JPS63226012A - Method of controlling collapse magnetic field temperature coefficient of magnetic bubble garnet crystal - Google Patents

Method of controlling collapse magnetic field temperature coefficient of magnetic bubble garnet crystal

Info

Publication number
JPS63226012A
JPS63226012A JP5791587A JP5791587A JPS63226012A JP S63226012 A JPS63226012 A JP S63226012A JP 5791587 A JP5791587 A JP 5791587A JP 5791587 A JP5791587 A JP 5791587A JP S63226012 A JPS63226012 A JP S63226012A
Authority
JP
Japan
Prior art keywords
crystal
temperature coefficient
magnetic field
collapse
garnet crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5791587A
Other languages
Japanese (ja)
Inventor
Hidema Uchishiba
内柴 秀磨
Osamu Igata
理 伊形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5791587A priority Critical patent/JPS63226012A/en
Publication of JPS63226012A publication Critical patent/JPS63226012A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To make it possible to control the temperature coefficient of DELTAHo (0 deg.C) of a collapse magnetic field while the lattice matching between an epitaxial crystal thin film and a substrate is being maintained excellently by a method wherein the Fe, contained in the raw material solution of magnetic bubble garnet crystal (YLuA)3 (FeX)5O12, and the mol ratio of a rare-earth element are properly adjusted. CONSTITUTION:A liquid-phase epitaxial growing method is performed by changing the value of R1=Fe2O3 (provided R2O3 indicates the total quantity of the Y3O3 and the rare-earth oxide in the solution) of the solution of magnetic bubble garnet crystal of (YLuA)3 (FeX)5O12 (provided that A indicates rare-earth element or Ca, Bi or mixture of them, and X indicated Ga, Ge, Al, Si, Sc, V, Ru, Co or mixture of them) in the range of 9.3-18.0. The temperature coefficient of a collapse magnetic field of DELTAHo (0 deg.C) is changed to -0.238--0.209%/ deg.C by changing R1 in the range of 9.3-18.0. The change of DELTAa at this time is 0-+3.5X10<-3>Angstrom , and the matching of the lattice constant with the substrate is excellent. The DELTAHo ( deg.C) can be adjusted maintaining DELTAa small by changing the R1 in the crystal raw material solution as above-mentioned.

Description

【発明の詳細な説明】 〔概 要〕 磁気バブルガーネット結晶(YLuA) s (FeX
) sO1g(但し、Aは希土類元素、’Ca、Biま
たはこれらの混合物、XはGa、Ge、A+g 、 S
i、Sc、V 、 Ru。
[Detailed description of the invention] [Summary] Magnetic bubble garnet crystal (YLuA) s (FeX
) sO1g (A is a rare earth element, 'Ca, Bi or a mixture thereof, X is Ga, Ge, A+g, S
i, Sc, V, Ru.

Coまたはこれらの混合物)の原料溶液中のFeと希土
類元素のモル比を調整することにより、エピタキシャル
結晶薄膜と基板との格子整合を良好に保ちつつ、コラプ
ス磁界の温度係数ΔHo(0℃)をコントロールできる
ようにした。
By adjusting the molar ratio of Fe and rare earth elements in the raw material solution of Co or a mixture thereof, the temperature coefficient ΔHo (0°C) of the collapse magnetic field can be adjusted while maintaining good lattice matching between the epitaxial crystal thin film and the substrate. I was able to control it.

〔産業上の利用分野〕[Industrial application field]

本発明は磁気バブルメモリの記憶媒体として用いる単結
晶磁性薄膜の温度特性(特にコラプス磁界の温度係数)
の調整法に関するものである。
The present invention relates to the temperature characteristics (especially the temperature coefficient of the collapse magnetic field) of a single crystal magnetic thin film used as a storage medium of a magnetic bubble memory.
This is related to the adjustment method.

〔従来の技術〕[Conventional technology]

磁気バブルメモリにおいてはバイアス磁石とバブル結晶
との温度特性を合わせることにより、記憶ディバイスの
動作の安定を図る必要があるため、例えば米国特許第4
.338.372号に記載されている如くバブル結晶の
コラプス磁界温度係数(ΔHO(0℃))を調整するこ
とが行なわれる。上記特許の方法では、一般式(YSm
LuCa)a−x Gdx (Fes−yGey )O
atで組成が表わされるGd5GasO+z結晶のX。
In magnetic bubble memory, it is necessary to stabilize the operation of the storage device by matching the temperature characteristics of the bias magnet and bubble crystal.
.. The collapse magnetic field temperature coefficient (ΔHO (0° C.)) of the bubble crystal is adjusted as described in No. 338.372. In the method of the above patent, the general formula (YSm
LuCa)a-x Gdx (Fes-yGey)O
X of Gd5GasO+z crystal whose composition is represented by at.

7モル数を調節することによって、ゼロに近い、具体的
には−0,07〜0.05の%/℃コラプス磁界温度係
数{Ho)を得ている。
By adjusting the number of moles, a %/°C collapse magnetic field temperature coefficient {Ho) close to zero, specifically, −0.07 to 0.05, is obtained.

また、本発明者の米国特許第4.568.618号にお
いて コラプス磁界温度係数ΔHo(0℃)をバイアスフェラ
イト磁石の残留磁化の温度係数ΔHr  (0℃)より
0.01〜0.04%/℃小さくすることにより、動作
温度範囲を拡大することが提案された。またこの特許で
開示されたコラプス磁界温度係数ΔHa(0℃)の具体
的調整方法は原料溶液中のLuzolの量を変えること
により結晶中の八面体位置のLuイオン(■、% 1″
)量を調整して希望のΔHo(0℃)を得るものである
In addition, in U.S. Patent No. 4.568.618 by the present inventor, the temperature coefficient of collapse magnetic field ΔHo (0°C) is 0.01 to 0.04%/ It has been proposed to expand the operating temperature range by decreasing the temperature. Furthermore, the specific method for adjusting the collapse magnetic field temperature coefficient ΔHa (0°C) disclosed in this patent is to change the amount of Luzol in the raw material solution to reduce the amount of Lu ions (■, % 1″) at the octahedral positions in the crystal.
) to obtain the desired ΔHo (0°C).

すなわち、フェライト磁石の残留磁化の温度係数ΔH1
(0℃)は約−0,19%/℃であるので、Luイオン
の添加量により、−0,20〜−0,23%/℃のコラ
プス磁界の温度係数ΔHO(0℃)を得る。
That is, the temperature coefficient ΔH1 of the residual magnetization of the ferrite magnet
(0°C) is about -0.19%/°C, so depending on the amount of Lu ions added, a temperature coefficient ΔHO (0°C) of the collapse magnetic field of -0.20 to -0.23%/°C is obtained.

C発明が解決しようとする問題点〕 磁気バブルガーネット結晶(YLuA) s (FeX
) sOlz(世し、Aは希土類元素、Ca、Biまた
はこれらの混合物、XはGa、Ge、A l 、 St
、Sc、V 、 Ru。
Problems to be solved by invention C] Magnetic bubble garnet crystal (YLuA) s (FeX
) sOlz (A is a rare earth element, Ca, Bi or a mixture thereof, X is Ga, Ge, Al, St
, Sc, V, Ru.

Coまたはこれらの混合物)のコラプス磁界温度係数H
o(0℃)をLu”の添加量により調整する前掲米国特
許第4.568.618号の方法では、Lu3“はイオ
ン半径が小さいためにLu’°が多く入るとバブル結晶
の格子定数が小さくなり、格子定数as ”12.38
3人基板結晶(GGG)との格子不整合が大きくなる。
Collapse magnetic field temperature coefficient H of Co or a mixture thereof)
In the method of the above-mentioned US Pat. No. 4,568,618, in which the 0°C is adjusted by the amount of Lu' added, the lattice constant of the bubble crystal changes when a large amount of Lu'° is added because Lu3' has a small ionic radius. becomes smaller, and the lattice constant as ”12.38
The lattice mismatch with the triple substrate crystal (GGG) increases.

米国特許第4,568.618号では、Lu/Aのモル
比が2.0〜2.5の磁気バブルガーネット結晶のコラ
プス磁界温度係数Hoの調整がL u3 +により行な
われていたので、著しい格子不整合を招かないような少
ないL u 3 +添加量で所望のコラプス磁界温度係
数Hoが得られていた。
In U.S. Pat. No. 4,568.618, the collapse magnetic field temperature coefficient Ho of a magnetic bubble garnet crystal with a Lu/A molar ratio of 2.0 to 2.5 was adjusted by Lu3 +, so that it was remarkable. The desired collapse magnetic field temperature coefficient Ho was obtained with a small amount of L u 3 + added that would not cause lattice mismatch.

ところが、Lu/A>2.5の磁気バブルガーネット結
晶では、L u”の添加量増減によっては、コラプス磁
界の温度係数Hoはほとんど変わらず、一方格子不整合
のみが目立つという問題が現われたので、この問題を解
決する必要が生じた。
However, in magnetic bubble garnet crystals with Lu/A > 2.5, the temperature coefficient Ho of the collapse magnetic field hardly changes depending on the amount of Lu'' added, and on the other hand, a problem appeared in which only the lattice mismatch was noticeable. , the need arose to solve this problem.

ところで、磁気バブル結晶と基板の格子不整合を少なく
することに着目した特許として、米国特許第4.169
.189号があるが、この明細書によると、ガドリニウ
ムガリウムガーネットの(110)基板上に成長される
バブル結晶の格子不整合(at−at)/atを−6X
 10−3〜−2 X 10−3の範囲内にする方法と
して、(Eu3−x Lu+c )(Pes−y Ga
、 )0+を結晶のLu1i(x)とFe量(5−y)
とを関連させて調整することが提案されている。しかし
、上記した(Yl、uA) 3 (FeX) so +
 を組成の結晶ではこのような調整法に示されたLu、
Feモル範囲は有効ではない。
By the way, US Patent No. 4.169 is a patent that focuses on reducing the lattice mismatch between the magnetic bubble crystal and the substrate.
.. No. 189, and according to this specification, the lattice mismatch (at-at)/at of a bubble crystal grown on a (110) substrate of gadolinium gallium garnet is -6X.
As a method to make it within the range of 10-3 to -2 x 10-3, (Eu3-x Lu+c)(Pes-y Ga
, )0+ is Lu1i (x) and Fe amount (5-y) of the crystal
It is proposed that adjustments be made in relation to However, the above (Yl, uA) 3 (FeX) so +
In the crystal with the composition shown in this preparation method, Lu,
Fe molar ranges are not valid.

前掲米国特許第4,338.372号は、上述したよう
に(YSmLuCa)Gd (FeGe) O+ z結
晶組成のGdとGeをあるモル量範囲にすることにより
、コラプス磁界の温度係数を調整することを開示するか
ら、この特許の方法はGdを含まない磁気バブル結晶の
コラプス磁界温度係数Hoの調整法を何ら示唆しないこ
とは当然である。
The above-mentioned U.S. Pat. No. 4,338.372 discloses that, as mentioned above, the temperature coefficient of the collapse magnetic field is adjusted by adjusting the molar amount of Gd and Ge in the (YSmLuCa)Gd(FeGe)O+z crystal composition to a certain range. It is natural that the method of this patent does not suggest any method for adjusting the collapse magnetic field temperature coefficient Ho of a magnetic bubble crystal that does not contain Gd.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、磁気バブルガーネット結晶(YLuA)a(
FeX)sO+t (但し、Aは希土類元素、Ca、B
iまたはこれらの混合物、XはGa、Ge、A I 、
 Si。
The present invention provides magnetic bubble garnet crystal (YLuA) a(
FeX) sO+t (However, A is a rare earth element, Ca, B
i or a mixture thereof, X is Ga, Ge, A I ,
Si.

Sc、V 、Ru、Coまたはこれらの混合物)の溶液
のR1= Petos / RtOs (但し、RtO
sは溶液中のYzOiおよび希土類酸化物の総1)の値
を9.3〜18.0の範囲で変えることにより液相エピ
タキシャル成長させた該結晶のコラプス磁界温度係数Δ
Ho(0℃)= (1/Ho(0℃))・((H。
R1 = Petos/RtOs (where RtO
s is the collapse magnetic field temperature coefficient Δ of the crystal grown by liquid phase epitaxial growth by changing the total value 1) of YzOi and rare earth oxide in the solution in the range of 9.3 to 18.0.
Ho(0℃)=(1/Ho(0℃))・((H.

(75℃)−Ho(0℃)  ) / (75℃−0℃
)〕・100を−0,23s〜−0,20,%/℃の範
囲でコントロールすることを特徴とする磁気バブルガー
ネット結晶のコラプス磁界温度係数の制御方法である。
(75℃)-Ho(0℃) ) / (75℃-0℃
)].100 in the range of -0.23 s to -0.20.%/°C.

〔実施例〕〔Example〕

以下、本発明の構成を詳しく説明する。 Hereinafter, the configuration of the present invention will be explained in detail.

磁気バブル結晶として使用される(YSmLuCa) 
、3(FeGe) 50 + tの単結晶薄膜は、Yz
Oz 、5IIJ311tOz+CaC0++FezO
*、Ge0tの原料酸化物を混合して溶媒中に溶解し、
この溶液を用いて液相成長法により育成する。上記の溶
媒には通常PbOとBtOzの混合物(フラックス)を
使用する。これらの酸化物を電気炉中で約1100℃の
温度で溶解し、温度を下げて過冷却状態を実現する。そ
してこの過飽和溶液中にG(L+Ga50+ z基板を
浸漬することにより単結晶磁性薄膜を育成する。
Used as magnetic bubble crystal (YSmLuCa)
, 3(FeGe) 50 + t single crystal thin film is Yz
Oz, 5IIJ311tOz+CaC0++FezO
*, Ge0t raw material oxides are mixed and dissolved in a solvent,
This solution is used to grow by a liquid phase growth method. A mixture (flux) of PbO and BtOz is usually used as the above solvent. These oxides are melted in an electric furnace at a temperature of about 1100° C., and the temperature is lowered to achieve a supercooled state. Then, a single crystal magnetic thin film is grown by immersing a G(L+Ga50+ z substrate) in this supersaturated solution.

表1は本発明の実施例で原料溶液中のR1の値および育
成結晶の特性を示す。
Table 1 shows the value of R1 in the raw material solution and the characteristics of the grown crystal in Examples of the present invention.

以下余白 表1.溶液のR1と育成結晶の特性 なお、表中に使用した特性表示の意味は次のとおりであ
る。
Margin table 1 below. R1 of solution and characteristics of grown crystals The meanings of the characteristics used in the table are as follows.

h:膜厚 S−:磁区幅 4πMs:飽和磁化 ■にニー軸異方性磁界 Δa:格子定数の不整合 ΔHo (0℃):コラプス磁界の温度係数R+ ” 
FezO= / RzO+ Δa =a@  ay  (as :基板結晶の格子定
数、a、:エピタキシャル成長膜の格子定数)このとき
溶液中のR5がコラプス磁界の温度係数(ΔHo(0℃
))に与える影響を第1図に示す。
h: Film thickness S-: Domain width 4πMs: Knee-axis anisotropy magnetic field at saturation magnetization ■ Δa: Mismatch of lattice constant ΔHo (0°C): Temperature coefficient R+ of collapse magnetic field
FezO= / RzO+ Δa = a@ay (as: lattice constant of the substrate crystal, a: lattice constant of the epitaxially grown film) At this time, R5 in the solution is the temperature coefficient of the collapse magnetic field (ΔHo (0°C
)) is shown in Figure 1.

図1は表1の結晶のΔHo(0℃)とR1との関係であ
る6図から明らかなようにR,=9.3〜18.0の範
囲で変えることによりΔHO(0℃)が−0,23゜〜
−0,20,%/℃まで変化する。この時のΔaの変化
は表1より0〜+3.5X10−’人で基板との格子定
数の整合は良好である。
Figure 1 shows the relationship between ΔHo (0°C) and R1 of the crystal in Table 1. As is clear from Figure 6, by changing R in the range of 9.3 to 18.0, ΔHO (0°C) can be reduced to - 0,23°〜
It varies up to -0,20,%/℃. As shown in Table 1, the change in Δa at this time is 0 to +3.5×10 −′, indicating good matching of the lattice constant with the substrate.

以上述べたように本発明によれば結晶原料溶液中のR6
を変えることによりΔaを小さく保ってΔHo(0℃)
を調整することができる。
As described above, according to the present invention, R6 in the crystal raw material solution
By changing Δa, ΔHo (0℃) can be kept small.
can be adjusted.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、上記した(YLuA) z (FeX
) so + z組成について、基板と育成結晶の格子
定数の整合を良好に保って育成結晶のΔHO(0℃)を
調整することができる。
According to the present invention, (YLuA) z (FeX
) Regarding the so + z composition, it is possible to adjust the ΔHO (0° C.) of the grown crystal while keeping good lattice constant matching between the substrate and the grown crystal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はΔHo(0℃)のR9依存性を示すグラフであ
る。
FIG. 1 is a graph showing the R9 dependence of ΔHo (0° C.).

Claims (1)

【特許請求の範囲】 1、磁気バブルガーネット結晶(YLuA)_3(Fe
X)_3O_1_2(但し、Aは希土類元素、Ca、B
iまたはこれらの混合物、XはGa、Ge、Al、Si
、Sc、V、Ru、Coまたはこれらの混合物)の成分
を溶解した溶液のR_1=Fe_2O_3/R_2O_
3(但し、R_2O_3は溶液中のY_2O_3および
希土類酸化物の総量)の値を9.3〜18.0の範囲で
変えることにより液相エピタキシャル成長させた該結晶
のコラプス磁界温度係数ΔHo(0℃)={1/Ho(
0℃)}・〔{Ho(75℃)−Ho(0℃)}/(7
5℃−0℃)〕・100を−0.23_8〜−0.20
_9%/℃の範囲でコントロールすることを特徴とする
磁気バブルガーネット結晶のコラプス磁界温度係数の制
御方法。
[Claims] 1. Magnetic bubble garnet crystal (YLuA)_3 (Fe
X)_3O_1_2 (However, A is a rare earth element, Ca, B
i or a mixture thereof, X is Ga, Ge, Al, Si
, Sc, V, Ru, Co or a mixture thereof) R_1=Fe_2O_3/R_2O_
3 (where R_2O_3 is the total amount of Y_2O_3 and rare earth oxide in the solution) is the collapse magnetic field temperature coefficient ΔHo (0°C) of the crystal grown by liquid phase epitaxial growth by changing the value in the range of 9.3 to 18.0. ={1/Ho(
0℃)}・[{Ho(75℃)−Ho(0℃)}/(7
5℃-0℃)]・100 -0.23_8~-0.20
A method for controlling the collapse magnetic field temperature coefficient of a magnetic bubble garnet crystal, characterized by controlling it within a range of _9%/°C.
JP5791587A 1987-03-14 1987-03-14 Method of controlling collapse magnetic field temperature coefficient of magnetic bubble garnet crystal Pending JPS63226012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5791587A JPS63226012A (en) 1987-03-14 1987-03-14 Method of controlling collapse magnetic field temperature coefficient of magnetic bubble garnet crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5791587A JPS63226012A (en) 1987-03-14 1987-03-14 Method of controlling collapse magnetic field temperature coefficient of magnetic bubble garnet crystal

Publications (1)

Publication Number Publication Date
JPS63226012A true JPS63226012A (en) 1988-09-20

Family

ID=13069291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5791587A Pending JPS63226012A (en) 1987-03-14 1987-03-14 Method of controlling collapse magnetic field temperature coefficient of magnetic bubble garnet crystal

Country Status (1)

Country Link
JP (1) JPS63226012A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104104A (en) * 1989-09-18 1991-05-01 Shin Etsu Chem Co Ltd Magnetic garnet material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104104A (en) * 1989-09-18 1991-05-01 Shin Etsu Chem Co Ltd Magnetic garnet material

Similar Documents

Publication Publication Date Title
US4263374A (en) Temperature-stabilized low-loss ferrite films
US4429052A (en) Magnetic hexagonal ferrite layer on a nonmagnetic hexagonal mixed crystal substrate
US3886533A (en) Magnetic devices utilizing garnet epitaxial material
US6733587B2 (en) Process for fabricating an article comprising a magneto-optic garnet material
JPS63226012A (en) Method of controlling collapse magnetic field temperature coefficient of magnetic bubble garnet crystal
US4622264A (en) Garnet film for magnetic bubble memory element
CA1059624A (en) Characteristic temperature-derived hard bubble suppression
US4338372A (en) Garnet film for magnetic bubble device
Bonner LPE growth of iron garnets containing Ge4+ and Si4+ for bubble applications
JP3217721B2 (en) Faraday element and method of manufacturing Faraday element
JPS6369718A (en) Magneto-optical crystal
US4468438A (en) Garnet epitaxial films with high Curie temperatures
JPH09202697A (en) Production of bismuth-substituted type garnet
JP2869951B2 (en) Magnetic garnet single crystal and microwave device material
GB2046124A (en) Magnetic structures
US4293372A (en) Growth of single-crystal magnetoplumbite
JPS62101012A (en) Magnetostatic-wave microwave element
JPH0476351B2 (en)
US4397912A (en) Garnet film for magnetic bubble element
JPH08283097A (en) Magnetic garnet single crystal
JPS59213111A (en) Garnet film for magnetic bubble memory
JPS5842601B2 (en) Jisei Garnet
JPS5988397A (en) Method for controlling growing speed of magnetic bubble garnet crystal
EP1418597A1 (en) Method for producing ferromagnetic garnet material, garnet material and its use
JPS62268115A (en) Method of controlling lattice constant matching in magnetic bubble garnet crystal and substrate