JPS60243957A - Microwave ion source - Google Patents

Microwave ion source

Info

Publication number
JPS60243957A
JPS60243957A JP9873084A JP9873084A JPS60243957A JP S60243957 A JPS60243957 A JP S60243957A JP 9873084 A JP9873084 A JP 9873084A JP 9873084 A JP9873084 A JP 9873084A JP S60243957 A JPS60243957 A JP S60243957A
Authority
JP
Japan
Prior art keywords
microwave
discharge chamber
electrode
ion source
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9873084A
Other languages
Japanese (ja)
Inventor
Hidemi Koike
英巳 小池
Kuniyuki Sakumichi
訓之 作道
Katsumi Tokikuchi
克己 登木口
Osami Okada
岡田 修身
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9873084A priority Critical patent/JPS60243957A/en
Publication of JPS60243957A publication Critical patent/JPS60243957A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
    • H01J27/18Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation with an applied axial magnetic field

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To obtain a compact microwave ion source in which a solid-sample- evaporating furnace can be installed without increasing the outer diameter of the ion source by using a ridge electrode as the discharge electrode. CONSTITUTION:Microwaves produced in a microwave generator 1 is introduced into an electric discharge chamber 5, which is formed in a discharge electrode 4 and consists of a dielectric insulating member 5a, through a rectangular parallelepiped wave guide 2 and a microwave introduction flange 3 to produce a microwave electric field in the discharge chamber 5. Around the discharge chamber 5, a magnetic field prependicular to the microwave electric field is applied by means of a field generator 9. Next, gas or steam to be ionized is introduced into the discharge chamber 5 through a gas introduction tube 6 or a solid- sample-evaporating furnace 7 to produce plasma by the interaction between a microwave electric field and a magnetic field formed in the discharge chamber 5. After that, ion beams 21 are led out from the plasma by means of ion-beam- leading-out electrode systems 8a, 8b and 8c.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、mA級の大電流を引き出せるイオン源に係り
、特に固体試料蒸発炉を持つ大電流イオン打込み装置に
好適なマイクロ波イオン源に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an ion source capable of drawing a large current of mA class, and particularly to a microwave ion source suitable for a large current ion implantation device having a solid sample evaporation furnace.

〔発明の背景〕[Background of the invention]

従来の装置は、特開昭56−132754号公報に記載
のように、放電電極はリッジ電極を対称形に両側に設置
した構造(ダブルリッジ構造)になっており、固体試料
蒸発炉(またはガス導入管)の設置スペースもマイクロ
波立体回路の両側に対称形に形成されていた。固体試料
蒸発炉とガス導入管の設置スペースを比べた場合、前者
のほうがはるかに大きなスペースを必要とするが、この
点についてはイオン源全体を大きくするということでし
か対策できない構造になっていった。
As described in Japanese Patent Application Laid-Open No. 56-132754, the conventional device has a structure in which the discharge electrode has ridge electrodes installed symmetrically on both sides (double ridge structure), and a solid sample evaporation furnace (or gas The installation space for the inlet tubes was also formed symmetrically on both sides of the three-dimensional microwave circuit. When comparing the installation space of a solid sample evaporation furnace and a gas introduction tube, the former requires much more space, but this point can only be solved by increasing the size of the ion source as a whole. Ta.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、イオン源の外径を大きくすることなく
、コンパクトな形で、固体試料蒸発炉の設置スペースを
確保できるマイクロ波イオン源を提供することにある。
An object of the present invention is to provide a microwave ion source that is compact and can secure installation space for a solid sample evaporation furnace without increasing the outer diameter of the ion source.

〔発明の概要〕[Summary of the invention]

リッジ電極をマイクロ波回路的にみた場合、シングルリ
ッジとダブルリッジでその電極間に発生するマイクロ波
電界の強度や分布はほとんど同じなので、シングルリッ
ジ電極を用いても従来と同性能のマイクロ波イオン源を
作ることが可能である。さらに、シングルリッジの場合
、放電室とマイクロ波立体回路の中心軸をズラすことが
できるので、固体試料蒸発炉の設置スペースを従来以上
に確保することが可能となる。
When looking at a ridge electrode from a microwave circuit perspective, the strength and distribution of the microwave electric field generated between the single ridge and double ridge electrodes are almost the same, so even if a single ridge electrode is used, it will still be possible to achieve the same microwave ion performance as before. It is possible to create a source. Furthermore, in the case of a single ridge, the central axes of the discharge chamber and the three-dimensional microwave circuit can be shifted, so it is possible to secure more installation space for the solid sample evaporation furnace than before.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図、第2図により説明す
る。マイクロ波イオン源は、マイクロ波発生器1.矩形
導波管2、マイクロ波導入フランジ3、放電電極4、放
電室5、ガス導入管6、固体試料蒸発炉7、イオンビー
ム引き出し電極系8a、8b、8c、磁界発生器9、絶
縁碍子11で構成されている。第1図において、マイク
ロ波発生器1で発生したマイクロ波は、矩形導波管2、
マイクロ波導入フランジ3を経由して放電電極4内に形
成された放電室5に導入され、放電室5内にマイクロ波
電界を発生させる。さらに放電室付近には、磁界発生器
9(本実施例ではソレノイドコイル)により、マイクロ
波電界と直交する方向に磁界が印加される。この状態で
、イオン化すべきガスまたは蒸気を、ガス導入管6ある
いは固体試料蒸発炉7より放電室5内に導入し、放電室
5内に形成されているマイクロ波電界と磁界の相互作用
でプラズマを発生させ、イオンビーム引き出し電極系8
 a、 8 b+ 8 cにより、上記プラズマからイ
オンビーム21が引き出される。 一本実施例でのマイ
クロ波立体回路は、リッジ形放電電極以外の部分はすべ
て公知例(特開昭56−132754号)と同じものを
使用している。リッジ形放電電極の部分についても、マ
イクロ波回路としての最大寸法75X26(mm)、リ
ッジ電極の巾40 (am) 、リッジ電極部分の電極
間隔10 (mm)となっており、リッジの形状がダブ
ルからシングルに変えただけである。第2図は、第1図
のA−A断面を示したものであるが、この図からもわか
るように、放電室5とマイクロ波立体回路の中心は8 
(mm)ズしている。さらにリッジ電極のない側の面は
フラットになっているので、この面に固体試料蒸発炉7
を取付ければ、設置可能な最大容積は従来の2倍程度に
増やすことができる。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. The microwave ion source consists of a microwave generator 1. Rectangular waveguide 2, microwave introduction flange 3, discharge electrode 4, discharge chamber 5, gas introduction tube 6, solid sample evaporation furnace 7, ion beam extraction electrode system 8a, 8b, 8c, magnetic field generator 9, insulator 11 It consists of In FIG. 1, microwaves generated by a microwave generator 1 are transmitted through a rectangular waveguide 2,
The microwave is introduced into the discharge chamber 5 formed in the discharge electrode 4 via the microwave introduction flange 3, and a microwave electric field is generated within the discharge chamber 5. Further, near the discharge chamber, a magnetic field is applied by a magnetic field generator 9 (a solenoid coil in this embodiment) in a direction perpendicular to the microwave electric field. In this state, gas or vapor to be ionized is introduced into the discharge chamber 5 from the gas introduction tube 6 or the solid sample evaporation furnace 7, and plasma is generated by the interaction between the microwave electric field and magnetic field formed in the discharge chamber 5. The ion beam extraction electrode system 8
The ion beam 21 is extracted from the plasma by a, 8 b+ 8 c. In the microwave three-dimensional circuit in this embodiment, all parts other than the ridge-shaped discharge electrode are the same as the known example (Japanese Patent Application Laid-Open No. 132754/1983). Regarding the ridge-shaped discharge electrode part, the maximum dimensions as a microwave circuit are 75 x 26 (mm), the width of the ridge electrode is 40 (am), and the electrode spacing of the ridge electrode part is 10 (mm), and the ridge shape is double. I just changed it from single to single. FIG. 2 shows a cross section taken along the line A-A in FIG. 1, and as can be seen from this figure, the center of the discharge chamber 5 and microwave three-dimensional circuit is
(mm) Furthermore, since the side without the ridge electrode is flat, the solid sample evaporation furnace 7 is placed on this side.
By installing this, the maximum installable volume can be increased to about twice that of the conventional system.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、リッジ形電極のない側の空間を広げる
ことができるので、イオン源の外径を大きくすることな
く、さらにイオン源の性能を落とすことなく、大容量(
ダブルリッジの場合に比べ倍程度)の固体試料蒸発炉を
取付けることが可能となる。
According to the present invention, since the space on the side without the ridge-shaped electrode can be expanded, a large capacity (
This makes it possible to install a solid sample evaporation furnace (approximately double that of the double ridge).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に基づ〈実施例を示す図、第2図は第1
図のA、−A線断面図である。 ■・・・マイクロ波発生器、2甲矩形導波管、3・・・
マイクロ波導入フランジ、4・・・放電電極、訃・・放
電室、5a・・・放電電極内に放電室を形成するための
誘電体絶縁物、6・・・ガス導入管、7・・・固体試料
蒸発炉、8at 8by 8c・・・イオンビーム引き
出し電極系、9・・・磁界発生器、11・・・絶縁碍子
、21・・・イオンビーム。 第 ) (2) /
Figure 1 is a diagram showing an embodiment based on the present invention, and Figure 2 is a diagram showing an example of the invention.
It is a sectional view taken along the line A and -A in the figure. ■...Microwave generator, 2K rectangular waveguide, 3...
Microwave introduction flange, 4...Discharge electrode, end...Discharge chamber, 5a...Dielectric insulator for forming a discharge chamber in the discharge electrode, 6...Gas introduction tube, 7... Solid sample evaporation furnace, 8at 8by 8c... Ion beam extraction electrode system, 9... Magnetic field generator, 11... Insulator, 21... Ion beam. Part ) (2) /

Claims (1)

【特許請求の範囲】[Claims] 1、磁場中のマイクロ波放電を用いてプラズマを発生さ
せ、そこからイオンビームを引き出す型のマイクロ波イ
オン源において、放電電極として片側だけのリッジ電極
を用いたことを特徴とするマイクロ波イオン源。
1. A microwave ion source that generates plasma using microwave discharge in a magnetic field and extracts an ion beam from it, characterized in that a ridge electrode on only one side is used as a discharge electrode. .
JP9873084A 1984-05-18 1984-05-18 Microwave ion source Pending JPS60243957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9873084A JPS60243957A (en) 1984-05-18 1984-05-18 Microwave ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9873084A JPS60243957A (en) 1984-05-18 1984-05-18 Microwave ion source

Publications (1)

Publication Number Publication Date
JPS60243957A true JPS60243957A (en) 1985-12-03

Family

ID=14227633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9873084A Pending JPS60243957A (en) 1984-05-18 1984-05-18 Microwave ion source

Country Status (1)

Country Link
JP (1) JPS60243957A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126198A (en) * 1986-11-17 1988-05-30 日本電信電話株式会社 Plasma source employing microwave excitation
JPS63126197A (en) * 1986-11-17 1988-05-30 日本電信電話株式会社 Plasma source employing microwave excitation
US6927148B2 (en) 2002-07-15 2005-08-09 Applied Materials, Inc. Ion implantation method and method for manufacturing SOI wafer
US7064049B2 (en) 2002-07-31 2006-06-20 Applied Materials, Inv. Ion implantation method, SOI wafer manufacturing method and ion implantation system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126198A (en) * 1986-11-17 1988-05-30 日本電信電話株式会社 Plasma source employing microwave excitation
JPS63126197A (en) * 1986-11-17 1988-05-30 日本電信電話株式会社 Plasma source employing microwave excitation
US6927148B2 (en) 2002-07-15 2005-08-09 Applied Materials, Inc. Ion implantation method and method for manufacturing SOI wafer
US7064049B2 (en) 2002-07-31 2006-06-20 Applied Materials, Inv. Ion implantation method, SOI wafer manufacturing method and ion implantation system

Similar Documents

Publication Publication Date Title
JP2776855B2 (en) High frequency ion source
EP0054621B1 (en) High temperature ion beam source
SU682150A3 (en) Ionic motor
KR940010844B1 (en) Ion source
EP0334184A2 (en) Microwave ion source
KR890013820A (en) Membrane Forming Device and Ion Source
GB2146836A (en) A source of ions with at least two ionization chambers, in particular for forming chemically reactive ion beams
JP2000054951A (en) Electrostatic power unit
US4608513A (en) Dual filament ion source with improved beam characteristics
JP2006513537A (en) Ion accelerator
JPS60243957A (en) Microwave ion source
US4794298A (en) Ion source
JPH088159B2 (en) Plasma generator
RU2151438C1 (en) Ribbon-beam ion plasma source (design versions)
JPS60243953A (en) Coaxial microwave ion source
US4846953A (en) Metal ion source
JPH0353402Y2 (en)
JPS62140339A (en) Microwave ion source
JP2581053B2 (en) Microwave ion source
JPS63171954U (en)
JPS636725A (en) Gyrotron
JPS60243952A (en) Microwave ion source
JP3585512B2 (en) Microwave plasma generator
RU2233505C2 (en) Gas-discharge ion source
JPS6271147A (en) Ion source with evaporation furnace