JPS632237A - Plasma generating device - Google Patents

Plasma generating device

Info

Publication number
JPS632237A
JPS632237A JP14293186A JP14293186A JPS632237A JP S632237 A JPS632237 A JP S632237A JP 14293186 A JP14293186 A JP 14293186A JP 14293186 A JP14293186 A JP 14293186A JP S632237 A JPS632237 A JP S632237A
Authority
JP
Japan
Prior art keywords
magnetic field
generation chamber
plasma generation
waveguide
plasma generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14293186A
Other languages
Japanese (ja)
Other versions
JPH0544774B2 (en
Inventor
Haruhisa Mori
森 治久
Motoo Nakano
元雄 中野
Yoshinobu Ono
小野 義暢
Masanao Hotta
昌直 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ERIONIKUSU KK
Fujitsu Ltd
Original Assignee
ERIONIKUSU KK
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ERIONIKUSU KK, Fujitsu Ltd filed Critical ERIONIKUSU KK
Priority to JP14293186A priority Critical patent/JPS632237A/en
Priority to US07/063,972 priority patent/US4788473A/en
Publication of JPS632237A publication Critical patent/JPS632237A/en
Publication of JPH0544774B2 publication Critical patent/JPH0544774B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To realize lightness and smallness of coils and besides the whole device, by installing a plasma generating chamber which is formed by narrowing down a rectangular waveguide at its end part in the electric field direction of microwaves so that the cross section is shaped into a slender rectangle, and then disposing magnetic field generators on both sides of the plasma generating chamber. CONSTITUTION:A waveguide 14 is formed so that its width in the electric-field direction (shown in an arrow E) of microwaves is equal to that of a rectangular guidewave 11. As the waveguide is extended from the part of the waveguide 15 to the part of a plasma generating chamber 16, it is narrowed down in steps so that the cross section of the plasma generating chamber 16 along the plane orthogonal to the advancing direction of the microwaves has a slender rectangular shape. Besides, an electromagnet 18 comprising a coil 18a and an iron core 18b, and another electromagnet 19 comprising a coil 19a and an iron core 19b, are disposed in symmetry to each other on both of the plasma generating chamber 16. Hence, the magnetic field can be applied effectively only to the plasma generating chamber.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプラズマ発生装置に関し、特には電子のサイク
ロトロン共鳴を使用したマイクロ波イオン源、すなわち
E CR(Electron CyclotronRe
sonance)イオン源に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a plasma generation device, and particularly to a microwave ion source using electron cyclotron resonance, that is, an ECR (Electron Cyclotron Resonance).
sonance) ion source.

〔従 来 技 術〕[Traditional technique]

築4図は、従来のイオン注入装置用マイクロ波イオン源
の分解斜視図である。同図において、内側にリッジ1a
を有する導波管1と放電箱2とは。
Figure 4 is an exploded perspective view of a conventional microwave ion source for an ion implanter. In the same figure, there is a ridge 1a on the inside.
What is the waveguide 1 and discharge box 2 that have the following?

真空封止用の誘電体窓3を挾んで接続されている。They are connected across a dielectric window 3 for vacuum sealing.

放電箱2は、その中央付近に互いに離隔して設けられた
2つの放電電極4a、4bと、これらの電極4a、4b
を上下から挾むように設けられた誘電体窓5a、5bと
を有しており、これらによって囲まれた中央部がプラズ
マ発生室となる。更に。
The discharge box 2 has two discharge electrodes 4a and 4b provided near the center and spaced apart from each other, and these electrodes 4a and 4b.
It has dielectric windows 5a and 5b provided to sandwich it from above and below, and the central part surrounded by these serves as a plasma generation chamber. Furthermore.

放電箱2の周囲を大きくコイル6が取巻いており。A large coil 6 surrounds the discharge box 2.

同図の軸方向に強力な磁場を印加している。A strong magnetic field is applied in the axial direction of the figure.

上記のような装置において、マグネトロン等のマイクロ
波発生源(不図示)で発生したマイクロ波は、導波管1
によって伝播され、誘電体窓3を介して放電箱2に導入
される。このマイクロ波は。
In the above device, microwaves generated by a microwave generation source (not shown) such as a magnetron are transmitted through the waveguide 1.
and is introduced into the discharge box 2 through the dielectric window 3. This microwave.

放電電極4a、4b間に形成されたプラズマ発生室に強
いマイクロ波電界を発生させる。コイル6による磁場は
この電界と直交する方向に印加されている。プラズマ発
生室でプラズマを生成するには、不図示のガス管を介し
てガスをプラズマ発生室内に導入する。すると、プラズ
マ発生室には。
A strong microwave electric field is generated in a plasma generation chamber formed between discharge electrodes 4a and 4b. The magnetic field by the coil 6 is applied in a direction perpendicular to this electric field. To generate plasma in the plasma generation chamber, gas is introduced into the plasma generation chamber via a gas pipe (not shown). Then, in the plasma generation room.

マイクロ波電界と磁場との相互作用により高密度なプラ
ズマが発生する。このプラズマ中のイオンは、イオン引
出し電極系8に適当な電圧を印加することにより、イオ
ンビーム9として外部に引き出すことができる。
High-density plasma is generated by the interaction of microwave electric and magnetic fields. Ions in this plasma can be extracted to the outside as an ion beam 9 by applying an appropriate voltage to the ion extraction electrode system 8.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の装置では、第4図に明らかなように。 In the conventional device described above, as is clear from FIG.

コイル6が全体を取巻(構成であるため、磁気抵抗が非
常に大きく、プラズマ発生室内に強い磁場を与えるため
にはコイル6の断面を相当に大きくしなければならない
。従って従来では、コイルの大型化に伴い、装置全体も
大型化しなければならないという問題があった。
Because the coil 6 surrounds the entire structure, the magnetic resistance is very large, and in order to provide a strong magnetic field inside the plasma generation chamber, the cross section of the coil 6 must be made considerably large. As the size increases, there is a problem in that the entire device must also become larger.

本発明は上記従来の欠点に鑑み、コイルの軽量化および
小型化、更には装置全体の軽量化および小型化を図るこ
とのできるプラズマ発生装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional drawbacks, it is an object of the present invention to provide a plasma generating device that can reduce the weight and size of the coil, and further reduce the weight and size of the entire device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を達成するために、方形導波管の端
でマイクロ波の電界方向に幅を絞り、断面形状が細長い
長方形となる部位を設けて、この部位をプラズマ発生室
としており、更にこのプラズマ発生室の上記電界方向と
直交する面の両外側にコイルまたは永久磁石等からなる
磁場発生器を配置することにより両側から磁場を加える
ようにしたことを特徴とする。
In order to achieve the above object, the present invention provides a portion whose width is narrowed in the direction of the microwave electric field at the end of the rectangular waveguide and whose cross-sectional shape is an elongated rectangle, and this portion is used as a plasma generation chamber. A further feature is that magnetic field generators made of coils, permanent magnets, etc. are arranged on both sides of the plane of the plasma generation chamber orthogonal to the electric field direction, so that a magnetic field is applied from both sides.

〔作  用〕[For production]

マイクロ波は方形導波管によってプラズマ発生室まで導
かれる。プラズマ発生室は方形導波管の電界方向の幅を
絞った形状であるため、そこに導かれたマイクロ波の電
界は非常に強いものとなる。
The microwave is guided to the plasma generation chamber by a rectangular waveguide. Since the plasma generation chamber is shaped like a rectangular waveguide whose width is narrowed in the direction of the electric field, the electric field of the microwaves guided therein becomes extremely strong.

そこで、この断面が細長い長方形状のプラズマ発生室に
ガスを導入し、更に少なくとも両側から適当な磁場を加
えることにより2強いプラズマが発生する。
Therefore, a strong plasma is generated by introducing gas into this plasma generation chamber, which has an elongated rectangular cross section, and applying an appropriate magnetic field from at least both sides.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の実施例について1図面を参照しながら説
明する。
An embodiment of the present invention will be described below with reference to one drawing.

第1図は本発明の一実施例を示す分解斜視図であり、第
2図はその組立時の横断面図である。同図において、方
形導波管11は、SiO2またはアルミナ等でできた真
空封止用の誘電体窓12及びゴム製のO−リング13を
介して導波管14に接続されている。更に、導波管14
は導波管15を介してプラズマ発生室16に接続されて
いる。ここで、導波管14は、そのマイクロ波の電界方
向(矢印E)の長さが方形導波管11と同じであるが、
導波管15からプラズマ発生室16まで伸長するに従い
1段階状にその長さが絞られており。
FIG. 1 is an exploded perspective view showing one embodiment of the present invention, and FIG. 2 is a cross-sectional view when assembled. In the figure, a rectangular waveguide 11 is connected to a waveguide 14 via a vacuum-sealing dielectric window 12 made of SiO2 or alumina, etc., and an O-ring 13 made of rubber. Furthermore, the waveguide 14
is connected to a plasma generation chamber 16 via a waveguide 15. Here, the waveguide 14 has the same length in the microwave electric field direction (arrow E) as the rectangular waveguide 11;
As it extends from the waveguide 15 to the plasma generation chamber 16, its length is narrowed in one step.

プラズマ発生室16のマイクロ波の進行方向に直交する
面に沿った断面形状は細長い長方形になっている。例え
ば、方形導波管11.14は2:1の縦横比をもち、導
波管14,15.プラズマ発生室16の横幅は1例えば
、順次55璽■、23mm。
The cross-sectional shape of the plasma generation chamber 16 along a plane perpendicular to the direction of propagation of microwaves is an elongated rectangle. For example, rectangular waveguide 11.14 has an aspect ratio of 2:1, and waveguides 14, 15 . The width of the plasma generation chamber 16 is, for example, 55 mm and 23 mm.

lQu+と絞られている。また、マイクロ波の進行方向
の長さは、導波管14.15がλ/4.プラズマ発生室
16がλ/2としである。
It is narrowed down to lQu+. Furthermore, the length of the microwave in the direction of propagation is λ/4. The plasma generation chamber 16 is λ/2.

更に、プラズマ発生室16の両側には、コイル18a及
び鉄心18bとからなる電磁石18と。
Further, on both sides of the plasma generation chamber 16, there are electromagnets 18 consisting of a coil 18a and an iron core 18b.

コイル19a及び鉄心19bからなる電磁石19とが互
いに対称に配設されている。鉄心18b。
Electromagnets 19 made up of a coil 19a and an iron core 19b are arranged symmetrically to each other. Iron core 18b.

19bはそれぞれコイル18a、19a内を通過し、そ
れらの両端がプラズマ発生室16と近接するまで折曲げ
ることにより、磁気抵抗を非常に小さくしている。この
ような位置構成により、プラズマ発生室16内部に、マ
イクロ波の進行方向と軸を同じ<シ、かつECR強度を
持つ磁場(第2図に破線で示す)を有効に印加すること
ができる。
19b passes through the coils 18a and 19a, respectively, and is bent until both ends approach the plasma generation chamber 16, thereby making the magnetic resistance extremely small. With this positional configuration, it is possible to effectively apply a magnetic field (shown by a broken line in FIG. 2) whose axis is the same as the direction of microwave propagation and which has an ECR strength inside the plasma generation chamber 16.

上記構成において、マグネトロン等のマイクロ波発生源
(不図示)で発生したマイクロ波は、方形導波管11に
よってTEI)lモードで伝播され。
In the above configuration, microwaves generated by a microwave generation source (not shown) such as a magnetron are propagated in the TEI mode by the rectangular waveguide 11.

誘電体窓12を通過して導波管14に導かれる。The light passes through the dielectric window 12 and is guided into the waveguide 14 .

ここで、誘電体窓12は、方形導波管11とプラズマ発
生室16とを隔てることにより、方形導波管11からプ
ラズマ発生室16内に不用な気体が入り込むのを防止し
ている。導波管14に導かれたマイクロ波は、導波管1
5を介してプラズマ発生室16に到達するが、この際に
マイクロ波の一部は導波管15およびプラズマ発生室1
6の各入口で反射する。しかし、導波管15の長さをλ
/4としているため、これらの反射波は互いに180度
の位相差で宙なり合う。すなわち、これらの反射波は互
いに打消し合うことになり、それだけマイクロ波の透過
率を高めている。このことは。
Here, the dielectric window 12 prevents unnecessary gas from entering the plasma generation chamber 16 from the rectangular waveguide 11 by separating the rectangular waveguide 11 and the plasma generation chamber 16. The microwave guided to the waveguide 14 is transferred to the waveguide 1
5, the microwaves reach the plasma generation chamber 16 through the waveguide 15 and the plasma generation chamber 1.
It is reflected at each entrance of 6. However, the length of the waveguide 15 is λ
/4, these reflected waves intersect with each other with a phase difference of 180 degrees. In other words, these reflected waves cancel each other out, thereby increasing the microwave transmittance. About this.

導波管14の長さをもλ/4としているため、誘電体窓
12及び導波管15の各入口における反射についても同
様に言える。また、プラズマ発生室16は、マイクロ波
の電界方向(矢印E)の幅を絞っであるため、そこに導
かれたマイクロ波の電界は非常に強くなる。このような
状態で、プラズマ発生室16内に不図示のガス管を介し
てガスを導入すると、放電が発生する。ここで、電磁石
18.19によってプラズマ発生室16内に上述した磁
場を印加すると、上記電界とこの磁場の相互作用により
ECR放電がおこり1強いプラズマが発生する。このプ
ラズマ中のイオンは、不図示の2イオンビーム引出し電
極系に適当な電圧を印加することにより、イオンビーム
として外部に取出すことができる。
Since the length of the waveguide 14 is also set to λ/4, the same can be said about the reflection at each entrance of the dielectric window 12 and the waveguide 15. Furthermore, since the plasma generation chamber 16 has a narrow width in the microwave electric field direction (arrow E), the electric field of the microwave guided therein becomes extremely strong. In this state, when gas is introduced into the plasma generation chamber 16 via a gas pipe (not shown), a discharge occurs. Here, when the above-mentioned magnetic field is applied within the plasma generation chamber 16 by the electromagnets 18 and 19, an ECR discharge occurs due to the interaction between the above-mentioned electric field and this magnetic field, and a strong plasma is generated. Ions in this plasma can be extracted to the outside as an ion beam by applying an appropriate voltage to a two-ion beam extraction electrode system (not shown).

尚1本実施例では、誘電体窓12を上記磁場から外れた
位置に設けたため、誘電体窓12がプラズマにさらされ
て汚れてしまうことがない。
In this embodiment, the dielectric window 12 is provided at a position away from the magnetic field, so that the dielectric window 12 is not exposed to plasma and becomes contaminated.

また、上記実施例では磁場発生器として2つの電磁石1
8.19をプラズマ発生室16の両側に配置したが、第
3図に示すようにプラズマ発生室16を1つのコイル2
0で取巻き、その両側にそれぞれ鉄心21.22を配設
してもよい。このようにすれば、鉄心21.22によっ
て磁気抵抗を減少させることができ、プラズマ発生室1
6に磁場を有効に印加することができる。
In addition, in the above embodiment, two electromagnets 1 are used as the magnetic field generator.
8.19 are placed on both sides of the plasma generation chamber 16, but as shown in FIG.
0, and iron cores 21 and 22 may be arranged on both sides thereof. In this way, the magnetic resistance can be reduced by the iron cores 21 and 22, and the plasma generation chamber 1
6 can be effectively applied with a magnetic field.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、マイクロ波導波管
の端で電界方向の幅を絞ることによりプラズマ発生室と
し、このプラズマ発生室の両側に磁場発生器を設けたの
で、磁場をプラズマ発生室にのみ有効に与えることがで
きる。従って、磁場発生器に必要とされる起磁力も非常
に小さくてよく、コイルが装置全体を取り巻く必要がな
いので。
As explained above, according to the present invention, a plasma generation chamber is created by narrowing the width in the electric field direction at the end of the microwave waveguide, and magnetic field generators are provided on both sides of this plasma generation chamber, so that the magnetic field can be used to generate plasma. It can only be given effectively to the room. Therefore, the magnetomotive force required for the magnetic field generator can also be very small, as there is no need for a coil to surround the entire device.

コイル等の軽量化および小型化、更には装置全体の軽量
化および小型化を図ることができる。
It is possible to reduce the weight and size of the coil and the like, and also to reduce the weight and size of the entire device.

また、磁場をプラズマ発生室に集中的に印加できるので
、誘電体窓をこの磁場外に設けることも容易である。こ
のようにすれば、誘電体窓がプラズマにさらされて汚れ
てしまうのを防止でき、その長寿命化を図ることができ
る。
Furthermore, since the magnetic field can be intensively applied to the plasma generation chamber, it is easy to provide a dielectric window outside the magnetic field. In this way, it is possible to prevent the dielectric window from being exposed to plasma and becoming dirty, and to extend its lifespan.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す分解斜視図。 第2図は上記実施例の横断面図。 第3図は本発明の他の実施例の要部を示す横断゛面図。 第4図は従来のプラズマ発生装置を示す分解斜視図であ
る。 11・・・方形導波管。 12・・・誘電体窓。 13・・・0−リング。 14.15・・・導波管。 16・・・プラズマ発生室。 18.19・・・電磁石。 18a、19a、20・・・コイル。 18b、19b、21.22・・・鉄心。 特許出願人   富 士 通 株式会社同   上  
 株式会社エリオニクス第3図
FIG. 1 is an exploded perspective view showing one embodiment of the present invention. FIG. 2 is a cross-sectional view of the above embodiment. FIG. 3 is a cross-sectional view showing the main parts of another embodiment of the present invention. FIG. 4 is an exploded perspective view showing a conventional plasma generator. 11... Rectangular waveguide. 12...Dielectric window. 13...0-ring. 14.15... Waveguide. 16...Plasma generation chamber. 18.19...Electromagnet. 18a, 19a, 20...coil. 18b, 19b, 21.22... Iron core. Patent applicant Fujitsu Ltd. Same as above
Elionix Co., Ltd. Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)マイクロ波を伝播するための方形導波管と、該方
形導波管の端部に設けられ、該方形導波管によって伝播
されたマイクロ波のエネルギーをガス体に吸収させてプ
ラズマを発生させるプラズマ発生室と、 該プラズマ発生室に前記マイクロ波の進行方向と軸が同
じでECR強度を持つ磁場を加える磁場発生器と、 前記方形導波管と前記プラズマ発生室との間に設けられ
、該プラズマ発生室を真空封止するための誘電体窓とを
具備するプラズマ発生装置において、 前記方形導波管の幅をマイクロ波の電界方向に絞り、前
記マイクロ波の進行方向に直交する面に沿った断面形状
が細長い長方形となる部位を設け、該部位を前記プラズ
マ発生室としたことと、前記磁場発生器を前記プラズマ
発生室の前記電界方向と直交する面の少なくとも一方の
外側に配設したこととを特徴とするプラズマ発生装置。
(1) A rectangular waveguide for propagating microwaves, which is installed at the end of the rectangular waveguide, and generates plasma by absorbing the energy of the microwave propagated by the rectangular waveguide into a gas body. a magnetic field generator that applies a magnetic field having the same axis as the traveling direction of the microwave and having an ECR strength to the plasma generation chamber; and a magnetic field generator provided between the rectangular waveguide and the plasma generation chamber. and a dielectric window for vacuum-sealing the plasma generation chamber, the width of the rectangular waveguide being narrowed in the direction of the electric field of the microwave and perpendicular to the direction of propagation of the microwave. A portion having an elongated rectangular cross-sectional shape along the surface is provided, and the portion is used as the plasma generation chamber, and the magnetic field generator is placed outside at least one of the surfaces of the plasma generation chamber perpendicular to the electric field direction. A plasma generating device characterized by:
(2)前記誘電体窓を前記磁場の外に設けたことを特徴
とする特許請求の範囲第1項記載のプラズマ発生装置。
(2) The plasma generating device according to claim 1, wherein the dielectric window is provided outside the magnetic field.
(3)前記磁場発生器は、互いに別体の第1及び第2の
磁場発生部材からなることを特徴とする特許請求の範囲
第1項記載のプラズマ発生装置。
(3) The plasma generating device according to claim 1, wherein the magnetic field generator is comprised of first and second magnetic field generating members that are separate from each other.
JP14293186A 1986-06-20 1986-06-20 Plasma generating device Granted JPS632237A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14293186A JPS632237A (en) 1986-06-20 1986-06-20 Plasma generating device
US07/063,972 US4788473A (en) 1986-06-20 1987-06-19 Plasma generating device with stepped waveguide transition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14293186A JPS632237A (en) 1986-06-20 1986-06-20 Plasma generating device

Publications (2)

Publication Number Publication Date
JPS632237A true JPS632237A (en) 1988-01-07
JPH0544774B2 JPH0544774B2 (en) 1993-07-07

Family

ID=15326971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14293186A Granted JPS632237A (en) 1986-06-20 1986-06-20 Plasma generating device

Country Status (1)

Country Link
JP (1) JPS632237A (en)

Also Published As

Publication number Publication date
JPH0544774B2 (en) 1993-07-07

Similar Documents

Publication Publication Date Title
Lieberman et al. Standing wave and skin effects in large-area, high-frequency capacitive discharges
US5162633A (en) Microwave-excited plasma processing apparatus
EP1391911B1 (en) Microwave plasma generator
JP2631650B2 (en) Vacuum equipment
JP4803179B2 (en) Surface wave excitation plasma processing apparatus and plasma processing method
JP4173679B2 (en) ECR plasma source and ECR plasma apparatus
KR940007215A (en) Microwave-Enhanced Sputtering Device
JPS632237A (en) Plasma generating device
JPS6337541A (en) Plasma generator
JPS63257166A (en) Microwave ion source
JP2003045698A (en) Plasma generator and plasma processing device
JPH01264141A (en) Ion source
JPS62210621A (en) Microwave plasma processing method and its device
JPS60243957A (en) Microwave ion source
JP3585512B2 (en) Microwave plasma generator
JP2581053B2 (en) Microwave ion source
JP2000174009A (en) Plasma processing device, semiconductor manufacture device and liquid crystal manufacture device
JPH0821476B2 (en) ECR plasma generator
JP3889906B2 (en) Microwave plasma processing equipment
JPS63288022A (en) Microwave plasma processor
JP3328586B2 (en) Airtight high-frequency window
JP3077124B2 (en) Plasma reactor
JP2001176698A (en) Plasma treatment device
JPH0268900A (en) Microwave plasma source
JPH0715838B2 (en) Plasma generator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees