(II!I electrode 2 which is the second electrode)
3, 53...Light extraction window Figure 3 Figure 4 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)化合物半導体からなり絶縁物であるSiO_2又
はSiN_xで電流狭窄を行い、ヒートシンク層を設け
たバラス型半導体発光素子において、絶縁物の厚さを3
000Å以下とし、ヒートシンク層の厚さを1〜6μm
としたことを特徴とするバラス型半導体発光素子。
(1) In a ballast-type semiconductor light-emitting device made of a compound semiconductor and in which current confinement is performed using an insulator SiO_2 or SiN_x and a heat sink layer is provided, the thickness of the insulator is 3.
000 Å or less, and the thickness of the heat sink layer is 1 to 6 μm.
A ballad type semiconductor light emitting device characterized by the following.
(2)バラス型半導体発光素子の製造工程において、絶
縁物を形成する工程、部分的に絶縁物を除去し第1の電
極を形成する工程、ヒートシンク層を形成する工程、第
2の電極を形成する工程、光取り出し穴を開ける工程の
順序で製造することを特徴とするバラス型半導体発光素
子の製造方法。
(2) In the manufacturing process of a ball type semiconductor light emitting device, there are a step of forming an insulator, a step of partially removing the insulator to form a first electrode, a step of forming a heat sink layer, and a step of forming a second electrode. 1. A method for manufacturing a semiconductor light-emitting element of a rosette type, characterized in that the manufacturing process is performed in the following order: 1.
(3)前記電流狭窄用絶縁物の形成温度が350℃以下
であり、厚さが3000Å以下であることを特徴とする
特許請求の範囲第2項記載のバラス型半導体発光素子の
製造方法。(4)前記ヒートシンク層を形成温度が20
0℃以下であり、厚さが1〜6μmであることを特徴と
する特許請求の範囲第2項記載のバラス型半導体発光素
子の製造方法。
(3) The method for manufacturing a ball type semiconductor light emitting device according to claim 2, wherein the current confining insulator is formed at a temperature of 350° C. or lower and a thickness of 3,000 Å or lower. (4) The heat sink layer is formed at a temperature of 20°C.
3. The method of manufacturing a ball type semiconductor light emitting device according to claim 2, wherein the temperature is 0° C. or lower and the thickness is 1 to 6 μm.
JP62059999A 1987-03-17 1987-03-17 Ballast type semiconductor light-emitting element and manufacture thereof Pending JPS63227066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62059999A JPS63227066A (en) 1987-03-17 1987-03-17 Ballast type semiconductor light-emitting element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62059999A JPS63227066A (en) 1987-03-17 1987-03-17 Ballast type semiconductor light-emitting element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63227066A true JPS63227066A (en) 1988-09-21

Family

ID=13129372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62059999A Pending JPS63227066A (en) 1987-03-17 1987-03-17 Ballast type semiconductor light-emitting element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63227066A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095776A (en) * 2005-09-27 2007-04-12 Furukawa Electric Co Ltd:The Surface emitting laser element and laser array

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095776A (en) * 2005-09-27 2007-04-12 Furukawa Electric Co Ltd:The Surface emitting laser element and laser array

Similar Documents

Publication Publication Date Title
JP2666237B2 (en) Group III nitride semiconductor light emitting device
US3783351A (en) Semiconductor laser device and method for manufacturing the same
JPH1051030A (en) Group iii nitride semiconductor light-emitting element
US4188244A (en) Method of making a semiconductor light-emitting device utilizing low-temperature vapor-phase deposition
JP3782230B2 (en) Manufacturing method of semiconductor laser device and manufacturing method of group III-V compound semiconductor element
JP2000101133A (en) Epitaxial wafer for light-emitting element and manufacture thereof
US4206468A (en) Contacting structure on a semiconductor arrangement
JPS63227066A (en) Ballast type semiconductor light-emitting element and manufacture thereof
JPH0897466A (en) Light emitting device
US5866918A (en) Semiconductor light emitting device
JPH10135567A (en) Semiconductor laser element
JPH05218585A (en) Semiconductor light emitting device
KR970001896B1 (en) Semiconductor laser diode of form and method for manufacturing the same
JPH05235406A (en) Semiconductor light-emitting device
KR890004477B1 (en) Radiation diode manufacturing method
JPH05110135A (en) Multilayer epitaxial crystalline structure
KR100234349B1 (en) Method of manufacturing laser diode
JP2528877B2 (en) Semiconductor laser
JP3257045B2 (en) Semiconductor laser
KR940011271B1 (en) Manufacturing method of laser diode array
KR940011270B1 (en) Manufacturing method of laser diode
JPS6244440B2 (en)
KR970004499B1 (en) A method for manufacture of semiconductor laser
KR940008578B1 (en) Surface protection film building method of semiconductor laser diode
JP4156873B2 (en) Epitaxial wafer manufacturing method