JPS63224157A - Fuel cell device - Google Patents
Fuel cell deviceInfo
- Publication number
- JPS63224157A JPS63224157A JP62059131A JP5913187A JPS63224157A JP S63224157 A JPS63224157 A JP S63224157A JP 62059131 A JP62059131 A JP 62059131A JP 5913187 A JP5913187 A JP 5913187A JP S63224157 A JPS63224157 A JP S63224157A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- gas
- fuel
- cell device
- oxidizing gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 153
- 230000001590 oxidative effect Effects 0.000 claims abstract description 55
- 238000010438 heat treatment Methods 0.000 claims abstract description 47
- 238000001816 cooling Methods 0.000 claims abstract description 46
- 239000012530 fluid Substances 0.000 claims abstract description 13
- 238000007084 catalytic combustion reaction Methods 0.000 claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 claims abstract description 12
- 239000007789 gas Substances 0.000 claims description 109
- 239000002737 fuel gas Substances 0.000 claims description 38
- 239000003054 catalyst Substances 0.000 claims description 31
- 238000006057 reforming reaction Methods 0.000 claims description 11
- 229930195733 hydrocarbon Natural products 0.000 claims description 8
- 150000002430 hydrocarbons Chemical class 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 238000002407 reforming Methods 0.000 claims description 8
- 238000003487 electrochemical reaction Methods 0.000 claims description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- 150000001298 alcohols Chemical class 0.000 claims description 6
- 239000011148 porous material Substances 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910052707 ruthenium Inorganic materials 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims 1
- 238000002485 combustion reaction Methods 0.000 abstract description 8
- 238000000034 method Methods 0.000 abstract description 7
- 238000010030 laminating Methods 0.000 abstract 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 16
- 238000010248 power generation Methods 0.000 description 15
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 230000001737 promoting effect Effects 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000003411 electrode reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
- H01M8/04022—Heating by combustion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野」
この発明は、燃料電池を複数積層した燃料電池装置に関
するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel cell device in which a plurality of fuel cells are stacked.
第4図は米国GRIレポートNo、 FOR−3522
−2に公報された溶融炭酸塩形の燃料電池発電システム
において、燃料電池装置とこの燃料電池装置の温度制御
を行うための周辺装置の概要を示すシステム構成図であ
る。図において、(1)は燃料電池装置であり、燃料ガ
ス電極と酸化ガス電極を有する燃料電池部分(la)、
燃料ガス電極に燃料ガス仏〕を供給する燃料ガス流路(
1b)、酸化ガス電極に酸化ガス@フを供給する酸化ガ
ス流路(l c)を主要な構成要素として構成される。Figure 4 is US GRI Report No. FOR-3522
FIG. 2 is a system configuration diagram showing an outline of a fuel cell device and peripheral devices for controlling the temperature of the fuel cell device in a molten carbonate fuel cell power generation system disclosed in No. 2-2. In the figure, (1) is a fuel cell device, and a fuel cell part (la) having a fuel gas electrode and an oxidizing gas electrode,
A fuel gas channel (which supplies fuel gas) to the fuel gas electrode
1b), the main component is an oxidizing gas flow path (LC) that supplies oxidizing gas to the oxidizing gas electrode.
(2)は燃料電池発電システムから排出される排出ガス
(C)より動力回収を行ない、外部より空気(6)を昇
圧し供給する充気供給装置、(3)は燃料電池装置(1
)の温度制御を行うため、酸化ガス(B)の一部を循環
する循環プロア、(4)#′i循環プaア(3)により
循環される酸化ガス側循環ガスの温度制御を行なうため
の熱交換器、@)は燃料排出ガスの流れを示す。(2) is a charge supply device that recovers power from the exhaust gas (C) discharged from the fuel cell power generation system and boosts the pressure of air (6) from the outside and supplies it; (3) is the fuel cell device (1
) to control the temperature of the circulating gas on the oxidizing gas side circulated by the circulation proa (4) #'i circulation proa which circulates a part of the oxidizing gas (B) (3) heat exchanger, @) indicates the flow of fuel exhaust gas.
次に前作について説明する。Next, I will explain the previous work.
燃料電池装置(1)は燃料ガス流路(i b)に燃料ガ
ス(4)が供給され酸化ガス流路(lc)に酸化ガスφ
〕が供給されることにより、電気化学反応を起す燃料電
池を単数又は複数積層した燃料電池積層体を有し、燃料
ガス(4)の持つ化学エネルギーの一部を電気エネルギ
ーとして取り出し、伐り、を副生ず、−る熱エネルギー
に変換するエネルギー変換装置である。このような燃料
電池装置(1) k動作させるものには、運転開始時に
所定の動作温度にまで加熱を行う必要がある。例えば溶
融炭酸塩形の燃料電池装置の場合には650℃前後に、
リン酸形の燃料電池装置の場合には200℃前後にまで
昇温する必要がある。In the fuel cell device (1), a fuel gas (4) is supplied to a fuel gas flow path (ib), and an oxidant gas φ is supplied to an oxidant gas flow path (lc).
] is supplied, and has a fuel cell stack in which one or more fuel cells that cause an electrochemical reaction are stacked, and a part of the chemical energy of the fuel gas (4) is extracted as electrical energy, This is an energy conversion device that converts by-product heat energy into heat energy. For such a fuel cell device (1) to be operated, it is necessary to heat it to a predetermined operating temperature at the start of operation. For example, in the case of a molten carbonate fuel cell device, the temperature is around 650°C.
In the case of a phosphoric acid type fuel cell device, it is necessary to raise the temperature to around 200°C.
他方、定常動作時においては燃料電池装置(1)で副生
ずる燃エネルギーを除去する即ち冷却する必要がある。On the other hand, during steady operation, it is necessary to remove the fuel energy produced by the fuel cell device (1), that is, to cool it.
このような加熱・冷却両者を含めた燃料電池の温度制御
法として、燃料電池装置(1)に液相の熱媒を循環する
方法や気相の熱媒を循環する方法などがある。特に気相
の熱媒を循環する方法は、収り扱いの容易さ、信頼性の
高さ等により注目を集めている。また高温動作の燃料電
池装置の場合には利用可能な液相の冷媒が殆どなく、比
較的小出力の燃料電池発電システムや高温動作形の燃料
電池装置、例えば溶融炭酸塩形の燃料電池装置を用いた
系では気相の熱媒を用いる例が多い。第4図はこのよう
な気相の熱媒を用いた発電システムの一例で、燃料電池
装置(1)から排出された酸化ガスω〕の一部わ循環プ
ロワ(3)を用いて一部燃料電池装置(1)の酸化ガス
流路(1c)の入口に再循環することにより、反部ガス
である酸化ガスを温度調節用の熱媒としても利用してい
る。燃料電池装置(1)を加熱する場合にFi熱交換器
(4)において熱媒である循環酸化ガスを加熱し、逆に
定常動作時においては熱交換器(4)において循環酸化
ガスを冷却することにより、燃料電池装置(1)の温度
制御が達成される。As a temperature control method for a fuel cell including both heating and cooling, there are a method of circulating a liquid phase heat medium in the fuel cell device (1), a method of circulating a gas phase heat medium, and the like. In particular, the method of circulating a gas phase heating medium is attracting attention due to its ease of storage and high reliability. In addition, in the case of high-temperature operation fuel cell devices, there is almost no liquid-phase refrigerant available, and relatively low-output fuel cell power generation systems and high-temperature operation type fuel cell devices, such as molten carbonate fuel cell devices, are required. In most of the systems used, a gas phase heating medium is used. Figure 4 shows an example of a power generation system using such a gas-phase heating medium. By recirculating the oxidizing gas to the inlet of the oxidizing gas flow path (1c) of the battery device (1), the oxidizing gas that is the opposite gas is also used as a heating medium for temperature adjustment. When heating the fuel cell device (1), the circulating oxidizing gas, which is a heat medium, is heated in the Fi heat exchanger (4), and conversely, during steady operation, the circulating oxidizing gas is cooled in the heat exchanger (4). As a result, temperature control of the fuel cell device (1) is achieved.
従来の燃料電池装置は、以上のように構成されているの
で、以下に示すような問題点があった。Since the conventional fuel cell device is configured as described above, it has the following problems.
イノ熱媒として気相の熱媒の熱容量は、液相の熱媒に比
べて小さい為、特に燃料電池装置の昇温を速く行う必要
がある場合には起動時間の短縮化が難しい。As an inno heat medium, the heat capacity of a gas phase heat medium is smaller than that of a liquid phase heat medium, so it is difficult to shorten the startup time, especially when it is necessary to quickly raise the temperature of the fuel cell device.
(ロ)熱媒を熱交換器によって加熱する間接加熱型であ
るため、加熱の時間遅れが生じ、また熱効率も悪い。(b) Since it is an indirect heating type in which the heat medium is heated by a heat exchanger, there is a time delay in heating and the thermal efficiency is also poor.
0う反応ガスを熱媒として利用する場合は、利用しない
場合に比べて大量の反応ガス量、例えば3倍程度の反応
ガス−を供給する必要がある。この場合燃料電池装置に
含まれている電解質の蒸発・飛散が促進される。このた
め反応ガスの供給と燃料電池装置の温度の制御とが干渉
し制御方法が複雑になり、また、電池の寿命が短くなる
。さらに、循環量の増大に伴なうプロア動力の増大が発
電効率を低下せしめるという問題点がある。When using zero reactive gas as a heating medium, it is necessary to supply a large amount of reactive gas, for example, about three times as much reactive gas as when not using it. In this case, evaporation and scattering of the electrolyte contained in the fuel cell device is promoted. For this reason, the supply of the reactant gas and the control of the temperature of the fuel cell device interfere with each other, making the control method complicated and shortening the life of the battery. Furthermore, there is a problem in that an increase in proer power due to an increase in the amount of circulation reduces power generation efficiency.
この発明は上記のような問題点を解消するためになされ
たもので、燃料電池装置を効果的にす速く昇温すること
が可能で、加熱時における熱効率も高く、且つ燃料電池
装置の反応ガス系とは独立した加熱冷却系を形成し燃料
電池の温度制御が比較的容易にできる燃料電池装置を得
ることを目的とする。This invention was made to solve the above-mentioned problems, and it is possible to effectively and quickly raise the temperature of a fuel cell device, has high thermal efficiency during heating, and has a It is an object of the present invention to provide a fuel cell device in which the temperature of the fuel cell can be controlled relatively easily by forming a heating and cooling system independent of the system.
また、この発明の別な発明は、従来の装置に比べ少量の
熱媒で効率良く加熱・冷却が可能であり、このため熱媒
による電解質蒸発量を低減せしめ、且つ加熱・冷却に必
要な熱媒の循環に必要なプロワ動力損を低減できる燃料
電池装置を得ることを目的とする。Another invention of this invention is that heating and cooling can be performed efficiently with a small amount of heating medium compared to conventional devices, which reduces the amount of electrolyte evaporation caused by the heating medium and reduces the amount of heat required for heating and cooling. The object of the present invention is to obtain a fuel cell device that can reduce blower power loss required for medium circulation.
この発明に係る燃料電池装置は、燃料ガス流路より燃料
ガス電極に燃料ガスが供給され、酸化ガス流路より酸化
ガス電極に酸化ガスが供給されて電気化学反応を起す燃
料電池を単数又は複&@層した燃料電池積層体、この燃
料電池積層体に隣接して設けられ、流体の循環路とこの
循環路に触媒を有する渥度調節器、温度調節器に可燃性
ガスと酸化性ガスを供給して触媒燃焼させることにより
、燃料電池積層体を加熱する加熱手段、及び温度調節器
に冷却用熱媒を循環させることにより、燃料電池積層体
を冷却する冷却手段を備えたものである。The fuel cell device according to the present invention includes one or more fuel cells in which fuel gas is supplied from a fuel gas passage to a fuel gas electrode, and oxidizing gas is supplied from an oxidizing gas passage to an oxidizing gas electrode to cause an electrochemical reaction. &@ layered fuel cell stack, a fluid circulation path, a flow regulator that has a catalyst in the circulation path, and a temperature regulator that are installed adjacent to the fuel cell stack to supply combustible gas and oxidizing gas. It is equipped with a heating means that heats the fuel cell stack by supplying and catalytically combusting the fuel cell stack, and a cooling means that cools the fuel cell stack by circulating a cooling heat medium through a temperature controller.
この発明の別な発明に係る燃料電池装置は、燃料ガス流
路より燃料ガス電極に燃料ガスが供給され、酸化ガス流
路より酸化ガス電極に酸化ガスが供給されて電気化学反
応を起す燃料電池を単数又は複&槓層した燃料電池積層
体、この燃料電池積層体に隣接して設けられ、流体の循
環路とこの循環路に触媒を有する温度調節器、温度調節
器に可燃性ガスと酸化性ガスを供給して触媒燃焼させる
ことにより、燃料電池積層体を加熱する加熱手段、及び
温度調節器に流体を供給して吸熱反応させることにより
、燃料電池積層体を冷却する冷却手段を備えたものであ
るり
〔作用〕
この発明における加熱手段は、加熱動作時に温度調節器
に可燃性ガスと酸化性ガスを供給して触媒燃焼させ、こ
の時生成した燃焼熱を直接燃料電池積層体1ζ伝える。A fuel cell device according to another aspect of the present invention is a fuel cell in which fuel gas is supplied from a fuel gas passage to a fuel gas electrode, and oxidizing gas is supplied from an oxidizing gas passage to an oxidizing gas electrode to cause an electrochemical reaction. A fuel cell stack including a single or multiple layers of A heating means for heating the fuel cell stack by supplying a reactive gas and causing catalytic combustion, and a cooling means for cooling the fuel cell stack by supplying a fluid to a temperature controller to cause an endothermic reaction. [Operation] The heating means in the present invention supplies flammable gas and oxidizing gas to the temperature controller during heating operation to cause catalytic combustion, and directly transmits the combustion heat generated at this time to the fuel cell stack 1ζ. .
一方、冷却手段は、冷却動作時に温度調節器に冷却用熱
媒を循環させ、との熱媒と燃料電池積層体とを熱交換さ
せる。On the other hand, the cooling means circulates the cooling heat medium through the temperature controller during the cooling operation, and exchanges heat between the heat medium and the fuel cell stack.
ま九、この発明の別の発明における加熱手段は、上記の
ものと同様であり、冷却手段は、冷却動作時に温度調節
器に流体を供給して吸熱反応させ、この時の吸熱の反応
熱により燃料電池積層体を冷却する。(9) The heating means in another aspect of the present invention is the same as that described above, and the cooling means supplies fluid to the temperature controller during the cooling operation to cause an endothermic reaction, and the endothermic reaction heat at this time Cool the fuel cell stack.
〔実施例]
以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例による燃料電池装置を一部切欠
いて示す側面図で1図Vζおいて、(1)は燃料電池装
置、(5)は燃料ガス電極・酸化ガス電極及びマトリク
スを有する燃料電池、(6)は単数ま念は複数の燃料電
池(5)を積層した燃料電池積層体である。(ηけ°燃
料ガス流1@(lb)、酸化ガス流路(1c)にそれぞ
れ反応ガスを供給するためのガス分配器である。(8)
は燃料電池積層体(6)に隣接して投けられた温度調節
器で、可燃性ガス(F)を導入する第14人口(8a)
、酸化性ガス、即ち酸化ガスω)を導入する第2尋入口
(sb)、燃焼排出ガス(G)を等比する辱出口(8c
)により流体の循環路を形成し、燃料電池積層体(6)
の冷却・加熱を行う。(9)は温度調節器(8)の循環
路に験けられた触媒である。(10)は供給される可燃
性ガス5)と酸化ガス03)を混合する予混合部分、(
11) #−1を加熱動作時における火炎の逆火を防止
する逆火防止部分である。[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure is a partially cutaway side view of a fuel cell device according to an embodiment of the present invention, and in FIG. The fuel cell (6) in the singular is a fuel cell stack in which a plurality of fuel cells (5) are stacked. (η is a gas distributor for supplying reaction gas to the fuel gas flow 1@(lb) and the oxidizing gas flow path (1c), respectively. (8)
is a temperature regulator placed adjacent to the fuel cell stack (6), and the 14th population (8a) introduces flammable gas (F).
, the second fathom inlet (sb) that introduces oxidizing gas, i.e., oxidizing gas
) to form a fluid circulation path, and the fuel cell stack (6)
cooling and heating. (9) is a catalyst installed in the circulation path of the temperature regulator (8). (10) is a premixing part that mixes the supplied combustible gas 5) and oxidizing gas 03), (
11) #-1 is a flashback prevention part that prevents flame flashback during heating operation.
第2因汀この発明の一実施例による燃料m池装置(1)
を適用した燃料電池発電システムを示す構成図である。Second factor: Fuel pond device (1) according to an embodiment of the present invention
1 is a configuration diagram showing a fuel cell power generation system to which the above is applied.
図において、(2)け堅気供給側i1.(3)け熱媒を
循環するための循環プロワ、(4)は熱交換器である。In the figure, (2) stiff air supply side i1. (3) A circulation blower for circulating the heat medium, and (4) a heat exchanger.
(L2a) 、(12b)は温度調節器(8)が加熱動
作時にそれぞれ可燃性ガス(ト)、酸化ガス■)を供給
するためのパルプである。(L2a) and (12b) are pulps to which the temperature controller (8) supplies flammable gas (g) and oxidizing gas (iv), respectively, during heating operation.
図中、(4)は燃料電池積層体(1)の燃料ガス流路(
lb)に供給される燃料ガス、(B)は酸化ガス流路(
lc)に供給される酸化ガス、(C)は排出ガス、@は
空気、@)は燃料排出ガス、([’Jけ温度調節器(8
)に供給される可燃性ガス、(G)は燃焼排出ガス、(
匂はスチームを示す。In the figure, (4) indicates the fuel gas flow path (
lb) is supplied to the fuel gas, (B) is the oxidizing gas flow path (
lc), (C) is exhaust gas, @ is air, @) is fuel exhaust gas, (['J is temperature controller (8)
), (G) is the combustion exhaust gas, (
The smell indicates steam.
次に動作について説明する。Next, the operation will be explained.
この実施例による温度調節器(8)は、加熱動作時にお
込てけ流体の循環路に設けた触媒(9)の作用によりパ
ルプ(12a) 、 (12b)を通して内部に導入さ
れた可燃性ガス(F)と酸化ガス(至))とを触媒燃焼
せしめ、その際に生ずる酸化反応熱を燃料電池積層体(
6)に熱伝達することにより加熱器として機能する。具
体的に、例えば溶融炭酸塩形燃料電池を室温より動作温
度(600〜700℃程度)にまで昇温する場合につい
て述べる。まず水素を主成分とする可燃性ガス(F)と
空気などの酸化ガス(B)とを温度調節器(8)に供給
し燃料電池装置を200〜300℃程度にまで加熱する
。この温度範囲においては現状技術では炭化水素または
アルコール類の触媒燃焼を進行せしめることけ難しく、
水素を主成分とする加熱用の可燃性ガスケ)を用いるこ
とが望ましい。また燃料電池(5)の雰囲気条件として
は乾燥したガスを適宜供給しておれば十分である。次い
で200〜300℃以上の加熱VC関しては、低温域と
同様、水素を主要とする可燃性ガス(F)を用いてもよ
いが、適宜メタン等の低級炭化水素又はアルコール虜に
変えても良い。The temperature regulator (8) according to this embodiment has a combustible gas (12a) and (12b) introduced into the interior through the pulp (12a) and (12b) by the action of a catalyst (9) provided in the circulation path of the introduced fluid during the heating operation. F) and oxidizing gas (to)) are catalytically burned, and the oxidation reaction heat generated at that time is transferred to the fuel cell stack (
6) It functions as a heater by transferring heat to. Specifically, a case will be described in which, for example, the temperature of a molten carbonate fuel cell is raised from room temperature to an operating temperature (approximately 600 to 700°C). First, a combustible gas (F) containing hydrogen as a main component and an oxidizing gas (B) such as air are supplied to the temperature controller (8) to heat the fuel cell device to about 200 to 300°C. In this temperature range, it is difficult to advance the catalytic combustion of hydrocarbons or alcohols with current technology;
It is desirable to use a combustible heating gas containing hydrogen as the main component. In addition, as for the atmospheric conditions of the fuel cell (5), it is sufficient to appropriately supply dry gas. Next, for heating VC of 200 to 300°C or higher, combustible gas (F) mainly consisting of hydrogen may be used, as in the low-temperature range, but lower hydrocarbons such as methane or alcohol may be used as appropriate. good.
この方法でI−i可燃性ガスの持つ化学エネルギー(燃
焼熱)を用いて燃料電池の加熱を行っており、従来のよ
うに単に熱媒(ガス)の持つ顕熱のみで加熱を行う方法
に比べて、少量のガス流量で大量の熱量を供給できる。In this method, the chemical energy (heat of combustion) of the I-i flammable gas is used to heat the fuel cell, which is different from the conventional method of heating only with the sensible heat of the heating medium (gas). In comparison, a large amount of heat can be supplied with a small gas flow rate.
具体的には例えばメタンを可燃性ガスとする場合はメタ
ンの酸化反応熱は顕熱輸送において入口出口温度差をi
oo℃とじた場の顕熱輸送量の約150倍程度と大きい
。従って従来例に比べて飛躍的に加熱速度を大きくする
ことができる。また、?:、の実施例にお込てけ燃料電
池装置(1)内部において燃焼反応を起こし直接燃料電
池装置(1)を加熱しており、時間遅れなく、且つ放熱
による熱損失をも最小限に抑えることができる。Specifically, for example, when methane is used as a flammable gas, the heat of oxidation reaction of methane increases the temperature difference between the inlet and outlet during sensible heat transport.
This is approximately 150 times larger than the amount of sensible heat transported at 0°C. Therefore, the heating rate can be dramatically increased compared to the conventional example. Also,? :The combustion reaction occurs inside the fuel cell device (1) and directly heats the fuel cell device (1), so that there is no time delay and heat loss due to heat radiation is minimized. Can be done.
次に定常動作時におhて、燃料電池で副生ずる熱エネル
ギーを温度調節器(8)を用いて除去する冷却時の動作
について説明する。この場合においては温度調節器(8
)において酸化反応は行わず、単に冷却用熱媒として、
例えば加熱時に用いられた酸化ガスを循環せしめ燃料電
池装置(1)より熱を奪う。Next, a description will be given of the cooling operation in which the temperature controller (8) is used to remove thermal energy by-produced in the fuel cell during steady operation. In this case, the temperature controller (8
), no oxidation reaction takes place, and it is simply used as a cooling heat medium.
For example, the oxidizing gas used during heating is circulated to remove heat from the fuel cell device (1).
この時の熱は熱交換器(4)全通して系外に持ら去られ
る。The heat at this time is carried out of the system through the entire heat exchanger (4).
冷却用熱媒としては安全上の見地からは例えば不活性な
ガスが望ましく、通常は空気又は窒素等を利用する。従
って第2図に示した発電システムにおいては、冷却動作
には可燃性ガス(F)の導入パルプ(12a)は閉状態
にし、パルプ(L2b)は開状態である。このような冷
却動作時において、触媒(9)け単に充てん剤として作
用する。この場合においても冷却用熱媒と触媒(9)と
の伝熱を促進することが望ましく、触媒(9)の形状や
充てん構造により過度な圧力損失を持たせまた触媒(9
)と冷却用熱媒の接触表面積を大きくしてやれば、触媒
(9)は冷却製作時においても伝熱促進材料として大き
く機能する。From a safety standpoint, an inert gas is preferable as the cooling heat medium, and air, nitrogen, or the like is usually used. Therefore, in the power generation system shown in FIG. 2, the pulp (12a) for introducing flammable gas (F) is in the closed state and the pulp (L2b) is in the open state for the cooling operation. During such a cooling operation, the catalyst (9) acts solely as a filler. In this case as well, it is desirable to promote the heat transfer between the cooling heat medium and the catalyst (9), and the shape and packing structure of the catalyst (9) may be used to prevent excessive pressure loss.
) and the cooling heating medium, the catalyst (9) can greatly function as a heat transfer promoting material even during cooling production.
触媒(9)としては、例えばアルミナ、マグネシアなど
の多孔性材料の上にPt、Ru、Pd、Rdなどの貴金
属を担持させ念ものが市販されており、利用oT能であ
る。形状としてFi球、柱状などの粒状のものや、多孔
性材料自身をノ・ニカム状に成型することにより、それ
0虜にガス流路の為の穴を有したノ・ニカム状のモノリ
ス型のもの、網状のものナトがある。As the catalyst (9), for example, a catalyst prepared by supporting a noble metal such as Pt, Ru, Pd, or Rd on a porous material such as alumina or magnesia is commercially available and can be used as an O.T. By molding granular shapes such as Fi spheres and columns, or by molding the porous material itself into a no-nicum shape, we can create a no-nikum-shaped monolith with holes for gas flow channels. There are net-like things.
加熱動作時にかける温度調節器(8)の温度の制御は、
供給する可燃性ガス(F)の流量や可燃性ガスの単位流
量当りに供給される酸化ガス(2)の流量を調節するこ
とにより達成される。ここで、触媒(9)は通常耐熱性
に乏しく、高温、例えば800℃以上にかいてけ担持金
属のシンタリングが進み活性が低下することが知られて
いる。従って常Kl1度調節器(8)又は触媒(9)の
温度の監視を行い、可燃性カス伊)の流量、酸化ガス0
)の流量を適宜調整することが必要である。Control of the temperature of the temperature regulator (8) during heating operation is as follows:
This is achieved by adjusting the flow rate of the combustible gas (F) supplied and the flow rate of the oxidizing gas (2) supplied per unit flow rate of the combustible gas. Here, it is known that the catalyst (9) usually has poor heat resistance, and when exposed to high temperatures, for example, 800° C. or higher, sintering of the supported metal progresses and the activity decreases. Therefore, the temperature of the Kl1 degree regulator (8) or the catalyst (9) is constantly monitored, and the flow rate of combustible gas (I) and oxidizing gas are zero.
) is necessary to adjust the flow rate accordingly.
なお、上記実施例では第2図において加熱動作時に温度
調節器(8)に供給する可燃性ガス(至)は別途外部よ
り供給するように示したが、燃料電池発電システムにお
いて金利の燃料ガスを利用できれば更に望ましい。具体
的には第2図において例えば燃料電池装置(1)で未利
用の燃料排出ガスを利用するようにすれば良い。In addition, in the above embodiment, the flammable gas (to) supplied to the temperature controller (8) during heating operation is shown to be supplied from outside separately in Fig. 2, but in the fuel cell power generation system, the combustible gas is supplied separately from the outside. It would be even better if it could be used. Specifically, in FIG. 2, for example, unused fuel exhaust gas may be used in the fuel cell device (1).
また、特に溶融炭酸塩形の燃料電池にとっては高温状W
A(例えば450℃以上)では電解質の分解を避ける為
に二酸化炭素を含んだ雰囲気で呆持してやる必要がある
。従って温度調節器(8)に供給する可燃性ガス量〕と
しては炭素原子を有した炭化水素又はアルコール類を用
い、且つ温度調節器(8)より排出される燃焼排出ガス
中に含まれる二酸化炭素を燃料電池(5)の雰囲気ガス
としてガス流路に供給してやれば効率的な加熱が行える
。このことは例えば燃焼排出ガス(G)を酸化ガス流路
に導入してやることにより容易に実現できる。In addition, especially for molten carbonate fuel cells, high-temperature W
At A (for example, 450° C. or higher), it is necessary to hold in an atmosphere containing carbon dioxide to avoid decomposition of the electrolyte. Therefore, the amount of combustible gas supplied to the temperature controller (8) is hydrocarbons or alcohols containing carbon atoms, and carbon dioxide contained in the combustion exhaust gas discharged from the temperature controller (8) is used. If it is supplied to the gas flow path as the atmospheric gas of the fuel cell (5), efficient heating can be achieved. This can be easily achieved, for example, by introducing combustion exhaust gas (G) into the oxidizing gas flow path.
また、この発明の他の実施例による燃料電池装置を適用
した燃料電池発電システムの構成のを幣3図に示す。Further, FIG. 3 shows the configuration of a fuel cell power generation system to which a fuel cell device according to another embodiment of the present invention is applied.
図において、(13a) 、 (13b)はパルプで、
温度調節器(80が加熱動作時にはパルプ(13a)を
開状態、パルプ(13b)を閉状態にして上記実施例と
同様に燃焼排出ガス(G)を燃料電池装置(IJの外部
へ循環させる。In the figure, (13a) and (13b) are pulp,
When the temperature regulator (80) is in heating operation, the pulp (13a) is opened and the pulp (13b) is closed, and the combustion exhaust gas (G) is circulated to the outside of the fuel cell device (IJ) in the same manner as in the above embodiment.
一方、冷却動作時においては、パルプ(13a)を開状
態、パルプ(13b)を開状態にする。流体として例え
ば妊質の炭化水素又はメタノールなどの1ルコール類を
温度調節器(8)に導入し、下式に従い触媒(9)の助
けにより吸熱反応、例えば改質反応を進行せしめその際
の吸熱の反応熱を燃料電池積層体(6)より奪うことに
より冷却器として動作する。On the other hand, during the cooling operation, the pulp (13a) is opened and the pulp (13b) is opened. A fertile hydrocarbon or a alcohol such as methanol is introduced as a fluid into the temperature controller (8), and an endothermic reaction, for example a reforming reaction, proceeds with the help of the catalyst (9) according to the following formula, and the endothermic reaction at that time is It operates as a cooler by removing reaction heat from the fuel cell stack (6).
2n+m
CnHm+nHzO−ncO+() H2−(1)アル
コール十H20−Go 、CO2,H2・・・(2)ア
ルコール −〇〇、COz、Hz ・・・
(3)CO+H20gacO2+Hz
・・・(4)CH4−[20ミCO+3EIz
・・・(5)一般に改質反応による吸熱の反応
熱は、熱媒として気体を用い且つ入口出口温度差を例え
ば100℃とした場合の顕熱による冷却熱量に比べて1
00〜300倍程度大きく、小さなガス量で効果的な冷
却が行える。従って従来の燃料電池装置を用いた発電シ
ステムと比べて冷却ガス循環用の補機損を大巾に低減で
き、また燃料電池装置(1)を冷却するために循環され
ていた反応ガスの循環が不要ま念は循環量を低減するこ
とができ、電解質の蒸発損失量が減り燃料電池の寿命を
延ばすことができる。2n+m CnHm+nHzO-ncO+() H2-(1) Alcohol + H20-Go, CO2, H2...(2) Alcohol -〇〇, COz, Hz...
(3) CO+H20gacO2+Hz
...(4) CH4-[20miCO+3EIz
...(5) In general, the heat of endothermic reaction due to the reforming reaction is 1% compared to the amount of cooling heat due to sensible heat when gas is used as the heat medium and the temperature difference between the inlet and outlet is set to 100°C, for example.
It is about 00 to 300 times larger and can perform effective cooling with a small amount of gas. Therefore, compared to a power generation system using a conventional fuel cell device, the loss of auxiliary equipment for cooling gas circulation can be greatly reduced, and the circulation of the reaction gas that was circulated to cool the fuel cell device (1) can be reduced significantly. The amount of unnecessary circulation can be reduced, the amount of evaporation loss of electrolyte is reduced, and the life of the fuel cell can be extended.
この実施例に係る触媒(9)は触媒燃焼反応・改質反応
を共に促進するものであることが好まし込。It is preferable that the catalyst (9) according to this embodiment is one that promotes both the catalytic combustion reaction and the reforming reaction.
そのような触媒(9)としては、通常触媒燃焼用の触媒
、又はアルコール類の改質反応用の触媒として市販され
ている触媒が利用できる。具体的には例えばアルミナ、
マグネシアなどの無機材料による多孔性材料にPt、
R11、P(1、及びRdなどのうちいずれか少なくと
も1種を0.1〜1.0%程度担持させたものである。As such a catalyst (9), a catalyst commercially available as a catalyst for normal catalytic combustion or a catalyst for a reforming reaction of alcohols can be used. Specifically, for example, alumina,
Pt, porous materials made of inorganic materials such as magnesia,
At least one of R11, P(1, Rd, etc.) is supported in an amount of about 0.1 to 1.0%.
冷却動作時の炭化水素の改質反応を促進するためには触
媒(9)の多孔性材料上に床持された金属が還元状態で
あることが必要であり、改質反応をさせるに先立ち触媒
(9)の還元処理を行うのが望ましい。一方、アルコー
ル類の改質反応に胸しては、特に高温(例えば300℃
以上)では容易に進行することか知られており、自らの
分解により生じた水素で自動的に触媒(9)の還元が行
なえるため、特別な還元処理は必要ではない。In order to promote the reforming reaction of hydrocarbons during cooling operation, it is necessary that the metal supported on the porous material of the catalyst (9) be in a reduced state. It is desirable to perform the reduction process (9). On the other hand, especially at high temperatures (e.g. 300℃),
The above) is known to proceed easily, and since the catalyst (9) can be automatically reduced with the hydrogen generated by its own decomposition, no special reduction treatment is necessary.
また、この実施例においては、燃料電池装置(υの定常
動作時(発電時)即ち温度調節器(8)か冷却動作時に
ある場合、温度調節器(8)から排出された水素を主要
な成分とする改質ガスをパルプ(13b)を通してその
まま燃料電池の燃料ガス流路(lb)に燃料ガス(4)
として供給している。このようにすることにより効率の
よい改質ガスの利用、即ちエネルギーの有効利用が図れ
る。また、このようなシステム構成では通常、燃料電池
で発生した熱量の約V3程度を温度調節器(3)を介し
て除去し、残りの約し3を他の冷却手段、例えば酸化ガ
スの一部循環により除去する。In addition, in this embodiment, when the fuel cell device (υ) is in steady operation (during power generation), that is, when the temperature controller (8) is in cooling operation, hydrogen discharged from the temperature controller (8) is used as the main component. The reformed gas is passed through the pulp (13b) and directly into the fuel gas flow path (lb) of the fuel cell (4).
It is supplied as. By doing so, efficient use of the reformed gas, that is, effective use of energy can be achieved. In addition, in such a system configuration, approximately V3 of the heat generated in the fuel cell is usually removed via the temperature controller (3), and the remaining heat is removed by other cooling means, such as a portion of the oxidizing gas. Remove by circulation.
なお、上記実施例では、燃料電池として、水素を直接燃
料とする一般的な燃料電池に関して述べてきたが、場合
によっては、燃料ガス流路内(l b)にN1などの改
質触媒を設置し電極反応に並行して改質反応の進行でき
る内部改質形の燃料電池を用いてもよい。この場合は、
炭化水素又はアルコール類が直接燃料として利用可能と
な抄、より大きな効果が得られる。例えば第3図におい
て内部改質形の燃料電池を用いた場合を具体的に述べる
。In the above embodiments, a general fuel cell that directly uses hydrogen as fuel has been described, but in some cases, a reforming catalyst such as N1 may be installed in the fuel gas flow path (lb). However, an internal reforming type fuel cell may be used in which the reforming reaction can proceed in parallel with the electrode reaction. in this case,
A greater effect can be obtained when hydrocarbons or alcohols can be used directly as fuel. For example, in FIG. 3, a case will be specifically described in which an internal reforming type fuel cell is used.
温度ζ部器(8)で平衡論的な制約によりメタンが未分
解で排出され、また、燃料ガス流路(lb)内で生成し
たスチーム、又は消費した水素の作用により化学平衡か
らのずれが生じる。燃料ガス流路(1b〕内に設けられ
た改質触媒の作用により、未分解のメタンがほぼ完全に
分解され電極反応に利用される。例えば燃料ガスが天然
ガスで、燃料電池が溶融炭酸塩形(600〜700℃動
作)の場合従来の燃料電池を用いたシステムでは投入燃
料ガスのうち例、tば1G〜1596のメタンが未分解
・未利用で燃料電池装置(1)から排出されるが、内部
改質形の燃料電池を用いる場合にはメタンの分解率が9
9%以上進む。従って内部改質形の燃料電池を用いるこ
とKより高い燃料利用率が可能となり、電池特性も改善
し、システムの発電効率が大いに向上する。また、上記
実施例では、触媒(9)の機能として、触媒燃焼反応お
よび改質反応を先に促進する機能を併せもった場合につ
いて説明したが、各々の機能を有した触媒(9)をそれ
ぞれ温度調節器(8)の中に設けても良く、また混在さ
せて設けても良い。Due to equilibrium constraints in the temperature ζ unit (8), methane is discharged undecomposed, and the deviation from chemical equilibrium is caused by the action of steam generated or consumed hydrogen in the fuel gas flow path (lb). arise. Due to the action of the reforming catalyst provided in the fuel gas flow path (1b), undecomposed methane is almost completely decomposed and utilized for the electrode reaction.For example, if the fuel gas is natural gas and the fuel cell is molten carbonate In the case of a system using a conventional fuel cell (operating at 600 to 700 degrees Celsius), for example, 1 to 1,596 tons of methane out of the input fuel gas is discharged from the fuel cell device (1) undecomposed and unused. However, when using an internal reforming type fuel cell, the methane decomposition rate is 9
Proceed by more than 9%. Therefore, using an internal reforming type fuel cell enables a higher fuel utilization rate than K, improves the cell characteristics, and greatly improves the power generation efficiency of the system. In addition, in the above embodiment, the catalyst (9) has the function of first promoting the catalytic combustion reaction and the reforming reaction, but the catalyst (9) having each function is They may be provided in the temperature controller (8) or may be provided in a mixed manner.
要するにこの実施例による燃料電池装置(1)において
一般けられた温度調節器(8)は、その内部に触媒燃焼
を促進する機能と改質反応を促進する機能とを併せ持つ
ことである。In short, the generally used temperature regulator (8) in the fuel cell device (1) according to this embodiment has both the function of promoting catalytic combustion and the function of promoting reforming reaction.
また、冷却動作時の吸熱反応は改質反応に限らず、他の
吸熱反応を利用してもよい。Furthermore, the endothermic reaction during the cooling operation is not limited to the reforming reaction, and other endothermic reactions may be used.
また、上記実施例ではIfi&調節器(8)を燃料電池
積層体(6)K隣接して1つ有する場合について述べた
が、必要に応じて複数個の温度調節器(8)を有するよ
うにしてもよい。Further, in the above embodiment, a case is described in which one Ifi & regulator (8) is provided adjacent to the fuel cell stack (6)K, but a plurality of temperature regulators (8) may be provided as necessary. It's okay.
〔発明の効果J
以上述べたように、この発明によれば、燃料ガス流路よ
り燃料ガス電極に燃料ガスが供給され、酸化ガス流路よ
り酸化ガス電極に酸化ガスが供給されて電気化学反応を
起す燃料電池を単数又は複数積層した燃料電池積層体、
この燃料電池積層体に隣接して設けられ、流体の循環路
とこの循環路に触媒を有する温度調節器、温度調節器に
可燃性ガスと酸化性ガスを供給して触媒燃焼させること
により、燃料電池積層体を加熱する加熱手段、及び温度
調節器に冷却用熱媒を循環させることにより、燃料電池
積層体を冷却する冷却手段を備えたことにより、起動時
間が短かく、熱効率の良い加熱が可能であり、さらに温
度#J御の比較的容易な燃料電池装置が得られる効果が
ある。[Effect of the Invention J As described above, according to the present invention, the fuel gas is supplied from the fuel gas flow path to the fuel gas electrode, and the oxidizing gas is supplied to the oxidation gas electrode from the oxidation gas flow path, thereby causing an electrochemical reaction. A fuel cell laminate in which one or more fuel cells are stacked,
A temperature regulator is provided adjacent to the fuel cell stack, and has a fluid circulation path and a catalyst in the circulation path. By supplying combustible gas and oxidizing gas to the temperature regulator and catalytically burning the fuel, Equipped with a heating means for heating the battery stack and a cooling means for cooling the fuel cell stack by circulating a cooling heat medium through the temperature controller, the startup time is short and heating with high thermal efficiency is achieved. This has the effect of providing a fuel cell device in which the temperature #J can be controlled relatively easily.
また、この発明の別の発明によれば、
燃料ガス流路より燃料ガス電極に燃料ガスが供給され、
酸化ガス流路より酸化ガス電極に酸化ガスが供給されて
電気化学反応を起す燃料電池を単数又は複数積層した燃
料電池積層体、この燃料電池積層体に隣接して設けられ
、流体の循環路とこの循環路に触媒を有する温度調節器
、温度調節器に可燃性ガスと酸化性ガスを供給して触媒
燃焼させることにより、燃料電池積層体を加熱する加熱
手段、及び温度調節器に流体を供給して吸熱反応させる
ことによし、燃料電池積層体を冷却する冷却手段を備え
之ことにより、装置のガス循環量で燃料電池の加熱・冷
却を効率よく行うことができ、このため熱媒を循環する
補機損を低減することができ、さらに燃料電池からの電
解質損失を少なくすることにより長寿命な燃料電池装置
が得られる効果がある。According to another aspect of the present invention, fuel gas is supplied from the fuel gas flow path to the fuel gas electrode,
A fuel cell stack in which one or more fuel cells are stacked, in which oxidizing gas is supplied from an oxidizing gas flow path to an oxidizing gas electrode to cause an electrochemical reaction; A temperature regulator that has a catalyst in this circulation path, a heating means that heats the fuel cell stack by supplying combustible gas and oxidizing gas to the temperature regulator for catalytic combustion, and supplying fluid to the temperature regulator. By providing a cooling means for cooling the fuel cell stack, the fuel cell can be heated and cooled efficiently using the amount of gas circulated in the device. This has the effect of reducing auxiliary equipment loss, and further reducing electrolyte loss from the fuel cell, resulting in a long-life fuel cell device.
第1図はこの発明の一実施例による燃料電池装置を一部
切欠いて示す側面図、第2図はこの発明の一実施例によ
る燃料電池装置を用いた燃料電池発電システムを示す構
成図、第3図はこの発明の池の実施例による燃料電池装
置を用いた燃料電池発電システムを示す構成図、第4図
は従来の燃料電池装置を用いた燃料電池発電システムを
示す構成図である。
(1)・・・燃料電池装置、(tb)・・・燃料ガス流
路、(lc)・・・酸化ガス流路、(5)・・・燃料電
池、(6)・・・燃料電池積層体、(8)・・・温度調
節器、(9)・・・触媒。
なお1図中、同一符号は同一、又は相当部分を示す。FIG. 1 is a partially cutaway side view of a fuel cell device according to an embodiment of the present invention, FIG. 2 is a block diagram showing a fuel cell power generation system using a fuel cell device according to an embodiment of the present invention, and FIG. FIG. 3 is a block diagram showing a fuel cell power generation system using a fuel cell device according to an embodiment of the present invention, and FIG. 4 is a block diagram showing a fuel cell power generation system using a conventional fuel cell device. (1) Fuel cell device, (tb) Fuel gas flow path, (lc) Oxidizing gas flow path, (5) Fuel cell, (6) Fuel cell stack body, (8)...temperature regulator, (9)...catalyst. In addition, in FIG. 1, the same reference numerals indicate the same or equivalent parts.
Claims (11)
され、酸化ガス流路より酸化ガス電極に酸化ガスが供給
されて電気化学反応を起す燃料電池を単数又は複数積層
した燃料電池積層体、この燃料電池積層体に隣接して設
けられ、流体の循環路とこの循環路に触媒を有する温度
調節器、上記温度調節器に可燃性ガスと酸化性ガスを供
給して触媒燃焼させることにより、上記燃料電池積層体
を加熱する加熱手段、及び上記温度調節器に冷却用熱媒
を循環させることにより、上記燃料電池積層体を冷却す
る冷却手段を備えた燃料電池装置。(1) A fuel cell stack in which one or more fuel cells are stacked in which fuel gas is supplied to the fuel gas electrode from the fuel gas flow path and oxidizing gas is supplied to the oxidizing gas electrode from the oxidizing gas flow path to cause an electrochemical reaction. , a temperature regulator that is provided adjacent to the fuel cell stack and has a fluid circulation path and a catalyst in the circulation path, and a flammable gas and an oxidizing gas are supplied to the temperature regulator for catalytic combustion. A fuel cell device comprising: a heating means for heating the fuel cell stack; and a cooling means for cooling the fuel cell stack by circulating a cooling heat medium through the temperature regulator.
dのいずれか少なくとも1種を担持させたものであるこ
とを特徴とする特許請求の範囲第1項記載の燃料電池装
置。(2) The catalyst contains Pt, Ru, Pd, and R in the porous material.
2. The fuel cell device according to claim 1, wherein the fuel cell device supports at least one of the following.
であることを特徴とする特許請求の範囲第1項又は第2
項記載の燃料電池装置。(3) Claim 1 or 2, characterized in that the cooling heat medium is an oxidizing gas used for catalytic combustion.
The fuel cell device described in Section 1.
る特許請求の範囲第1項又は第2項記載の燃料電池装置
。(4) The fuel cell device according to claim 1 or 2, wherein the cooling heat medium is an inert gas.
と、酸化性ガスを導入する第2導入口と、内部の流体を
導出する導出口を有することを特徴とする特許請求の範
囲第1項ないし第4項のいずれかに記載の燃料電池装置
。(5) The temperature controller has a first inlet for introducing a flammable gas, a second inlet for introducing an oxidizing gas, and an outlet for leading out an internal fluid. The fuel cell device according to any one of the ranges 1 to 4.
され、酸化ガス流路より酸化ガス電極に酸化ガスが供給
されて電気化学反応を起す燃料電池を単数又は複数積層
した燃料電池積層体、この燃料電池積層体に隣接して設
けられ、流体の循環路とこの循環路に触媒を有する温度
調節器、上記温度調節器に可燃性ガスと酸化性ガスを供
給して触媒燃焼させることにより、上記燃料電池積層体
を加熱する加熱手段、及び上記温度調節器に流体を供給
して吸熱反応させることにより、上記燃料電池積層体を
冷却する冷却手段を備えた燃料電池装置。(6) A fuel cell stack in which one or more fuel cells are stacked, in which fuel gas is supplied to the fuel gas electrode from the fuel gas flow path, and oxidizing gas is supplied to the oxidizing gas electrode from the oxidizing gas flow path to cause an electrochemical reaction. , a temperature regulator that is provided adjacent to the fuel cell stack and has a fluid circulation path and a catalyst in the circulation path, and a flammable gas and an oxidizing gas are supplied to the temperature regulator for catalytic combustion. , a fuel cell device comprising a heating means for heating the fuel cell stack, and a cooling means for cooling the fuel cell stack by supplying a fluid to the temperature regulator to cause an endothermic reaction.
ル類を供給して改質反応させることを特徴とする特許請
求の範囲第6項記載の燃料電池装置。(7) The fuel cell device according to claim 6, wherein the cooling means supplies hydrocarbons or alcohols to the temperature controller to cause a reforming reaction.
主要な成分とするガスを、燃料電池積層体の燃料ガス電
極に供給するようにしたことを特徴とする特許請求の範
囲第7項記載の燃料電池装置。(8) A claim characterized in that a gas whose main component is hydrogen reformed by a reforming reaction of a temperature controller is supplied to a fuel gas electrode of a fuel cell stack. The fuel cell device according to item 7.
、またはアルコール類を改質反応する改質触媒を有する
ことを特徴とする特許請求の範囲第8項記載の燃料電池
装置。(9) The fuel cell device according to claim 8, wherein the fuel gas flow path has a reforming catalyst for reforming hydrocarbons or alcohols contained in the fuel gas.
性材料にPt、Ru、Pd及びRdのいずれか少くとも
一種を担持させたものであることを特徴とする特許請求
の範囲第6項ないし第9項のいずれかに記載の燃料電池
装置。(10) The catalyst provided in the circulation path of the temperature regulator is a porous material supporting at least one of Pt, Ru, Pd, and Rd. The fuel cell device according to any one of Items 6 to 9.
とする特許請求の範囲第7項記載の燃料電池装置。(11) The fuel cell device according to claim 7, wherein the alcohol is methanol.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62059131A JPS63224157A (en) | 1987-03-12 | 1987-03-12 | Fuel cell device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62059131A JPS63224157A (en) | 1987-03-12 | 1987-03-12 | Fuel cell device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63224157A true JPS63224157A (en) | 1988-09-19 |
Family
ID=13104448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62059131A Pending JPS63224157A (en) | 1987-03-12 | 1987-03-12 | Fuel cell device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63224157A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5187024A (en) * | 1990-07-23 | 1993-02-16 | Mitsubishi Denki Kabushiki Kaisha | Fuel cell generating system |
WO1997048144A1 (en) * | 1996-06-13 | 1997-12-18 | Keele University | Fuel cell power generating system |
KR100539114B1 (en) * | 2001-08-30 | 2005-12-26 | 산요덴키가부시키가이샤 | Fuel cell |
JP2006079850A (en) * | 2004-09-07 | 2006-03-23 | Casio Comput Co Ltd | Fuel cell device |
JP2006079849A (en) * | 2004-09-07 | 2006-03-23 | Casio Comput Co Ltd | Separator of fuel cell and fuel cell device |
JP2008130565A (en) * | 2006-11-22 | 2008-06-05 | Gm Global Technology Operations Inc | Heating of auxiliary coolant for fuel cell equipped with metal plate |
-
1987
- 1987-03-12 JP JP62059131A patent/JPS63224157A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5187024A (en) * | 1990-07-23 | 1993-02-16 | Mitsubishi Denki Kabushiki Kaisha | Fuel cell generating system |
WO1997048144A1 (en) * | 1996-06-13 | 1997-12-18 | Keele University | Fuel cell power generating system |
KR100539114B1 (en) * | 2001-08-30 | 2005-12-26 | 산요덴키가부시키가이샤 | Fuel cell |
JP2006079850A (en) * | 2004-09-07 | 2006-03-23 | Casio Comput Co Ltd | Fuel cell device |
JP2006079849A (en) * | 2004-09-07 | 2006-03-23 | Casio Comput Co Ltd | Separator of fuel cell and fuel cell device |
JP2008130565A (en) * | 2006-11-22 | 2008-06-05 | Gm Global Technology Operations Inc | Heating of auxiliary coolant for fuel cell equipped with metal plate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2796181B2 (en) | Fuel cell power generation system | |
KR102254196B1 (en) | Ammonia based solid oxide fuel cell system | |
US5897970A (en) | System for production of high-purity hydrogen, process for production of high-purity hydrogen, and fuel cell system | |
JP4515253B2 (en) | Fuel cell system | |
US5993984A (en) | Fuel cell power generating system and operating method thereof | |
CA2474270C (en) | Thermal management of fuel cells | |
JPH10330101A (en) | Hydrogen-manufacturing apparatus and method therefor | |
JP4461439B2 (en) | Fuel cell system reformer | |
AU2003201391A1 (en) | Thermal managment of fuel cells | |
JPS61193371A (en) | Fuel cell power generator | |
KR102503068B1 (en) | Preferential oxidation reactor with internal heat exchange structure and fuel cell system using the same | |
JPS63205058A (en) | Fuel cell device | |
JPS63224157A (en) | Fuel cell device | |
EP1883130B1 (en) | Heat management of carbon monoxide remover and reformer for fuel cell | |
JP4968984B2 (en) | Fuel cell reformer | |
JP2009170307A (en) | Fuel cell module, and operation method of fuel cell module | |
JP2001313053A (en) | Fuel cell system | |
KR100813275B1 (en) | Fuel cell system and managing method thereof | |
JPH07232901A (en) | Fuel reformer | |
KR20220097556A (en) | High Efficiency Fuel Treating Equipment | |
JPH02197057A (en) | Fuel cell power generator | |
JP5348401B2 (en) | Fuel cell system | |
JP2004247084A (en) | Fuel cell power generation system | |
WO2022215224A1 (en) | Fuel cell system | |
JP2004119214A (en) | Fuel cell system |