JPS63226987A - 光アイソレ−タ内蔵型半導体レ−ザ装置 - Google Patents
光アイソレ−タ内蔵型半導体レ−ザ装置Info
- Publication number
- JPS63226987A JPS63226987A JP5996487A JP5996487A JPS63226987A JP S63226987 A JPS63226987 A JP S63226987A JP 5996487 A JP5996487 A JP 5996487A JP 5996487 A JP5996487 A JP 5996487A JP S63226987 A JPS63226987 A JP S63226987A
- Authority
- JP
- Japan
- Prior art keywords
- thick film
- semiconductor laser
- film crystal
- faraday
- laser device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 35
- 239000013078 crystal Substances 0.000 claims abstract description 26
- 239000002223 garnet Substances 0.000 claims abstract description 14
- 230000003287 optical effect Effects 0.000 claims description 20
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- 229910052797 bismuth Inorganic materials 0.000 abstract description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 abstract description 3
- 239000000835 fiber Substances 0.000 description 16
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 9
- 230000010287 polarization Effects 0.000 description 8
- 229910021532 Calcite Inorganic materials 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 239000005357 flat glass Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 208000006558 Dental Calculus Diseases 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光アイソレータを内蔵した半導体レーザ装置に
関する。
関する。
光通信に用いられる半導体レーザは、1〜2mの短いピ
グティルと呼ばれるファイバが取り付けられた形態で供
給され、その終端にコネクタを付けて伝送用ファイバに
接続されることが多い。この時、コネクタ部で生ずる反
射戻り光は半導体レーザに再注入され、半導体レーザの
動作を不安定にすることが知られている。このことは、
高速度長距離伝送用に現在実用化が進められている単一
軸モード半導体レーザでは特に致命的となる。
グティルと呼ばれるファイバが取り付けられた形態で供
給され、その終端にコネクタを付けて伝送用ファイバに
接続されることが多い。この時、コネクタ部で生ずる反
射戻り光は半導体レーザに再注入され、半導体レーザの
動作を不安定にすることが知られている。このことは、
高速度長距離伝送用に現在実用化が進められている単一
軸モード半導体レーザでは特に致命的となる。
即ち、この種のレーザは単一軸モード発振を行うことに
より伝送中のモード分散を防ぎ、従来の半導体レーザの
2〜3倍の伝送距離を得ることができる。しかし、反射
戻り光があると単一軸モード発振を維持することが困難
となる。
より伝送中のモード分散を防ぎ、従来の半導体レーザの
2〜3倍の伝送距離を得ることができる。しかし、反射
戻り光があると単一軸モード発振を維持することが困難
となる。
このため、この種のレーザを通信に使用するためには、
反射戻り光を除去する光アイソレータを内蔵した半導体
レーザ装置が必要とされており、従来では例えば、「光
アイソレータ内蔵型DFB−LDモジュール」 (昭和
60年度、電子通信学会、半導体材料技術部門全国大会
305.近間・渡辺・三浦・峠)に発表されている第4
図のような光アイソレータ内蔵型の半導体レーザ装置が
提案されている。
反射戻り光を除去する光アイソレータを内蔵した半導体
レーザ装置が必要とされており、従来では例えば、「光
アイソレータ内蔵型DFB−LDモジュール」 (昭和
60年度、電子通信学会、半導体材料技術部門全国大会
305.近間・渡辺・三浦・峠)に発表されている第4
図のような光アイソレータ内蔵型の半導体レーザ装置が
提案されている。
この装置では、単一軸モード半導体レーザ31より放射
された光ビームは、第2レンズ38により平行ビームに
変換され、第一ルチルプリズム33を通り、YIG結晶
34及び磁石35からなるファラディ回転素子36を通
過した後、第ニルチルプリズム37を通り、第2レンズ
38によりシングルモードファイバ39に収束結合され
る。
された光ビームは、第2レンズ38により平行ビームに
変換され、第一ルチルプリズム33を通り、YIG結晶
34及び磁石35からなるファラディ回転素子36を通
過した後、第ニルチルプリズム37を通り、第2レンズ
38によりシングルモードファイバ39に収束結合され
る。
この構造では、半導体レーザ31から出射した光は効率
よくファイバ39に結合するが、逆にファイバ39から
戻ってくる光は半導体レーザ31には到達せず、半導体
レーザは安定に動作する。
よくファイバ39に結合するが、逆にファイバ39から
戻ってくる光は半導体レーザ31には到達せず、半導体
レーザは安定に動作する。
この原理を以下に説明する。
半導体レーザ31から出た光は第一ルチルプリズム33
によりTM波/TE波が分離され、TE波のみがファラ
ディ回転素子36に入射し、ここを透過する時に偏波方
向が45″回転して、第ニルチルプリズム37に入射す
る。第ニルチルプリズム37はこの偏波光を100%透
過するように、第一ルチルプリズムに対し45°の角度
で設定されているため、ここを透過した光は、レンズ系
により効率よくシングルモードファイバに結合される。
によりTM波/TE波が分離され、TE波のみがファラ
ディ回転素子36に入射し、ここを透過する時に偏波方
向が45″回転して、第ニルチルプリズム37に入射す
る。第ニルチルプリズム37はこの偏波光を100%透
過するように、第一ルチルプリズムに対し45°の角度
で設定されているため、ここを透過した光は、レンズ系
により効率よくシングルモードファイバに結合される。
一方、ファイバ端で反射し逆方向に進んできた光は、先
ず第ニルチルプリズム37により45′″回転された偏
波光のみが半導体レーザ31の方向へ逆進できる。この
戻り光はファラディ回転素子36を透過する時、出射光
と逆方向の磁場を透過することになるため、出射光が回
転したのと同じ方向へ偏波方向が更に45°回転し、合
わせて出射光に対し90°の偏波方向を持つことになる
。
ず第ニルチルプリズム37により45′″回転された偏
波光のみが半導体レーザ31の方向へ逆進できる。この
戻り光はファラディ回転素子36を透過する時、出射光
と逆方向の磁場を透過することになるため、出射光が回
転したのと同じ方向へ偏波方向が更に45°回転し、合
わせて出射光に対し90°の偏波方向を持つことになる
。
この戻り光は次の第一ルチルプリズム33により光軸方
向を曲げられ、半導体レーザ31の出射端に戻ることは
ない。したがって、この構造の装置では、反射戻り光の
影響が除去されており、単一モードレーザに対し安定な
動作をさせることができる。
向を曲げられ、半導体レーザ31の出射端に戻ることは
ない。したがって、この構造の装置では、反射戻り光の
影響が除去されており、単一モードレーザに対し安定な
動作をさせることができる。
上述した従来の光アイソレータ内蔵型半導体レーザ装置
では、光アイソレータに使用されているルチルプリズム
、YIG結晶等の部品は、いずれも非常に高価なもので
あり、実際にこれらの部品を使用して装置を構成する場
合にはコストの点から実用性が殆どない。この種の装置
を実用化するためには、光アイソレータのコストを現状
の10%以下に低減することが要求される。
では、光アイソレータに使用されているルチルプリズム
、YIG結晶等の部品は、いずれも非常に高価なもので
あり、実際にこれらの部品を使用して装置を構成する場
合にはコストの点から実用性が殆どない。この種の装置
を実用化するためには、光アイソレータのコストを現状
の10%以下に低減することが要求される。
このために、ルチルプリズムに関しては、半導体レーザ
は通常TE波成分が主で、TM波成分はTE波に対し3
0〜35dB以下のため25dB程度のアイソレーショ
ン率で良い場合は、第一ルチルプリズムを省略できる。
は通常TE波成分が主で、TM波成分はTE波に対し3
0〜35dB以下のため25dB程度のアイソレーショ
ン率で良い場合は、第一ルチルプリズムを省略できる。
また、光学系を変更し、平行光学系でなく結像系に入れ
るようにすれば、光角度の分解能はプリズムに比して低
いが、より安価な方解石プレートを使うことも可能であ
る。また、代わりにピグティルファイバに偏波面保存フ
ァイバを使うこともできる。
るようにすれば、光角度の分解能はプリズムに比して低
いが、より安価な方解石プレートを使うことも可能であ
る。また、代わりにピグティルファイバに偏波面保存フ
ァイバを使うこともできる。
しかし、−各問題なのはファラディ回転素子の低価格化
である。これに関してはYIG結晶の代わりにrGro
uth and Magneto−Optic l5o
lator J(NECRes、& Develop
N180. Janu、 1986 + T、旧biy
a)の中で紹介されているビスマス置換ガーネット厚膜
が安価に供給できるファラディ素子として有望視されて
いる。しかし、この厚膜結晶はファラディ回転角に対す
る温度特性が悪いために、未だに実用化されていない。
である。これに関してはYIG結晶の代わりにrGro
uth and Magneto−Optic l5o
lator J(NECRes、& Develop
N180. Janu、 1986 + T、旧biy
a)の中で紹介されているビスマス置換ガーネット厚膜
が安価に供給できるファラディ素子として有望視されて
いる。しかし、この厚膜結晶はファラディ回転角に対す
る温度特性が悪いために、未だに実用化されていない。
本発明はこの温度特性問題を解決することにより安価な
ビスマス置換ガーネット厚膜結晶をファラディ回転素子
として使用することを可能とした光アイソレータ内蔵型
半導体レーザ装置を提供することを目的としている。
ビスマス置換ガーネット厚膜結晶をファラディ回転素子
として使用することを可能とした光アイソレータ内蔵型
半導体レーザ装置を提供することを目的としている。
本発明の光アイソレータ内蔵型半導体レーザ装置は、フ
ァラディ回転素子を、ファラデイ回転能を有する厚膜結
晶と、この厚膜結晶を周囲で保持する金属板と、この金
属板に磁着してこれを両側・から挟持する一対のリング
状磁石と、これら厚膜結晶、金属板及びリング状磁石を
内装する非磁性の金属ブロックとで構成し、このファラ
ディ回転素子を電子クーラ上に搭載して温度を安定に保
持し得るように構成し、厚膜結晶に安価なビスマス置換
ガーネット厚膜を使用しても、その温度特性の安定化を
図って実用化を実現している。
ァラディ回転素子を、ファラデイ回転能を有する厚膜結
晶と、この厚膜結晶を周囲で保持する金属板と、この金
属板に磁着してこれを両側・から挟持する一対のリング
状磁石と、これら厚膜結晶、金属板及びリング状磁石を
内装する非磁性の金属ブロックとで構成し、このファラ
ディ回転素子を電子クーラ上に搭載して温度を安定に保
持し得るように構成し、厚膜結晶に安価なビスマス置換
ガーネット厚膜を使用しても、その温度特性の安定化を
図って実用化を実現している。
次に、本発明を図面を参照して説明する。
第1図は本発明の光アイソレータ内蔵型半導体レーザ装
置の一実施例の断面図である。図示のように、半導体レ
ーザ1はヒートシンク2及びチップキャリア3を介して
基板4にマウントしている。
置の一実施例の断面図である。図示のように、半導体レ
ーザ1はヒートシンク2及びチップキャリア3を介して
基板4にマウントしている。
更にこの基板4の上には、後述するファラデイ回転素子
5をマウントしている。前記基板4は電子クーラ6を介
してケース7の内部に固定されており、これによりファ
ラデイ回転素子5の温度を安定に保っている。前記ケー
ス7は窓ガラス8を有しており、この窓ガラス8に対向
する外側位置にはレンズ9及び方解石を使ったヰ★光子
10を保持したレンズホルダ11と、スライドリング1
2と、先端部が金属筒13により保護されたファイバ1
4とをこの順序で固定している。この場合、前記検光子
10は、半導体レーザ1の偏波方向に対し45°の角度
で常光を通すように固定されている。
5をマウントしている。前記基板4は電子クーラ6を介
してケース7の内部に固定されており、これによりファ
ラデイ回転素子5の温度を安定に保っている。前記ケー
ス7は窓ガラス8を有しており、この窓ガラス8に対向
する外側位置にはレンズ9及び方解石を使ったヰ★光子
10を保持したレンズホルダ11と、スライドリング1
2と、先端部が金属筒13により保護されたファイバ1
4とをこの順序で固定している。この場合、前記検光子
10は、半導体レーザ1の偏波方向に対し45°の角度
で常光を通すように固定されている。
前記ファラディ回転素子5の詳細を第2図の部分分解斜
視図、及び第3図(a)の正面図及び同図(b)のAA
Na断面図に示す。
視図、及び第3図(a)の正面図及び同図(b)のAA
Na断面図に示す。
これらの図に示すように、リング状の磁石21に磁性金
属でできた円板状金属板23を磁石21の磁力を利用し
て吸着させる。また、この金属板23の中央にあけた正
方形の穴にファラディ回転能を有する厚膜結晶、例えば
ビスマス置換ガーネット厚膜結晶24を収納させる。こ
の場合、金属板23よりもガーネット厚膜24を僅かに
厚くしておく。ここでは、1.55μm用のガーネット
厚膜が偏光方向を45″回転するために約500μm厚
さにされており、金属Fi23は450pm程度の厚さ
にしている。
属でできた円板状金属板23を磁石21の磁力を利用し
て吸着させる。また、この金属板23の中央にあけた正
方形の穴にファラディ回転能を有する厚膜結晶、例えば
ビスマス置換ガーネット厚膜結晶24を収納させる。こ
の場合、金属板23よりもガーネット厚膜24を僅かに
厚くしておく。ここでは、1.55μm用のガーネット
厚膜が偏光方向を45″回転するために約500μm厚
さにされており、金属Fi23は450pm程度の厚さ
にしている。
更に、別なリング状の磁石22を使用し、その磁力で前
記ガーネット厚膜24を前記リング状磁石21との間に
サンドインチ状に挟み固定する。
記ガーネット厚膜24を前記リング状磁石21との間に
サンドインチ状に挟み固定する。
このようにして組立てた両リング状磁石21.22を、
中央に円筒状の貫通穴を有する非磁性の矩形金属ブロッ
ク25内に収納し、ソルダ26により固定している。こ
れにより、通工用電子装置として長期の信頼度を保証す
る上での障害となる有機樹脂を使用しないファラディ回
転素子5が構成される。
中央に円筒状の貫通穴を有する非磁性の矩形金属ブロッ
ク25内に収納し、ソルダ26により固定している。こ
れにより、通工用電子装置として長期の信頼度を保証す
る上での障害となる有機樹脂を使用しないファラディ回
転素子5が構成される。
このような構造の光アイソレータ内蔵型の半導体レーザ
装置がレーザ光源として動作することは、上述した従来
技術と基本的には同じであり、その詳細な説明は省略す
る。
装置がレーザ光源として動作することは、上述した従来
技術と基本的には同じであり、その詳細な説明は省略す
る。
しかしながら、この実施例のレーザ装置では、半導体レ
ーザ自体の偏光性を利用しているために偏光子を使用す
る必要はない。これは、25dB程度のアイソレート量
であれば、偏光子を省略できるからである。また、検光
子としてはルチルプリズムの代わりに安価な方解石を使
用することができる。
ーザ自体の偏光性を利用しているために偏光子を使用す
る必要はない。これは、25dB程度のアイソレート量
であれば、偏光子を省略できるからである。また、検光
子としてはルチルプリズムの代わりに安価な方解石を使
用することができる。
また、この構成のレーザ装置では、ビスマス置換ガーネ
ット厚膜を主体としたファラディ回転素子を電子ターラ
上に搭載して温度の安定化を図っているので、温度特性
の問題を解消でき、しかも高価な結晶部品を使用してい
ないので安価に製造することができる。
ット厚膜を主体としたファラディ回転素子を電子ターラ
上に搭載して温度の安定化を図っているので、温度特性
の問題を解消でき、しかも高価な結晶部品を使用してい
ないので安価に製造することができる。
なお、前記実施例では検光子とじて方解石を使用してい
たが、その代わりに偏波面保持ファイバを使用してもよ
い。この偏波面保持ファイバは、方解石に比べてより安
価であり、従来用いていた通常のファイバに置き換えて
用いるだけでよい。
たが、その代わりに偏波面保持ファイバを使用してもよ
い。この偏波面保持ファイバは、方解石に比べてより安
価であり、従来用いていた通常のファイバに置き換えて
用いるだけでよい。
また、この偏波面保持ファイバを用いることにより、検
光子の回転角を調整する工程が除去されるため、組立て
が容易になり、より一層のコストの低減を図ることがで
きる。
光子の回転角を調整する工程が除去されるため、組立て
が容易になり、より一層のコストの低減を図ることがで
きる。
以上説明したように本発明は、ファラディ回転素子を、
ファラディ回転能を有する厚膜結晶を主体に構成し、か
つこのファラディ回転素子を電子クーラ上に搭載して温
度を安定に保持し得るように構成しているので、厚膜結
晶に安価なビスマス置換ガーネット厚膜を使用してもそ
の温度特性問題を解決することができ、ビスマス置換ガ
ーネット厚膜結晶を実用化して安価な光アイソレータを
得ることができる。
ファラディ回転能を有する厚膜結晶を主体に構成し、か
つこのファラディ回転素子を電子クーラ上に搭載して温
度を安定に保持し得るように構成しているので、厚膜結
晶に安価なビスマス置換ガーネット厚膜を使用してもそ
の温度特性問題を解決することができ、ビスマス置換ガ
ーネット厚膜結晶を実用化して安価な光アイソレータを
得ることができる。
第1図は本発明の半導体レーザ装置の模式的な断面図、
第2図はファラディ回転素子の部分分解斜視図、第3図
(a)はファラディ回転素子の正面図、第3図(b)は
第3図(a)のAA線に沿う断面図、第4図は従来構造
の断面図である。 1・・・半導体レーザ、2・・・ヒートシンク、3・・
・チップキャリア、4・・・基板、5・・・ファラディ
回転素子、6・・・電子クーラ、7・・・ケース、8・
・・窓ガラス、9・・・レンズ、10・・・検光子、1
1・・・レンズホルダ、12・・・スライドリング、1
3・・・金属筒、14・・・ファイバ、21.22・・
・リング状磁石、23・・・金属板、24・・・ガーネ
ット厚膜、25・・・金属ブロック、31・・・半導体
レーザ、32・・・第ルンズ、33・・・第一ルチルプ
リズム、34・・・YIG結晶、35・・・磁石、36
・・・ファラディ回転素子、37・・・第ニルチルプリ
ズム、38・・・第2レンズ、39・・・シングルモー
ドファイバ。
第2図はファラディ回転素子の部分分解斜視図、第3図
(a)はファラディ回転素子の正面図、第3図(b)は
第3図(a)のAA線に沿う断面図、第4図は従来構造
の断面図である。 1・・・半導体レーザ、2・・・ヒートシンク、3・・
・チップキャリア、4・・・基板、5・・・ファラディ
回転素子、6・・・電子クーラ、7・・・ケース、8・
・・窓ガラス、9・・・レンズ、10・・・検光子、1
1・・・レンズホルダ、12・・・スライドリング、1
3・・・金属筒、14・・・ファイバ、21.22・・
・リング状磁石、23・・・金属板、24・・・ガーネ
ット厚膜、25・・・金属ブロック、31・・・半導体
レーザ、32・・・第ルンズ、33・・・第一ルチルプ
リズム、34・・・YIG結晶、35・・・磁石、36
・・・ファラディ回転素子、37・・・第ニルチルプリ
ズム、38・・・第2レンズ、39・・・シングルモー
ドファイバ。
Claims (2)
- (1)半導体レーザ、ファラディ回転素子、レンズ、検
光子等からなる光アイソレータを内蔵する半導体レーザ
装置において、前記ファラディ回転素子は、ファラディ
回転能を有する厚膜結晶と、この厚膜結晶を周囲で保持
する金属板と、この金属板に磁着してこれを両側から挟
持する一対のリング状磁石と、これら厚膜結晶、金属板
及びリング状磁石を内装する非磁性の金属ブロックとで
構成し、このファラディ回転素子を電子クーラ上に搭載
して温度を安定に保持し得るように構成したことを特徴
とする光アイソレータ内蔵型半導体レーザ装置。 - (2)厚膜結晶はビスマス置換型ガーネット厚膜である
特許請求の範囲第1項記載の光アイソレータ内蔵型半導
体レーザ装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5996487A JPS63226987A (ja) | 1987-03-17 | 1987-03-17 | 光アイソレ−タ内蔵型半導体レ−ザ装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5996487A JPS63226987A (ja) | 1987-03-17 | 1987-03-17 | 光アイソレ−タ内蔵型半導体レ−ザ装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63226987A true JPS63226987A (ja) | 1988-09-21 |
Family
ID=13128359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5996487A Pending JPS63226987A (ja) | 1987-03-17 | 1987-03-17 | 光アイソレ−タ内蔵型半導体レ−ザ装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63226987A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2650446A2 (fr) * | 1988-12-09 | 1991-02-01 | Cit Alcatel | Tete optique a isolateur integre pour le couplage d'un laser semi-conducteur a une fibre |
US5974065A (en) * | 1996-03-15 | 1999-10-26 | Nec Corporation | Semiconductor laser module |
-
1987
- 1987-03-17 JP JP5996487A patent/JPS63226987A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2650446A2 (fr) * | 1988-12-09 | 1991-02-01 | Cit Alcatel | Tete optique a isolateur integre pour le couplage d'un laser semi-conducteur a une fibre |
US5974065A (en) * | 1996-03-15 | 1999-10-26 | Nec Corporation | Semiconductor laser module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4756607A (en) | Optical isolator device having two cascaded isolator elements with different light beam rotation angles | |
US5381261A (en) | Optical isolator | |
US4919522A (en) | Optical switch having birefringent element | |
JPS6049297B2 (ja) | 光アイソレ−タ | |
US20050111073A1 (en) | Integrated variable optical attenuator and related components | |
JP2002519716A (ja) | 高速度電気光変換器 | |
US3649931A (en) | Compensated frequency biasing system for ring laser | |
US5737349A (en) | Optical isolator and alignment method | |
JP2000510965A (ja) | オプトアイソレータ | |
JPS63226987A (ja) | 光アイソレ−タ内蔵型半導体レ−ザ装置 | |
US4734576A (en) | Electro-optic sampler | |
GB2023919A (en) | Ring laser | |
EP3032321B1 (en) | Optical device | |
JP2995747B2 (ja) | 光アイソレータ内蔵半導体レーザモジュール | |
JP2716122B2 (ja) | アイソレータ内蔵型半導体レーザモジュール | |
JP2998735B2 (ja) | 光アイソレータ | |
Sugie et al. | An effective nonreciprocal circuit for semiconductor laser-to-optical-fiber coupling using a YIG sphere | |
JPH03137616A (ja) | 光アイソレータおよび光アイソレータ内蔵半導体レーザモジュール | |
JPS61292613A (ja) | フアラデ−回転子及びその製造方法 | |
JPH077156B2 (ja) | 光アイソレ−タ | |
GB2143337A (en) | Optical isolator | |
JPH0368915A (ja) | 光アイソレータおよび光アイソレータ内蔵半導体レーザモジュール | |
JP2752615B2 (ja) | 半導体モジユール | |
JP3981100B2 (ja) | 反射型光部品 | |
JPS62232614A (ja) | レ−ザモジユ−ル |