JPH0353402Y2 - - Google Patents

Info

Publication number
JPH0353402Y2
JPH0353402Y2 JP1987058775U JP5877587U JPH0353402Y2 JP H0353402 Y2 JPH0353402 Y2 JP H0353402Y2 JP 1987058775 U JP1987058775 U JP 1987058775U JP 5877587 U JP5877587 U JP 5877587U JP H0353402 Y2 JPH0353402 Y2 JP H0353402Y2
Authority
JP
Japan
Prior art keywords
slit
extraction electrode
extraction
electrode
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1987058775U
Other languages
Japanese (ja)
Other versions
JPS63165750U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987058775U priority Critical patent/JPH0353402Y2/ja
Publication of JPS63165750U publication Critical patent/JPS63165750U/ja
Application granted granted Critical
Publication of JPH0353402Y2 publication Critical patent/JPH0353402Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、例えばイオン注入用装置に好適なイ
オンビーム発生装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ion beam generator suitable for, for example, an ion implantation device.

〔従来の技術とその問題点〕[Conventional technology and its problems]

周知のごとく、半導体製造技術の一つにイオン
注入技術があり、かかるイオン注入技術は半導体
基板に硼素、リン、砒素等の不純物原子をイオン
化してこれに高いエネルギーを与え半導体基板に
打ち込み、これらの不純物をドービングするもの
である。
As is well known, one of the semiconductor manufacturing technologies is ion implantation technology, and this ion implantation technology ionizes impurity atoms such as boron, phosphorus, arsenic, etc. into a semiconductor substrate, gives them high energy, and implants them into the semiconductor substrate. This method involves doping with impurities.

すなわち、かかるイオン注入用装置は、周知の
ごとく、1)イオン源系A、2)引き出し電極系
B、3)質量分析系、4)収束偏向系、5)試量
系の5の要素から構成されている。したがつて、
先ず、前記アノードを兼ねたイオン源系Aにおい
て、生成されたイオンは、イオン源系Aと引き出
し電極Bの間で印加された高電圧によつて引き出
され、後段の質量分析系に導入される。
That is, as is well known, such an ion implantation device is composed of five elements: 1) ion source system A, 2) extraction electrode system B, 3) mass spectrometry system, 4) convergence/deflection system, and 5) measurement system. has been done. Therefore,
First, in the ion source system A that also serves as the anode, the generated ions are extracted by a high voltage applied between the ion source system A and the extraction electrode B, and introduced into the subsequent mass spectrometry system. .

一方、周知のごとく、一般のイオン源系には、
種類が多いが(特公昭47−15880号公報参照)、帯
状の大イオン電流ビームを生成する、いわゆるフ
リーマン型イオン源系が半導体基板のイオン注入
用として最も広く用いられている。
On the other hand, as is well known, general ion source systems include
Although there are many types (see Japanese Patent Publication No. 47-15880), the so-called Freeman ion source system, which generates a band-shaped large ion current beam, is most widely used for ion implantation into semiconductor substrates.

かかるイオン源系Aは、第4図および第5図に
示すごとく、アノードを兼ねたアークチヤンバー
1の側壁に設けられたイオン引き出しスリツトの
すぐ後で、かつ、円筒状もしくは角筒状のアーク
チヤンバー1の軸芯からずれた位置に、棒状のフ
イラメント5(直径1〜2mm)が設置され、ま
た、外部より該フイラメント5に平行な方向に弱
い磁界をかけてアーク放電が行われている。な
お、6はプラズマ、7はイオンビーム、8はガス
導入孔、9はスリツト開口部を示す。
As shown in FIGS. 4 and 5, the ion source system A is located immediately after an ion extraction slit provided on the side wall of an arc chamber 1 that also serves as an anode, and is connected to a cylindrical or rectangular cylindrical arc. A rod-shaped filament 5 (diameter 1 to 2 mm) is installed at a position offset from the axis of the chamber 1, and arc discharge is performed by applying a weak magnetic field from the outside in a direction parallel to the filament 5. . In addition, 6 is a plasma, 7 is an ion beam, 8 is a gas introduction hole, and 9 is a slit opening.

また、3は加速用の引き出し電極、4は減速用
の接地電極で、これらで引き出し電極系Bを構成
している。
Further, 3 is an extraction electrode for acceleration, and 4 is a ground electrode for deceleration, and these constitute an extraction electrode system B.

ところで、前記のごとく、イオン源系Aで生成
されたイオンは正の電荷をもつていることから、
イオンビーム7が発散して長いビーム輸送系(図
示せず)を通じて当該イオンビーム7を伝達する
ことが難しい。
By the way, as mentioned above, since the ions generated in the ion source system A have a positive charge,
Since the ion beam 7 diverges, it is difficult to transmit the ion beam 7 through a long beam transport system (not shown).

そのため、前記のフリーマン型のイオン源系A
では、イオンビーム7の発散はイオンビーム7の
内に電子を取り込むことで抑えることができる、
という原理にもとづいて、例えばイオン源系Aで
20〜30kv、加速電極(3)で1.5〜2.0kv、減速電極(4)
で接地電位とするごとく、引き出し電極系Bに負
電圧を印加し、空間電荷によるイオンビーム7の
拡がりを防止するとともに、下流の電子が引き出
しスリツト2に逆流するのを防止してイオンビー
ム7中に多くの電子を蓄え、イオンビーム7の発
散を抑えている。
Therefore, the aforementioned Freeman type ion source system A
Then, the divergence of the ion beam 7 can be suppressed by incorporating electrons into the ion beam 7.
Based on this principle, for example, in ion source system A,
20-30kv, accelerating electrode (3) 1.5-2.0kv, decelerating electrode (4)
A negative voltage is applied to the extraction electrode system B so as to set it to the ground potential at The ion beam 7 stores many electrons and suppresses the divergence of the ion beam 7.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかしながら、かかる従来の引き出し電極系B
では、引き出しスリツト2と引き出し電極3を近
接させることにより、引き出しスリツト2と引き
出し電極3間の放電を抑え、引き出しスリツト2
のスリツト開口部9の周辺のみで電界が集中する
ようにするため、引き出し電極3を引き出しスリ
ツト2側へ突出させているものの、接地電極4を
平板状にしているため、引き出し電極3と接地電
極4との間隔C′が広く、この間隔C′における空間
電荷によるイオンビーム7が拡がりが大きく、し
たがつて、かかる間隔C′を出たときの発散角Φが
大きいと、例えば質量分析系や試料系等の後段へ
のイオンビーム7の効率的輸送が難しい。
However, such conventional extraction electrode system B
Now, by bringing the extraction slit 2 and the extraction electrode 3 close together, the discharge between the extraction slit 2 and the extraction electrode 3 is suppressed, and the extraction slit 2
In order to make the electric field concentrate only around the slit opening 9, the extraction electrode 3 is made to protrude toward the extraction slit 2 side, but since the ground electrode 4 is made into a flat plate, the extraction electrode 3 and the ground electrode 4 is wide, and the ion beam 7 spreads widely due to the space charge in this distance C′. Therefore, if the divergence angle Φ when exiting the distance C′ is large, for example, the mass spectrometry system or It is difficult to efficiently transport the ion beam 7 to a subsequent stage such as a sample system.

また、前記の引き出しスリツト2は、スリツト
前面溝10が深く、低エネルギーのビームの引き
出しでは、引き出しスリツト2とその開口部9、
つまりプラズマ境界面での電界を十分強くするこ
とができず、大量のイオンを生成するのに十分な
高温のプラズマ6を適切な位置に閉じ込められな
い。もつとも、プラズマ温度をあげるとプラズマ
6が、引き出しスリツト2から吹き出し安定した
イオンビーム7が得られない。
In addition, the above-mentioned extraction slit 2 has a deep slit front groove 10, and when extracting a low energy beam, the extraction slit 2 and its opening 9,
In other words, the electric field at the plasma boundary cannot be made sufficiently strong, and the plasma 6, which is hot enough to generate a large amount of ions, cannot be confined in an appropriate position. However, if the plasma temperature is increased, the plasma 6 will blow out from the extraction slit 2, making it impossible to obtain a stable ion beam 7.

更に、前記の引き出しスリツト2では、スリツ
ト前面溝10が深いことから、プラズマ温度を低
くせざるを得なく、その結果、引き出せるイオン
量が少なく、必要なイオンビーム7が出ない。
Furthermore, in the extraction slit 2, since the slit front groove 10 is deep, the plasma temperature has to be lowered, and as a result, the amount of ions that can be extracted is small and the necessary ion beam 7 cannot be emitted.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本考案は、従来例のかかる問題点を全面
的に解決するために創作されたもので、その要旨
とするところは、アノードを兼ねたアークチヤン
バー、該アークチヤンバーの側壁に設けた引き出
しスリツト、該引き出しスリツトの近傍に設けた
フイラメントなどからなるイオン源系の前面部
と、該引き出しスリツトの前面に設けられた引き
出し電極、該引き出し電極の前面に設けられた接
地電極からなる引き出し電極系と、を備えた3電
極型イオンビーム発生装置において、前記引き出
し電極をドーム状に形成し、該引き出し電極のイ
オンビーム通過部肉厚を薄くするとともに、前記
接地電極を該引き出し電極へ突出させ、その突出
部を該引き出し電極のドーム状内部に入れるよう
にしたイオンビーム発生装置にある。
Therefore, the present invention was created to completely solve these problems of the conventional example, and its gist is to create an arc chamber that also serves as an anode, and a drawer provided on the side wall of the arc chamber. An extraction electrode system consisting of a front part of an ion source system consisting of a slit, a filament provided in the vicinity of the extraction slit, an extraction electrode provided in front of the extraction slit, and a ground electrode provided in front of the extraction electrode. In the three-electrode ion beam generator, the extraction electrode is formed into a dome shape, the thickness of the ion beam passing portion of the extraction electrode is made thin, and the ground electrode is made to protrude into the extraction electrode, There is an ion beam generator in which the protrusion is inserted into the dome-shaped interior of the extraction electrode.

〔実施例〕〔Example〕

本考案の構成を作用とともに、添付図面に示す
実施例により詳細に説明する。
The structure and operation of the present invention will be explained in detail with reference to embodiments shown in the accompanying drawings.

本実施例は半導体基板のイオン注入用装置に好
適なイオン源系Aおよび引き出し電極系Bであつ
て、第1図および第2において、1はアノードを
兼ねたアークチヤンバー、2は引き出しスリツ
ト、5はフイラメントで、これらでイオン発生装
置のイオン源系Aの前面部を構成している。ま
た、3は引き出し電極、4は接地電極で、これら
で引き出し電極系Bを構成している。また、ガス
導入孔8からアークチヤンバー1に供給された、
例えば3フツ化硼素などのイオン化用のガスは、
高温に熱せられたフイラメント5から出る熱電子
によりイオン化され、プラズマ6となる。したが
つて、イオンはこのプラズマ6から引き出しスリ
ツト2とスリツト電極3との間に形成される引き
出し電界によつてスリツト開口部9を通じて引き
出される。
This embodiment is an ion source system A and an extraction electrode system B suitable for an ion implantation device for semiconductor substrates, and in FIGS. 1 and 2, 1 is an arc chamber that also serves as an anode, 2 is an extraction slit, 5 is a filament, which constitutes the front part of the ion source system A of the ion generator. Further, 3 is an extraction electrode, and 4 is a ground electrode, which constitute an extraction electrode system B. In addition, gas supplied to the arc chamber 1 from the gas introduction hole 8,
For example, ionizing gas such as boron trifluoride is
It is ionized by thermionic electrons emitted from the filament 5 heated to a high temperature, and becomes plasma 6. Therefore, ions are extracted from the plasma 6 through the slit opening 9 by the extraction electric field formed between the extraction slit 2 and the slit electrode 3.

ここにおいて、本実施例では、引き出し電極3
をドーム状に形成し、該引き出し電極3のイオン
ビーム通過部の肉厚を薄くするとともに、接地電
極4を引き出し電極3側へ突出させ、その突出部
を引き出し電極3の内部に入れ子状に構成し、両
電極3,4間の間隙Cを従来のものより1/3程
度に縮めている。
Here, in this embodiment, the extraction electrode 3
is formed into a dome shape, the wall thickness of the ion beam passage part of the extraction electrode 3 is made thin, and the ground electrode 4 is made to protrude toward the extraction electrode 3 side, and the protruding part is configured to be nested inside the extraction electrode 3. However, the gap C between both electrodes 3 and 4 is reduced to about ⅓ compared to the conventional one.

また、本実施例では、スリツト前面溝10を浅
くして、低エネルギーでもスリツト開口部9で十
分な電界が得られるようにし、プラズマ境界面を
安定に保持し、良質のイオンを多量に安定して引
き出すことができるようにしている。
In addition, in this embodiment, the slit front groove 10 is made shallow so that a sufficient electric field can be obtained at the slit opening 9 even at low energy, thereby stably maintaining the plasma boundary surface and stably producing a large amount of high-quality ions. You can pull it out.

なお、スリツト前面溝10を浅くするために、
引き出しスリツト2を薄くしても同等の効果が得
られることを確認できたが、引き出しスリツト2
が薄い場合、プラズマ6から受ける熱の伝導性が
低下してスリツト開口部9が高温となり損耗が大
となる。
In addition, in order to make the slit front groove 10 shallower,
It was confirmed that the same effect could be obtained even if the drawer slit 2 was made thinner, but the drawer slit 2
If it is thin, the conductivity of heat received from the plasma 6 will be reduced, and the slit opening 9 will be at a high temperature, resulting in increased wear and tear.

そのため、本実施例の他の変形例として、引き
出しスリツト2のフイラメント5側を削除して凹
部11を形成することにより、引き出しスリツト
2の肉厚tを十分確保し、熱の伝導性を良くし、
スリツト開口部9の過加熱による損耗を防いでい
る。なお、かかる場合、スリツト前面溝10を第
1図のごとく円弧状にせず、第3図のV字状、ま
たは折れ線状にしてもよい。
Therefore, as another modification of this embodiment, the filament 5 side of the drawer slit 2 is deleted to form the recess 11, thereby ensuring a sufficient wall thickness t of the drawer slit 2 and improving thermal conductivity. ,
This prevents wear and tear of the slit opening 9 due to overheating. In this case, the slit front groove 10 may not be formed into an arc shape as shown in FIG. 1, but may be formed into a V-shape as shown in FIG. 3 or a broken line shape.

更に、スリツト開口部9の細長方向には、従来
より、引き出しスリツト2、引き出し電極3に同
一の曲線半径をもたせて、細長方向のビームの収
束性をあげているが、本実施例では、第1図に示
すごとく、引き出しスリツト2の曲率半径R1
引き出し電極3の曲率半径R2よりも大きくし、
引き出しスリツト2と引き出し電極3とを近接さ
せたときでも、その上下に間隙が形成できるよう
にして、両者2,3間の放電を防止している。
Furthermore, in the elongated direction of the slit opening 9, the extraction slit 2 and the extraction electrode 3 are conventionally given the same curve radius to improve the convergence of the beam in the elongated direction. As shown in Figure 1, the radius of curvature R 1 of the extraction slit 2 is made larger than the radius of curvature R 2 of the extraction electrode 3,
Even when the extraction slit 2 and the extraction electrode 3 are brought close to each other, a gap can be formed above and below them to prevent discharge between them 2 and 3.

なお、引き出し電極3の開口幅L1、接地電極
4の開口幅L2,L3、引き出し電極3と接地電極
4との距離C、引き出しスリツト開口部9の深さ
T、引き出しスリツト2の曲率半径R1、引き出
し電極の曲率半径R2の計7個の要素の組合せが
あるが、本考案ではこれらを適宜選定した組合せ
により、各ビームの増大などの調整ができるもの
である。
Note that the opening width L 1 of the extraction electrode 3, the opening widths L 2 and L 3 of the ground electrode 4, the distance C between the extraction electrode 3 and the ground electrode 4, the depth T of the extraction slit opening 9, and the curvature of the extraction slit 2. There are a total of seven combinations of elements, including the radius R 1 and the radius of curvature R 2 of the extraction electrode, and in the present invention, the increase of each beam can be adjusted by appropriately selecting a combination of these elements.

なお、本実施例は半導体基板に対するイオン注
入用のイオン源系Aおよびイオン引き出し電極系
Bで説明したが、本考案はこれに限らず、同位体
分離装置にも適用でき、更には、イオン加速器に
も適用できるものである。
Although this embodiment has been explained using an ion source system A and an ion extraction electrode system B for ion implantation into a semiconductor substrate, the present invention is not limited to this, and can be applied to an isotope separation device, and furthermore, it can be applied to an ion accelerator. It can also be applied to

〔考案の効果〕[Effect of idea]

本考案によれば、引き出し電極と接地電極との
間隙を縮めることができ、ひいては、引き出しス
リツトと接地電極との間隙を縮めることができ、
かかる間隙における空間電荷によるイオンビーム
の発散が防止でき、その結果イオンビームの効率
的な輸送ができる。
According to the present invention, the gap between the extraction electrode and the ground electrode can be reduced, and in turn, the gap between the extraction slit and the ground electrode can be reduced.
Divergence of the ion beam due to space charges in such a gap can be prevented, and as a result, the ion beam can be transported efficiently.

また、引き出しスリツトの耐久性を損わず、前
面溝を浅くすることができ、低エネルギーでも安
定な高電流のイオンビームをイオン源系のプラズ
マから引き出すことができる。
Furthermore, the front groove can be made shallow without impairing the durability of the extraction slit, and a stable high-current ion beam can be extracted from the plasma of the ion source system even at low energy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例の縦断面図、第2図は
第1図のX〜X断面図、第3図は第1図の変形
例、第4図は従来例の縦断面図、第5図は第4図
のY〜Y断面図を示す。 1……アークチヤンバー、2……引き出しスリ
ツト、3……引き出し電極、4……接地電極、5
……フイラメント。
FIG. 1 is a longitudinal sectional view of an embodiment of the present invention, FIG. 2 is a sectional view taken from XX of FIG. 1, FIG. 3 is a modification of FIG. 1, and FIG. 4 is a longitudinal sectional view of a conventional example. FIG. 5 shows a YY cross-sectional view of FIG. 4. 1...Arc chamber, 2...Extraction slit, 3...Extraction electrode, 4...Grounding electrode, 5
...Filament.

Claims (1)

【実用新案登録請求の範囲】 アノードを兼ねたアークチヤンバー、該アーク
チヤンバーの側壁に設けた引き出しスリツト、該
引き出しスリツトの近傍に設けたフイラメントな
どからなるイオン源系の前面部と、 該引き出しスリツトの前面に設けられた引き出
し電極、該引き出し電極の前面に設けられた接地
電極からなる引き出し電極系と、 を備えた3電極型イオンビーム発生装置におい
て、 前記引き出し電極をドーム状に形成し、該引き
出し電極のイオンビーム通過部肉厚を薄くすると
ともに、前記接地電極を該引き出し電極へ突出さ
せ、その突出部を該引き出し電極のドーム状内部
に入れるようにしたイオンビーム発生装置。
[Scope of Claim for Utility Model Registration] A front part of an ion source system consisting of an arc chamber that also serves as an anode, a drawer slit provided on the side wall of the arc chamber, a filament provided near the drawer slit, etc., and the drawer. A three-electrode ion beam generator comprising: an extraction electrode provided in front of a slit; and an extraction electrode system consisting of a ground electrode provided in front of the extraction electrode, wherein the extraction electrode is formed in a dome shape; An ion beam generating device in which the thickness of the ion beam passing portion of the extraction electrode is reduced, the ground electrode is made to protrude toward the extraction electrode, and the protruding portion is inserted into the dome-shaped interior of the extraction electrode.
JP1987058775U 1987-04-20 1987-04-20 Expired JPH0353402Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987058775U JPH0353402Y2 (en) 1987-04-20 1987-04-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987058775U JPH0353402Y2 (en) 1987-04-20 1987-04-20

Publications (2)

Publication Number Publication Date
JPS63165750U JPS63165750U (en) 1988-10-28
JPH0353402Y2 true JPH0353402Y2 (en) 1991-11-21

Family

ID=30889648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987058775U Expired JPH0353402Y2 (en) 1987-04-20 1987-04-20

Country Status (1)

Country Link
JP (1) JPH0353402Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9281160B2 (en) 2013-05-31 2016-03-08 Sumitomo Heavy Industries Ion Technology Co., Ltd. Insulation structure and insulation method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005038821A2 (en) * 2003-10-17 2005-04-28 Fei Company Charged particle extraction device and method of design there for
JP6388520B2 (en) * 2014-10-17 2018-09-12 住友重機械イオンテクノロジー株式会社 Beam extraction slit structure, ion source, and ion implantation apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PROCEEDINGS OF THE INTERNATIONAL ION ENGINEERING CONGRESS=1983 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9281160B2 (en) 2013-05-31 2016-03-08 Sumitomo Heavy Industries Ion Technology Co., Ltd. Insulation structure and insulation method

Also Published As

Publication number Publication date
JPS63165750U (en) 1988-10-28

Similar Documents

Publication Publication Date Title
EP0286132B1 (en) Plasma generating apparatus
US3479545A (en) Surface ionization apparatus and electrode means for accelerating the ions in a curved path
US4163151A (en) Separated ion source
JPH0654644B2 (en) Ion source
TW201443965A (en) An ion source
US4608513A (en) Dual filament ion source with improved beam characteristics
US6184625B1 (en) Ion beam processing apparatus for processing work piece with ion beam being neutralized uniformly
US20020125829A1 (en) Double chamber ion implantation system
JP2859479B2 (en) Ion source for producing boron ions
US6501081B1 (en) Electron flood apparatus for neutralizing charge build up on a substrate during ion implantation
JPH0353402Y2 (en)
US4939425A (en) Four-electrode ion source
JPH10275566A (en) Ion source
JPH069040U (en) Ion source
JPH02121233A (en) Ion source
JP2000048734A (en) High frequency ion source
JP3341497B2 (en) High frequency type charged particle accelerator
KR100610766B1 (en) Ion Formation Chamber
KR200371647Y1 (en) Ion Formation Chamber
JP2671219B2 (en) Fast atom beam source
TW202338884A (en) Toroidal motion enhanced ion source
JPH01161699A (en) High-speed atomic beam source
JPH02183940A (en) Ion beam device
JP3265988B2 (en) Ion irradiation equipment
KR0177401B1 (en) Ion implant apparatus of manufacturing semiconductor device