JPH04299286A - Operating method of core for fast reactor - Google Patents

Operating method of core for fast reactor

Info

Publication number
JPH04299286A
JPH04299286A JP3064822A JP6482291A JPH04299286A JP H04299286 A JPH04299286 A JP H04299286A JP 3064822 A JP3064822 A JP 3064822A JP 6482291 A JP6482291 A JP 6482291A JP H04299286 A JPH04299286 A JP H04299286A
Authority
JP
Japan
Prior art keywords
fuel
core
loaded
fast reactor
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3064822A
Other languages
Japanese (ja)
Inventor
Takanobu Kamei
亀井 孝信
Masaaki Iida
飯田 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3064822A priority Critical patent/JPH04299286A/en
Publication of JPH04299286A publication Critical patent/JPH04299286A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To make power uniform with one kind of enrichment degree fuel, though several kinds of enrichment degree are needed for the uniforming of a power distribution. CONSTITUTION:A fuel assembly where minor actinides are added 20 to 30% at weight ratio in uranium-plutonium mixed fuel for a fast reactor is loaded in and around the center of a core. The assembly is in order moved from the center side of the core to a peripheral direction in a fuel replacing time. The fuel is converted into a nuclide whose fission cross section is larger, by irradiation, and the uniforming of a power distribution is attained with one kind of fuel assembly.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【0002】0002

【産業上の利用分野】本発明は燃料集合体を燃料交換の
たび毎にその装荷位置を炉心の中心側から外周方向に移
動、即ち中性子密度が高い位置からより低い位置に移動
させることによって出力分布の平坦化を行う高速炉用炉
心の運転方法に関する。
[Industrial Application Field] The present invention produces output by moving the loading position of the fuel assembly from the center of the core to the outer periphery every time the fuel is replaced, that is, from a position with high neutron density to a position with lower neutron density. This article relates to a method of operating a fast reactor core that flattens the distribution.

【0003】0003

【従来の技術】高速炉用炉心においては一般に炉心の中
心付近の中性子束は高く、炉心の外周に近づくにつれ中
性子束は低くなる。従って、炉心内の出力を平坦化する
ためには、装荷させる燃料集合体として、核分裂性核種
の含有割合の多い燃料集合体と少ない燃料集合体等、数
種類の核分裂性核種を含む燃料集合体を準備し、それら
を出力分布が平坦になるように炉心内に適性配置する。 即ち、図4に示したように核分裂性核種の含有割合の少
ない燃料集合体を中性子束密度の高い炉心の中心領域(
内側炉心41)に、また、より核分裂性核種を多く含む
燃料集合体を中性子束密度の低い炉心の外周領域(外側
炉心42)に装荷することによって炉心内の出力分布を
平坦化している図4は、通常の高速炉である2領域均質
炉心の一例としての炉心の中心面を示す水平断面図であ
る、図において、符号41は内側炉心で、核分裂性核種
を少なく含む燃料集合体が装荷されている領域、符号4
2は外側炉心で、核分裂性核種を多く含む燃料集合体が
装荷されている領域である。このようにして従来の運転
方法では2種類の燃料集合体を使用して出力分布の平坦
化を行っている。
2. Description of the Related Art In a fast reactor core, the neutron flux is generally high near the center of the core, and decreases as the core approaches the outer periphery of the core. Therefore, in order to flatten the output in the reactor core, it is necessary to load fuel assemblies containing several types of fissile nuclides, such as fuel assemblies with a high content of fissile nuclides and fuel assemblies with a small content of fissile nuclides. Prepare them and place them appropriately in the core so that the power distribution is flat. In other words, as shown in Figure 4, fuel assemblies with a low content of fissile nuclides are placed in the central region of the reactor core where neutron flux density is high (
The power distribution within the core is flattened by loading fuel assemblies containing more fissile nuclides into the inner core 41) and into the outer core region (outer core 42) where neutron flux density is lower. 1 is a horizontal sectional view showing the center plane of a two-zone homogeneous core as an example of a normal fast reactor. In the figure, reference numeral 41 is an inner core loaded with fuel assemblies containing a small amount of fissile nuclides. area, code 4
2 is the outer core, which is a region where fuel assemblies containing a large amount of fissile nuclides are loaded. In this manner, the conventional operating method uses two types of fuel assemblies to flatten the power distribution.

【0004】0004

【発明が解決しようとする課題】しかし、こうした炉心
構成を採用する場合には核分裂性核種の割合の異なった
燃料集合体の種類を数種類準備することが必要となる。 特に、電気出力が20万KWeクラス以上の炉心におい
ては、出力分布の平坦化上数種類の炉心燃料集合体を準
備することは不可欠である。一般に、燃料集合体を製造
する際には、その燃料要素を構成する核燃料ペレット中
の核分裂性核種の量を正確にコントロールする必要があ
り、その種類が多ければ、それだけ核燃料ペレットの製
造に要する工程が多くなり、燃料集合体の調達コストが
高くなる。
[Problems to be Solved by the Invention] However, when adopting such a core configuration, it is necessary to prepare several types of fuel assemblies with different proportions of fissile nuclides. In particular, for a core with an electrical output of 200,000 KWe class or higher, it is essential to prepare several types of core fuel assemblies in order to flatten the power distribution. Generally, when manufacturing a fuel assembly, it is necessary to accurately control the amount of fissile nuclides in the nuclear fuel pellets that make up the fuel element, and the more types there are, the more steps are required to manufacture the nuclear fuel pellets. This increases the procurement cost of fuel assemblies.

【0005】本発明は上記課題を解決するためになされ
たもので、一種類の燃料集合体で出力の平坦化を達成す
ることができる高速炉用炉心の運転方法を提供すること
にある。 [発明の構成]
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a method for operating a fast reactor core that can achieve flattening of power output with one type of fuel assembly. [Structure of the invention]

【0006】[0006]

【課題を解決するための手段】本発明は、1サイクル毎
に一部ずつ燃料集合体を炉心内に装荷した高速炉用炉心
の運転方法において、超ウラン元素、特にネプツニウム
、アメリシウム、キュリウム等のマイナーアクチナイド
元素を、ウラン−プルトニウム混合高速炉燃料に重量率
で20%以上添加して構成した燃料集合体を、最初に炉
心中心領域に装荷し、その後の燃料交換のたび毎に前記
燃料集合体内の中で装荷核種がより分裂性の高い核種に
転換するのに合わせて前記燃料集合体の装荷位置を炉心
の中心領域から外周領域に順次移動させることを特徴と
する。
[Means for Solving the Problems] The present invention provides a method for operating a fast reactor core in which a portion of fuel assemblies are loaded into the core in each cycle. A fuel assembly made by adding 20% or more by weight of minor actinide elements to uranium-plutonium mixed fast reactor fuel is first loaded into the central region of the reactor core, and then added to the fuel at each subsequent fuel exchange. The fuel assembly is characterized in that the loading position of the fuel assembly is sequentially moved from the central region of the core to the outer peripheral region as the loaded nuclide is converted to a more fissile nuclide within the assembly.

【0007】[0007]

【作用】高速炉においては、核燃料の燃焼とともに添加
した核分裂性核種がより核分裂性の高い核種に転換する
よう構成することが可能である。従って、後述するよう
な構成から転換特性の高い燃料集合体を準備し、それを
最初に炉心内の中性子密度の高い炉心中心領域に装荷し
、燃焼が進み核分裂性核種がより分裂性の高い核種に転
換するのに合わせて、燃料交換のたび毎に、その装荷位
置をより中性子密度の低い位置に順次移動させる。即ち
前記燃料集合体を炉心中心側から外周方向に移動させる
ことによって出力分布の平坦化を行う。このような運転
方法によって核分裂性核種の割合が異なった燃料集合体
の種類を従来より少なく準備することが可能であり、燃
料集合体の調達コストの軽減が可能となる。この転換特
性の高い燃料集合体は軽水炉の使用済み燃料から取り出
される超ウラン元素、特にネプツニウム、アメリシウム
、キュリウム等のいわゆるマイナーアクチナイド元素を
通常の高速炉燃料であるウラン−プルトニウム混合物燃
料集合体に添加することにより可能である。これらの元
素の核分裂断面積は、 235U、 239Pu、 2
41Pu等のような通常使用されている核分裂性核種の
核分裂断面積よりは小さいが、中性子を吸収することに
よってより大きな核分裂断面積を持つ核種に転換される
[Operation] A fast reactor can be constructed so that fissile nuclides added to the reactor are converted to more fissile nuclides as the nuclear fuel burns. Therefore, a fuel assembly with high conversion characteristics is prepared from the configuration described below, and it is first loaded into the central region of the reactor core where neutron density is high, and as combustion progresses, the fissile nuclides become more fissile nuclides. At each fuel change, the loading position is sequentially moved to a position with lower neutron density. That is, the power distribution is flattened by moving the fuel assembly from the center of the core toward the outer circumference. With such an operating method, it is possible to prepare fewer types of fuel assemblies with different proportions of fissile nuclides than before, and it is possible to reduce the procurement cost of fuel assemblies. This fuel assembly with high conversion characteristics converts transuranic elements extracted from the spent fuel of light water reactors, especially so-called minor actinide elements such as neptunium, americium, and curium, into uranium-plutonium mixture fuel assemblies, which are ordinary fast reactor fuel. This is possible by adding it to. The fission cross sections of these elements are 235U, 239Pu, 2
Although its fission cross section is smaller than that of commonly used fissile nuclides such as 41Pu, it is converted to a nuclide with a larger fission cross section by absorbing neutrons.

【0008】[0008]

【実施例】図面を参照して本発明に係る高速炉用炉心の
運転方法の一実施例について説明する。尚、本発明の有
効性を示す実施例は、下記の条件により実施した。 〈炉心基本仕様〉 炉心熱出力                   2
600 MWth(電気出力            
       1000 MWe)炉心高さ     
                 100 cm集合
体ピッチ                 16.2
 cm炉心燃料体積比        燃料:冷却材:
構造材=41.5:  36.5:  22.0炉心燃
料集合体数              366 体集
合体内燃料要素数            271 本
運転サイクル長さ              1  
年燃料交換バッチ数              5炉
心平均取出し平均燃焼度    約20万MWd/to
n図1は本発明の運転方法による炉心を説明するための
水平断面図である。図において、マイナーアクチナイド
元素を添加して構成した燃料集合体は装荷時には符号1
1で示される炉心中心領域の第一領域に装荷されている
。この燃料集合体には表1に示す割合のマイナーアクチ
ナイド元素が初期に重量率で25%添加されている。炉
心の燃焼とともに、上記マイナーアクチナイド元素は核
分裂性核種に転換される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the fast reactor core operating method according to the present invention will be described with reference to the drawings. Note that Examples showing the effectiveness of the present invention were carried out under the following conditions. <Basic core specifications> Core thermal output 2
600 MWth (electrical output
1000 MWe) core height
100 cm aggregate pitch 16.2
cm Core fuel volume ratio Fuel: Coolant:
Structural material = 41.5: 36.5: 22.0 Number of core fuel assemblies 366 Number of fuel elements in assembly 271 Main operation cycle length 1
Number of fuel exchange batches per year: 5 cores Average withdrawal average burnup: Approximately 200,000 MWd/to
FIG. 1 is a horizontal cross-sectional view for explaining a reactor core according to the operating method of the present invention. In the figure, the fuel assembly constructed by adding a minor actinide element has a code of 1 when loaded.
It is loaded in the first region of the core center region indicated by 1. Minor actinide elements in the proportions shown in Table 1 were initially added to this fuel assembly in a weight percentage of 25%. As the core burns, the minor actinide elements are converted to fissile nuclides.

【0009】[0009]

【表1】[Table 1]

【0010】本発明に係る運転方法では最初に炉心中心
領域、つまり第一領域11に上記燃料集合体を装荷し、
その後の燃料交換のたび毎に、燃料集合体を第一領域1
1から外周方向の第二,第三…領域12,13…に順次
移動させ、燃料集合体内で装荷核種がより分裂性の高い
核種に転換するのに合わせて、その装荷位置をより中性
子密度の低い位置に移動させることによって出力分布の
平坦化を行うものである。
[0010] In the operating method according to the present invention, first, the fuel assembly is loaded into the core center region, that is, the first region 11;
At each subsequent fuel change, move the fuel assembly to the first area 1.
1 to the second, third...areas 12, 13... in the outer circumferential direction, and as the loaded nuclide is converted to a more fissionable nuclide within the fuel assembly, the loading position is changed to a position with a higher neutron density. By moving it to a lower position, the output distribution is flattened.

【0011】その燃料交換の際の集合体の移動順序は第
一領域11(新燃料)→第二領域12(炉内に1年滞在
した後に装荷)→第三領域13(領域12で1年滞在し
た後に装荷、即ち、炉内に2年滞在した後に装荷)→第
四領域14(領域13で1年滞在した後に装荷、即ち、
炉内に3年滞在した後に装荷)→第五領域15(領域1
4で1年滞在した後に装荷、即ち、炉内に4年滞在した
後に装荷)を経て取り出すようになっている。
[0011] The movement order of the assemblies during fuel exchange is: first area 11 (new fuel) → second area 12 (loaded after staying in the reactor for one year) → third area 13 (one year in area 12) Loading after staying in the reactor, i.e. loading after staying in the reactor for 2 years) → Fourth area 14 (loading after staying in area 13 for 1 year, i.e.,
Loading after staying in the reactor for 3 years) → 5th area 15 (area 1
After staying in the reactor for one year, it is loaded (in other words, after staying in the reactor for four years, it is loaded) and then taken out.

【0012】各領域での滞在期間は各1年ずつであるの
で、装荷して取り出されるまでに合計5年間炉内に滞在
することになる。装荷された燃料集合体内の核分裂性核
種の割合は燃料の照射とともに増加するので、炉心内の
出力分布は平坦化される。しかし、もしマイナーアクチ
ナイド元素を添加する重量率が小さすぎると核分裂性核
種への転換特性は悪すぎて、外周領域の出力が低下しす
ぎ、一種類の燃料では出力分布の平坦化を達成すること
はできない。こうした出力分布の平坦化の度合いを示す
尺度に出力ピーキング因子がある。
[0012] Since the period of stay in each area is one year, it will stay in the reactor for a total of five years before it is loaded and taken out. Since the proportion of fissile nuclides in the loaded fuel assembly increases with irradiation of the fuel, the power distribution within the core is flattened. However, if the weight ratio of minor actinide elements added is too small, the conversion characteristics to fissile nuclides will be too poor, and the output in the outer region will decrease too much, making it impossible to achieve a flat output distribution with one type of fuel. I can't. The output peaking factor is a measure of the degree of flattening of the output distribution.

【0013】図2にマイナーアクチナイド元素を添加す
る重量率と炉心内出力ピーキング因子との関係を示す。 出力ピーキング因子は小さければ小さいほど同じ炉心サ
イズで大きな出力が得られることから、この出力ピーキ
ング因子を小さくすることが炉心設計上の関心事である
。この出力ピーキング因子を 2.5程度以下に抑える
為には図2から明らかなようにマイナーアクチナイド元
素を添加する重量率は20%以上としなければならない
。マイナーアクチナイド元素を初期に重量率で25%装
荷した場合の本発明による炉心の運転方法を採用した時
の出力分布を図3に示す。図3は炉心中心からの距離と
相対出力との関係における出力分布図を示したもので、
実線は平衡初期を、一点鎖線は平衡末期を示している。 図3から明らかなように出力分布は適切に平坦化されて
いる。 表2にこの炉心の炉心特性を示す。最大線出力は 40
0W/cmに納まっている。
FIG. 2 shows the relationship between the weight ratio of minor actinide elements added and the in-core power peaking factor. Since the smaller the power peaking factor is, the greater the output can be obtained with the same core size, it is important to reduce the power peaking factor in core design. In order to suppress this output peaking factor to about 2.5 or less, as is clear from FIG. 2, the weight percentage of the minor actinide element added must be 20% or more. FIG. 3 shows the power distribution when the core operating method according to the present invention is adopted when minor actinide elements are initially loaded at 25% by weight. Figure 3 shows the power distribution diagram in relation to the distance from the core center and relative power.
The solid line indicates the initial stage of equilibrium, and the dashed line indicates the final stage of equilibrium. As is clear from FIG. 3, the output distribution is appropriately flattened. Table 2 shows the core characteristics of this core. The maximum line output is 40
It is within 0W/cm.

【0014】[0014]

【表2】[Table 2]

【0015】上記実施例によれば、一種類の燃料集合体
を用いて、良く平坦化された出力分布が、単に装荷方法
の工夫のみ(装荷核種がより分裂性の高い核種に転換す
るのに合わせて、その装荷位置をより中性子密度の低い
位置に移動させること)で達成できる。但し、上記実施
例は炉心が平衡状態になった時に出力が平坦化されるよ
うになっているので、炉心の周辺領域に装荷できる程度
にまで装荷した燃料を燃焼させるまでの過度の期間は、
従来の数種類の燃料集合体を準備して、運転しなければ
ならない。また、上記実施例によれば、一般に厄介扱い
されている軽水炉から発生してくる長半減期のマイナー
アクチナイド元素を発電に使用しながら燃焼させること
ができる。尚、上記実施例では炉心を半径方向に5領域
採用したが、これは一例であり、この領域数としては、
燃料集合体の炉内滞在期間(年)を、運転期間(年)で
除した数値に対応する数の領域を選べば良い。
According to the above embodiment, a well-flattened power distribution can be achieved by using one type of fuel assembly simply by improving the loading method (the loaded nuclide is converted to a more fissile nuclide). This can also be achieved by moving the loading position to a location with lower neutron density. However, in the above embodiment, the output is flattened when the core reaches an equilibrium state, so the excessive period of time until the fuel loaded to the extent that it can be loaded into the peripheral area of the core is
Several types of conventional fuel assemblies must be prepared and operated. Further, according to the above embodiment, minor actinide elements with long half-lives generated from light water reactors, which are generally treated as a nuisance, can be burned while being used for power generation. Note that in the above embodiment, five regions were adopted in the radial direction of the core, but this is just an example, and the number of regions is as follows:
It is sufficient to select a number of regions corresponding to the value obtained by dividing the period of stay of the fuel assembly in the reactor (years) by the operating period (years).

【0016】[0016]

【発明の効果】本発明によれば高速炉燃料にマイナーア
クチナイド元素を添加して構成した燃料集合体中の燃料
は照射によって核分裂断面積の大きな核種に転換される
ので、一種類の燃料集合体で出力の平坦化を達成するこ
とができる。
Effects of the Invention According to the present invention, the fuel in the fuel assembly made by adding minor actinide elements to the fast reactor fuel is converted into a nuclide with a large fission cross section by irradiation. Output flattening can be achieved in aggregates.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明に係る高速炉用炉心の運転方法の一実施
例における燃料集合体の装荷移動手順を説明するための
炉心を示す水平断面図。
FIG. 1 is a horizontal sectional view showing a core for explaining a loading movement procedure of fuel assemblies in an embodiment of the fast reactor core operating method according to the present invention.

【図2】図1における燃料集合体のマイナーアクチナイ
ド元素の重量率と出力ピーキング係数との関係を示す曲
線図。
FIG. 2 is a curve diagram showing the relationship between the weight percentage of minor actinide elements in the fuel assembly in FIG. 1 and the output peaking coefficient.

【図3】本発明に係る炉心の運転方法における炉心中心
からの距離と相対出力との関係を示す出力分布図。
FIG. 3 is a power distribution diagram showing the relationship between distance from the core center and relative power in the core operating method according to the present invention.

【図4】従来の2種類の燃料を使用した高速炉用炉心を
示す水平断面図。
FIG. 4 is a horizontal sectional view showing a conventional fast reactor core using two types of fuel.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  1サイクル毎に一部ずつ燃料集合体を
炉心内に装荷した高速炉用炉心の運転方法において、超
ウラン元素、特にネプツニウム、アメリシウム、キュリ
ウム等のマイナーアクチナイド元素を、ウラン−プルト
ニウム混合高速炉燃料に重量率で20%以上添加して構
成した燃料集合体を、最初に炉心中心領域に装荷し、そ
の後の燃料交換のたび毎に前記燃料集合体内の核種がよ
り分裂性の高い核種に転換するのに合わせて前記燃料集
合体の装荷位置を炉心の中心領域から外周領域に順次移
動させることを特徴とする高速炉用炉心の運転方法。
Claim 1: In a fast reactor core operating method in which a portion of fuel assemblies are loaded into the core for each cycle, transuranium elements, particularly minor actinide elements such as neptunium, americium, and curium, are added to uranium. - A fuel assembly composed of plutonium mixed fast reactor fuel added at a weight ratio of 20% or more is first loaded into the central region of the reactor core, and each time the fuel is replaced thereafter, the nuclides in the fuel assembly become more fissile. A method for operating a fast reactor core, characterized in that the loading position of the fuel assemblies is sequentially moved from a central region of the core to an outer peripheral region in accordance with the conversion to a nuclide with high nuclides.
JP3064822A 1991-03-28 1991-03-28 Operating method of core for fast reactor Pending JPH04299286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3064822A JPH04299286A (en) 1991-03-28 1991-03-28 Operating method of core for fast reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3064822A JPH04299286A (en) 1991-03-28 1991-03-28 Operating method of core for fast reactor

Publications (1)

Publication Number Publication Date
JPH04299286A true JPH04299286A (en) 1992-10-22

Family

ID=13269332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3064822A Pending JPH04299286A (en) 1991-03-28 1991-03-28 Operating method of core for fast reactor

Country Status (1)

Country Link
JP (1) JPH04299286A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013509584A (en) * 2009-11-02 2013-03-14 シーレイト リミテッド ライアビリティー カンパニー Standing wave fission reactor and method
JP2013510313A (en) * 2009-11-06 2013-03-21 シーレイト リミテッド ライアビリティー カンパニー Method and system for moving a nuclear fuel assembly in a fission reactor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013509584A (en) * 2009-11-02 2013-03-14 シーレイト リミテッド ライアビリティー カンパニー Standing wave fission reactor and method
US9236150B2 (en) 2009-11-02 2016-01-12 Terrapower, Llc Standing wave nuclear fission reactor and methods
US9401228B2 (en) 2009-11-02 2016-07-26 Terrapower, Llc Standing wave nuclear fission reactor and methods
US9653187B2 (en) 2009-11-02 2017-05-16 Terrapower, Llc Standing wave nuclear fission reactor and methods
US11482344B2 (en) 2009-11-02 2022-10-25 Terrapower, Llc Standing wave nuclear fission reactor and methods
JP2013510313A (en) * 2009-11-06 2013-03-21 シーレイト リミテッド ライアビリティー カンパニー Method and system for moving a nuclear fuel assembly in a fission reactor
JP2013510310A (en) * 2009-11-06 2013-03-21 シーレイト リミテッド ライアビリティー カンパニー Method and system for moving a nuclear fuel assembly in a fission reactor
JP2013510314A (en) * 2009-11-06 2013-03-21 シーレイト リミテッド ライアビリティー カンパニー Method and system for moving a nuclear fuel assembly in a fission reactor
JP2016048268A (en) * 2009-11-06 2016-04-07 テラパワー, エルエルシー Operation method of progressive wave nuclear fission reaction

Similar Documents

Publication Publication Date Title
US3575803A (en) Reactor fueling method
JPH07140286A (en) Fast reactor core
Reda et al. Neutronic Performance of the VVER-1000 Reactor Using Thorium Fuel with ENDF Library
JPH04299286A (en) Operating method of core for fast reactor
JPH05180971A (en) Annihilation processing reactor core for transuranium element
JP3241071B2 (en) Light water reactor core
JP2886555B2 (en) Fuel assembly for boiling water reactor
JPH02271294A (en) Reactor core of fast breeder reactor
Arms Control and Disarmament Agency
JPS6322551B2 (en)
JPH09274091A (en) Core of fast reactor
JP3318210B2 (en) MOX fuel assembly and core
Radkowsky et al. Optimization of once-through uranium cycle for pressurized light water reactors
Núñez-Carrera et al. Design of a boiling water reactor core based on an integrated blanket–seed thorium–uranium concept
JPH04265896A (en) Fuel assembly
JPH0827370B2 (en) Boiling water reactor
JPH02232595A (en) Fuel loading of boiling nuclear reactor
JPH04268489A (en) Core of fast breeder reactor, fuel assembly and control rod assembly to be used and annihilating method for waste of transuranium elements
JPH0552981A (en) Fuel assembly and reactor core
Märkl et al. Advanced core and fuel design for light water reactors
JPH0452914B2 (en)
JPS62182694A (en) Fuel aggregate for boiling water type reactor
JPS61147184A (en) Fuel aggregate
Iskenderian Use of Depleted Uranium in Thermal Reactors with Slightly Enriched Fuel, to Achieve High Neutron Economy and High Burnup
JPH1039070A (en) Core for reactor