JPS6322551B2 - - Google Patents
Info
- Publication number
- JPS6322551B2 JPS6322551B2 JP57007324A JP732482A JPS6322551B2 JP S6322551 B2 JPS6322551 B2 JP S6322551B2 JP 57007324 A JP57007324 A JP 57007324A JP 732482 A JP732482 A JP 732482A JP S6322551 B2 JPS6322551 B2 JP S6322551B2
- Authority
- JP
- Japan
- Prior art keywords
- nuclear
- nuclear fuel
- reactor
- uranium
- pellet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003758 nuclear fuel Substances 0.000 claims description 54
- 239000000463 material Substances 0.000 claims description 42
- 239000008188 pellet Substances 0.000 claims description 39
- 239000000446 fuel Substances 0.000 claims description 13
- 239000002131 composite material Substances 0.000 claims description 7
- 238000005253 cladding Methods 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 description 19
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 17
- 229910052770 Uranium Inorganic materials 0.000 description 12
- 230000004992 fission Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- JFALSRSLKYAFGM-OIOBTWANSA-N uranium-235 Chemical compound [235U] JFALSRSLKYAFGM-OIOBTWANSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- OYEHPCDNVJXUIW-FTXFMUIASA-N 239Pu Chemical compound [239Pu] OYEHPCDNVJXUIW-FTXFMUIASA-N 0.000 description 4
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 3
- 229910052776 Thorium Inorganic materials 0.000 description 3
- 230000000269 nucleophilic effect Effects 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- JFALSRSLKYAFGM-FTXFMUIASA-N uranium-233 Chemical compound [233U] JFALSRSLKYAFGM-FTXFMUIASA-N 0.000 description 2
- 229910052778 Plutonium Inorganic materials 0.000 description 1
- OYEHPCDNVJXUIW-AHCXROLUSA-N Plutonium-240 Chemical compound [240Pu] OYEHPCDNVJXUIW-AHCXROLUSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012038 nucleophile Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 1
- ZSLUVFAKFWKJRC-UHFFFAOYSA-N thorium Chemical compound [Th] ZSLUVFAKFWKJRC-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
- Glanulating (AREA)
Description
【発明の詳細な説明】
本発明は、中央部に位置する核親物質の周囲が
核燃料物質によつて完全に取囲まれた複合構造の
円柱状核燃料ペレツトを用いた核燃料棒に関し、
この核燃料棒は、発電用熱中性子原子炉におい
て、核親物質を効率よく核燃料物質に転換するこ
とができ、核燃料資源の有効利用に資するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nuclear fuel rod using a cylindrical nuclear fuel pellet having a composite structure in which a nuclear parent material located in the center is completely surrounded by nuclear fuel material.
This nuclear fuel rod can efficiently convert nuclear parent material into nuclear fuel material in a thermal neutron reactor for power generation, and contributes to the effective use of nuclear fuel resources.
本明細書において、「核燃料物質」とは、原子
炉内において核分裂連鎖反応が持続されるのに充
分な量の核分裂性物質(ウラン−235、プルトニ
ウム−239、ウラン−233等)を含む安定な酸化物
状態にある物質をいい、具体的には安定な酸化物
の状態にされた濃縮ウラン(ウラン−235の含有
量を高めたもの)、プルトニウム−239を富化した
ウランがあり、原子炉が黒鉛減速炉又は重水炉の
場合は安定な酸化物状態にある天然ウランも該当
する。 As used herein, "nuclear fuel material" refers to a stable material containing fissile material (such as uranium-235, plutonium-239, uranium-233) in an amount sufficient to sustain a nuclear fission chain reaction in a nuclear reactor. Refers to substances in an oxide state, specifically enriched uranium (with increased content of uranium-235) that has been made into a stable oxide state, and uranium enriched with plutonium-239. In the case of a graphite-moderated reactor or a heavy water reactor, natural uranium in a stable oxide state also falls under this category.
また、一般的に核親物質とは、中性子を吸収す
ると核分裂性物質に転換する物質そのものをいう
が、本明細書において「核親物質」とは、核分裂
性物質は含んでいないか、含んでいても核分裂連
鎖反応を維持させる量以下であつて、しかも中性
子を吸収して核分裂性物質に転換する物質(ウラ
ン−238、プルトニウム−240、トリウム−232等)
を多く含む安定な酸化物状態にある物質をいい、
具体的には安定な酸化物の状態にされた劣化ウラ
ン、トリウムがあり、原子炉が軽水炉の場合は安
定な酸化物状態にある天然ウランも該当する。 In addition, a nuclear parent material generally refers to a substance itself that converts into fissile material when it absorbs neutrons, but in this specification, a "nuclear parent material" does not include or does not contain a fissile material. Substances that absorb neutrons and convert into fissile materials (such as uranium-238, plutonium-240, thorium-232, etc.), but the amount is less than that required to maintain a nuclear fission chain reaction.
A substance in a stable oxide state containing a large amount of
Specifically, there are depleted uranium and thorium that are in a stable oxide state, and if the reactor is a light water reactor, natural uranium that is in a stable oxide state also falls under this category.
核燃料資源の有効利用を図るためには、地表上
に存在して、その大部分を占めるウラン−238お
よびトリウムを、核分裂性のウラン−235等の燃
焼(核分裂反応)時に生じる中性子を吸収させて
核分裂性のプルトニウム−239やウラン−233に転
換させ、得られた核分裂性物質を再び核分裂させ
てエネルギーを取出すことが重要であり、この転
換効率の目安としては、転換比という術語が用い
られる。これは、原子炉の核燃料棒の中で核分裂
性物質の原子核が1個核分裂して消費される毎に
2〜3個の中性子を発生するが、この中性子の一
部を吸収して非分裂性物質の原子核が新しく核分
裂性物質の原子核に転換する相対数のことであ
る。この転換比が核燃料資源の有効利用の観点か
らは熱中性子原子炉で可能な限り、1.0に近い値
になることが必要であり、勿論、増殖炉では、こ
の転換比は1以上である。 In order to effectively utilize nuclear fuel resources, uranium-238 and thorium, which exist on the earth's surface and make up the majority of it, must be absorbed by the neutrons generated during the combustion of fissile uranium-235 (fission reaction). It is important to convert plutonium-239 and uranium-233 into fissile materials, and then fission the resulting fissile material again to extract energy. The term conversion ratio is used as a measure of this conversion efficiency. This is because 2 to 3 neutrons are generated each time one nucleus of fissile material is fissioned and consumed in the nuclear fuel rod of a nuclear reactor. It is the relative number of nuclei of a substance that convert into new nuclei of fissile material. From the viewpoint of effective utilization of nuclear fuel resources, it is necessary for this conversion ratio to be as close to 1.0 as possible in a thermal neutron reactor, and of course, in a breeder reactor, this conversion ratio is 1 or more.
従来の増殖炉の概念は、高速増殖炉も含めて第
1図に示すように、ウラン−235やプルトニウム
−239などの核分裂性物質の濃度が高く核分裂連
鎖反応を持続的に維持するアクテイブ炉心5と、
その周囲にウラン−238やトリウムの核親物質を
配置したブランケツト炉心6とによつて原子炉炉
心4が構成され、その炉心4を冷却材3が循環
し、高温冷却材が炉心部から出て、蒸気発生、タ
ービン駆動さらに発電に寄与する。なお、符号1
は原子炉容器、符号2は中性子反射体をそれぞれ
示す。そして、炉心4で使用される核燃料棒は、
第2図に示すように、下端部に下部端栓7を周溶
接した燃料被覆管8の中に、多数の円柱状ペレツ
トを積層装填し、上端部を上部端栓13で周溶接
したものが一般的である。アクテイブ炉心5で用
いられる核燃料棒は、同図に示されているよう
に、積層ペレツトの中央部には核燃料物質のペレ
ツト9が用いられ、その上下のブランケツト炉心
厚さに相当する部分に核親物質のペレツト12が
用いられる。なお、符号10は断熱ペレツト、符
号11はプレナムのコイル・スプリングである。
また、第1図のブランケツト炉心6の側部に用い
る核燃料棒は、基本的には第2図の如きものであ
るが、装填される核燃料ペレツトが全て核親物質
であつて、そのペレツト外径寸法がアクテイブ炉
心5のものより大きいことが異なつている。 The concept of a conventional breeder reactor, including a fast breeder reactor, is an active core that maintains a continuous nuclear fission chain reaction with a high concentration of fissile materials such as uranium-235 and plutonium-239, as shown in Figure 1. and,
A nuclear reactor core 4 is constituted by a blanket core 6 in which nuclear parent materials such as uranium-238 and thorium are placed around the blanket core 4. A coolant 3 circulates through the core 4, and high-temperature coolant exits from the core. , contributes to steam generation, turbine drive, and power generation. In addition, code 1
2 indicates a reactor vessel, and 2 indicates a neutron reflector. The nuclear fuel rods used in core 4 are
As shown in FIG. 2, a large number of cylindrical pellets are stacked and loaded into a fuel cladding tube 8 with a lower end plug 7 circumferentially welded to the lower end, and the upper end is circumferentially welded with an upper end plug 13. Common. In the nuclear fuel rods used in the active core 5, as shown in the figure, a pellet 9 of nuclear fuel material is used in the central part of the stacked pellets, and nuclear fertile material is used in the upper and lower parts corresponding to the thickness of the blanket core. Pellets 12 of material are used. In addition, the reference numeral 10 is a heat insulating pellet, and the reference numeral 11 is a plenum coil spring.
Furthermore, the nuclear fuel rods used on the sides of the blanket core 6 in FIG. The difference is that the dimensions are larger than those of the active core 5.
ところで、転換比を大きくし核燃料資源を有効
利用するのに、現在、開発途上にあり、しかも、
技術的に困難な高速増殖炉を用いないで、すでに
商業化されている発電用熱中性子原子炉で実現し
ようとすると、従来技術として示した核燃料棒
(第2図)に用いられている円柱状ペレツトでは
不充分である。 By the way, in order to increase the conversion ratio and make effective use of nuclear fuel resources, there is currently a development process in progress.
If we try to realize this using a thermal neutron reactor for power generation, which has already been commercialized, without using a technically difficult fast breeder reactor, we will be able to use the cylindrical shape used in nuclear fuel rods (Fig. 2) shown as conventional technology. Pellet is not enough.
本発明は、前記のような従来技術の実情に鑑み
なされたものであつて、その目的は、高い転換比
を熱中性子原子炉で達成して、それによつて核燃
料資源の有効利用を図ることができるような核燃
料棒を提供することにある。 The present invention was made in view of the actual state of the prior art as described above, and its purpose is to achieve a high conversion ratio in a thermal neutron reactor, thereby making it possible to effectively utilize nuclear fuel resources. The goal is to provide nuclear fuel rods that can
そこで本発明では、中央部に位置する核親物質
の周囲が核燃料物質によつて完全に取囲まれた非
均質的な複合ペレツトを用いるよう構成されてい
る。 Therefore, the present invention is configured to use a non-homogeneous composite pellet in which a nuclear parent material located at the center is completely surrounded by nuclear fuel material.
以下、図面に基づき、本発明について更に詳し
く説明する。本発明に係る核燃料棒で用いる円柱
状核燃料ペレツトは、第3図に示すように、中央
部の核親物質21が周囲の核燃料物質22によつ
て完全に包み込まれた二重ペレツト構造のもので
ある。なお、符号24は、ペレツトと燃料被覆管
との力学的相互作用(PCMI)を低減するため、
ペレツト上、下端面に形成したチヤンフア(面取
り)である。 Hereinafter, the present invention will be explained in more detail based on the drawings. The cylindrical nuclear fuel pellet used in the nuclear fuel rod according to the present invention has a double pellet structure in which the nuclear parent material 21 in the center is completely surrounded by the surrounding nuclear fuel material 22, as shown in FIG. be. In addition, the code 24 is for reducing the mechanical interaction (PCMI) between the pellet and the fuel cladding tube.
This is a chamfer formed on the upper and lower end surfaces of the pellet.
中央部に位置する核親物質の形状は、第3図に
示すような直円柱状に限られるものでなく、例え
ば第4図に示すように回転楕円状としてもよい。
中央部の核親物質の大きさについては二重ペレツ
ト外寸法の1/3〜3/4程度とするのがよい。小さす
ぎると核親物質の量が少なくなるし、逆に大きく
しすぎると転換比が小さくなるからである。ま
た、核親物質は、その周囲の核燃料物質内で空間
的に面対称となるような位置を占めるようにする
のがよい。 The shape of the nucleophilic substance located at the center is not limited to the right cylindrical shape as shown in FIG. 3, but may be, for example, a spheroidal shape as shown in FIG. 4.
The size of the nucleophilic substance in the center is preferably about 1/3 to 3/4 of the outer dimension of the double pellet. This is because if it is too small, the amount of nucleophilic material will be small, and if it is too large, the conversion ratio will be small. Further, it is preferable that the nuclear parent material occupy a position that is spatially symmetrical within the surrounding nuclear fuel material.
さて、本発明は、第5図に示すように、前記の
ような円柱状の核燃料ペレツト30の多数個を燃
料被覆管8内に積層装填し、該燃料被覆管8の両
端を上部端栓13及び下部端栓7で密封した構造
である。その他の構成は第2図に示す従来のもの
と同じであるから、対応する部分に同一符号を付
し、それらについての記載は省略する。 In the present invention, as shown in FIG. The structure is sealed with a lower end plug 7. Since the other configurations are the same as the conventional one shown in FIG. 2, corresponding parts are given the same reference numerals and their description will be omitted.
すでに商業化されている発電用原子炉の種類と
しては、沸騰軽水冷却炉(BWR)及び加圧軽水
冷却炉(PWR)の軽水炉(LWR)を主流とし
て、その他に重水減速炉(HWR)、改良ガス冷
却炉(AGR)等がある。これらの燃料ペレツト
には、天然ウラン(約0.7%のウラン−235を含
有)あるいは約4%までの濃縮ウランが用いられ
ている。わが国が開発している新型転換炉
(ATR)では、天然ウランにプルトニウムを約
1.5%混合した酸化物燃料(UO2+PuO2)が採用
されている。 The main types of power reactors that have already been commercialized are light water reactors (LWRs), boiling light water cooled reactors (BWRs) and pressurized light water cooled reactors (PWRs), as well as heavy water moderated reactors (HWRs) and improved reactors. There are gas cooled reactors (AGR), etc. These fuel pellets use either natural uranium (containing about 0.7% uranium-235) or enriched uranium up to about 4%. The new type of converter reactor (ATR) being developed by Japan combines plutonium with natural uranium.
A 1.5% mixed oxide fuel (UO 2 +PuO 2 ) is used.
いずれにしても、前記各原子炉に採用されてい
る燃料ペレツトそのものは、ペレツト全体が均一
濃度の核燃料物質で製造されており、これらの核
燃料を原子炉で燃焼させたときの転換比は、原子
炉の炉型式、原子炉の出力規模、燃料交換パター
ン等によつて異なるが、概ね0.6〜0.8の程度であ
る。 In any case, the fuel pellets used in each of the above-mentioned nuclear reactors are made entirely of nuclear fuel material with a uniform concentration, and the conversion ratio when these nuclear fuels are burned in a nuclear reactor is atomic. Although it varies depending on the reactor type, reactor output scale, fuel exchange pattern, etc., it is approximately 0.6 to 0.8.
ところで、原子炉の炉型及び原子炉の出力規模
を指定すると、核燃料物質の全炉心装荷量がほぼ
決定するが、核燃料物質の装荷量を一定としたと
き、従来技術の核燃料棒と本発明の核燃料棒とを
比較すると、後者のほうが高い転換比をうること
ができる。 By the way, when the reactor type and reactor output scale are specified, the total amount of nuclear fuel material loaded into the reactor core is almost determined, but when the amount of nuclear fuel material loaded is constant, the nuclear fuel rods of the prior art and the nuclear fuel rods of the present invention are different. When compared with nuclear fuel rods, the latter can achieve a higher conversion ratio.
その理由は、定性的に以下のように説明でき
る。すなわち、例えば、3%濃縮ウランのペレツ
トの従来技術の核燃料棒と、本発明に基づく複合
ペレツトとして中央部が0.3%ウラン−235の劣化
ウランを配置し、二重ペレツトの外側部に4%の
濃縮ウランを用い、平均濃縮度が3%にして等価
になるとする。一般的には、原子炉内の核燃料棒
は燃料ペレツトの外周部がその内部よりも核分裂
反応が盛んに進行する。しかも、本発明による複
合核燃料ペレツトの外周部(4%濃縮ウラン)
は、従来技術の均一濃縮度ペレツト(3%濃縮ウ
ラン)の外周部よりも核分裂反応が余計に進行
し、このため複合核燃料ペレツトは、従来型ペレ
ツトに比較して、より高い中性子の空間密度流束
を形成する。一方、核親物質が核燃料物質に転換
する率は、中性子の空間密度流束と核親物質の空
間密度と燃料の燃焼時間との3因子の積に比例
し、他方、複合ペレツトの核親物質は、そのよう
な高い濃縮度の核燃料物質に包囲されていること
から、より高い中性子の空間密度流束にさらされ
て、従来技術の核燃料棒の場合の1.1〜1.3倍の転
換比がえれらることになる。 The reason for this can be qualitatively explained as follows. That is, for example, a conventional nuclear fuel rod made of 3% enriched uranium pellets and a composite pellet according to the present invention in which depleted uranium with 0.3% uranium-235 is arranged in the center, and 4% enriched uranium in the outer part of the double pellet are arranged. Assume that enriched uranium is used and the average enrichment is 3%. Generally, in a nuclear fuel rod in a nuclear reactor, the nuclear fission reaction progresses more actively on the outer periphery of the fuel pellet than on the inside. Moreover, the outer peripheral part (4% enriched uranium) of the composite nuclear fuel pellet according to the present invention
The nuclear fission reaction progresses further than in the outer periphery of the conventional homogeneous enrichment pellet (3% enriched uranium), and as a result, the composite nuclear fuel pellet has a higher spatial density flow of neutrons than the conventional pellet. Form a bundle. On the other hand, the conversion rate of nuclear parent material into nuclear fuel material is proportional to the product of three factors: the spatial density flux of neutrons, the spatial density of nuclear parent material, and the combustion time of the fuel. Because they are surrounded by such highly enriched nuclear fuel material, they are exposed to a higher spatial density flux of neutrons, resulting in a conversion ratio of 1.1 to 1.3 times that of conventional nuclear fuel rods. That will happen.
さて、前記のような本発明で用いる複合構造の
核燃料ペレツトを製造する方法としては、核親物
質粉末を用いてグリーン小ペレツトを成形し、こ
のグリーン小ペレツトと核燃料物質粉末を用いて
二重ペレツトを成形し、これを焼結する方法、及
び核親物質粉末を用いてグリーン小ペレツトを成
形し、これを還元性雰囲気で焼結して焼結小径ペ
レツトとした後、この焼結小径ペレツトと核燃料
物質粉末とを用いて二重ペレツトを成形し、これ
を焼結する方法などがある。 Now, as a method for manufacturing nuclear fuel pellets with a composite structure used in the present invention as described above, small green pellets are formed using nuclear parent material powder, and double pellets are formed using this small green pellet and nuclear fuel material powder. A method of molding and sintering this, and molding a small green pellet using a nucleophile powder, sintering this in a reducing atmosphere to form a sintered small diameter pellet, and then There is a method of forming double pellets using nuclear fuel material powder and sintering the pellets.
このような核燃料棒は、高い燃焼度に対しても
燃料破損を生じることなく原子炉内で使用するこ
とができる点で、甚だ優れたものである。何故な
らば、従来技術による円柱状ペレツトと比較して
核分裂反応が緩慢なため、ペレツト中心領域の温
度が大巾に低下し、このため燃料波損を生じる原
因といわれている被覆管内面のペレツトの半径方
向クラツク開口部の応力集中の程度が小さくなつ
てPCMIが低減されるからである。 Such nuclear fuel rods are extremely superior in that they can be used in nuclear reactors even at high burn-up without fuel damage. This is because the nuclear fission reaction is slower than in conventional cylindrical pellets, so the temperature in the central region of the pellet drops significantly, which is said to cause fuel wave loss. This is because the degree of stress concentration at the radial crack opening is reduced and PCMI is reduced.
本発明は前記のように構成した核燃料棒である
から、高い転換比を発電用熱中性子原子炉で実現
でき、それによつて核燃料資源の有効利用を図る
ことができるなど、優れた経済性を有する核燃料
棒を提供するものである。 Since the present invention is a nuclear fuel rod configured as described above, a high conversion ratio can be realized in a thermal neutron nuclear reactor for power generation, and thereby nuclear fuel resources can be used effectively, so that it has excellent economic efficiency. It provides nuclear fuel rods.
第1図は増殖炉のモデル図、第2図はそれに使
われる核燃料棒の説明図、第3図は本発明で用い
る核燃料ペレツトの一例を示す図、第4図、は本
発明で用いられる他のペレツト構造の説明図、第
5図は本発明の一実施例を示す説明図である。
7……下部端栓、8……燃料被覆管、9,1
2,30……核燃料ペレツト、13……上部端
栓、21……核親物質、22……核燃料物質、。
Figure 1 is a model diagram of a breeder reactor, Figure 2 is an explanatory diagram of nuclear fuel rods used in it, Figure 3 is a diagram showing an example of nuclear fuel pellets used in the present invention, and Figure 4 is a diagram showing other nuclear fuel pellets used in the present invention. FIG. 5 is an explanatory diagram showing an embodiment of the present invention. 7...Lower end plug, 8...Fuel cladding tube, 9,1
2, 30... Nuclear fuel pellet, 13... Upper end plug, 21... Nuclear parent material, 22... Nuclear fuel material.
Claims (1)
内に積層装填され、該燃料被覆管の両端が密封さ
れている核燃料棒において、前記円柱状核燃料ペ
レツトは、中央部に位置する核親物質の周囲が核
燃料物質によつて完全に取囲まれた複合構造をな
していることを特徴とする二重ペレツト内蔵型核
燃料棒。1. In a nuclear fuel rod in which a large number of cylindrical nuclear fuel pellets are stacked and loaded in a fuel cladding tube, and both ends of the fuel cladding tube are sealed, the cylindrical nuclear fuel pellets have a periphery surrounding a nuclear parent material located in the center. A nuclear fuel rod with built-in double pellets, characterized in that it has a composite structure completely surrounded by nuclear fuel material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57007324A JPS58124985A (en) | 1982-01-20 | 1982-01-20 | Double pellet built-in type nuclear fuel rod |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57007324A JPS58124985A (en) | 1982-01-20 | 1982-01-20 | Double pellet built-in type nuclear fuel rod |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58124985A JPS58124985A (en) | 1983-07-25 |
JPS6322551B2 true JPS6322551B2 (en) | 1988-05-12 |
Family
ID=11662782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57007324A Granted JPS58124985A (en) | 1982-01-20 | 1982-01-20 | Double pellet built-in type nuclear fuel rod |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58124985A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0330751Y2 (en) * | 1987-01-27 | 1991-06-28 | ||
JPH045950Y2 (en) * | 1987-10-15 | 1992-02-19 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61241999A (en) * | 1985-04-18 | 1986-10-28 | 三菱電機株式会社 | Multilayer metal cored printed wiring board |
GB2501279B (en) * | 2012-04-18 | 2014-05-21 | Sibelco Uk Ltd | A pellet and a method of manufacturing glass |
-
1982
- 1982-01-20 JP JP57007324A patent/JPS58124985A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0330751Y2 (en) * | 1987-01-27 | 1991-06-28 | ||
JPH045950Y2 (en) * | 1987-10-15 | 1992-02-19 |
Also Published As
Publication number | Publication date |
---|---|
JPS58124985A (en) | 1983-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090268861A1 (en) | Plutonium/Zirconium Hydride/Thorium Fuel Matrix | |
JPS6271892A (en) | Nuclear fuel pellet containing gadolinia | |
Peng et al. | Core neutronic characterization of a large molten‐salt cooled thorium‐based solid fuel fast reactor | |
JPH0450551B2 (en) | ||
JPS6322551B2 (en) | ||
ZA200208184B (en) | Method of incineration of minor actinides in nuclear reactors. | |
Kim et al. | Once-through thorium fuel cycle options for the advanced PWR core | |
JP3917197B2 (en) | Nuclear fuel bundles and reactor cores | |
Khodarev | Liquid metal fast breeder reactors | |
JPH05232276A (en) | Core of nuclear reactor | |
JPH07311291A (en) | Fuel assembly | |
JP2006064678A (en) | Fuel assembly arrangement method, fuel rod, and fuel assembly of nuclear reactor | |
Greespan | Natural-uranium light-water breeding hybrid reactors | |
JPS6322550B2 (en) | ||
JPH0827370B2 (en) | Boiling water reactor | |
Núñez-Carrera et al. | Design of a boiling water reactor core based on an integrated blanket–seed thorium–uranium concept | |
JPH0452914B2 (en) | ||
JPH0545482A (en) | Fuel assembly | |
JPS6151275B2 (en) | ||
Martin-Deidier et al. | CAMELEON: a Benchmark Experiment for Absorbers and burnable poisons in PWR assemblies | |
JPH04299286A (en) | Operating method of core for fast reactor | |
Nagano et al. | Basic evaluation on nuclear characteristics of BWR high burnup MOX fuel and core | |
JPS61180185A (en) | Light water reactor | |
JPS62182694A (en) | Fuel aggregate for boiling water type reactor | |
Pino-Medina et al. | Neutronic study of the NuScale core with different accident tolerant fuels |