JPS63223788A - Drive ic for active matrix display device - Google Patents

Drive ic for active matrix display device

Info

Publication number
JPS63223788A
JPS63223788A JP5803487A JP5803487A JPS63223788A JP S63223788 A JPS63223788 A JP S63223788A JP 5803487 A JP5803487 A JP 5803487A JP 5803487 A JP5803487 A JP 5803487A JP S63223788 A JPS63223788 A JP S63223788A
Authority
JP
Japan
Prior art keywords
driving
display device
polycrystalline
film
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5803487A
Other languages
Japanese (ja)
Other versions
JPH0752329B2 (en
Inventor
若海 弘夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62058034A priority Critical patent/JPH0752329B2/en
Publication of JPS63223788A publication Critical patent/JPS63223788A/en
Publication of JPH0752329B2 publication Critical patent/JPH0752329B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1229Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with different crystal properties within a device or between different devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、LC,EL、VF等の表示装置をアクティブ
−=rトvックス方式で駆動するための駆動ICに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a drive IC for driving display devices such as LC, EL, VF, etc. in an active-=r-tox mode.

〔従来の技術〕[Conventional technology]

近年、LC,EL等の表示装置が大面積化するのに伴り
て駆動回路をアクティブマトリックスTPTで駆動し、
高画質の表示を実現しようという方式が検討され始めて
いる。この方式では表示装置の各セルに対応して薄膜ト
ランジスタ(、以下、TPTと称す)を設けるが、この
TFTt−X−Yマトリックスで選択するためにはX、
Yの各電極線を駆動するためのドライバが必要である。
In recent years, as display devices such as LC and EL have become larger in area, the drive circuit is driven by an active matrix TPT,
Studies have begun to consider methods to achieve high-quality display. In this method, a thin film transistor (hereinafter referred to as TPT) is provided corresponding to each cell of the display device, but in order to select in this TFTt-X-Y matrix,
A driver is required to drive each Y electrode line.

最近、このドライバをTPTと共にガラスや石英等の基
板上KIC化する動きも見られる。
Recently, there has been a movement to use this driver together with TPT as a KIC on a substrate such as glass or quartz.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来検討されているICはガラス等の基板上に
設けた多結晶aimをTPT及びドライ、<(TPTを
駆動する回路)を構成するトランジスタの活性層として
共用することによシ構成されている。一方、パネルが大
容量になると、データドライバとして高速性能(高移動
度)が要求されるようになるため、多結晶8i膜の質を
レーザアニール等の手法で単結晶に近いレベルまで向上
させる必要が生じる。しかし、現状ではこのような良質
な膜を結晶性のばらつきを小さく抑え且つ大面積にわた
って作ることは#1とんど困難である。
However, conventionally considered ICs are constructed by using a polycrystalline AIM provided on a substrate such as glass as the active layer of the transistor that constitutes the TPT and the dry transistor (the circuit that drives the TPT). There is. On the other hand, as panels increase in capacity, high-speed performance (high mobility) is required as a data driver, so it is necessary to improve the quality of the polycrystalline 8i film to a level close to that of single crystal using methods such as laser annealing. occurs. However, at present, it is extremely difficult to produce such a high-quality film over a large area while minimizing variations in crystallinity.

仮に作成し得九としても、異なるサイズのグレインが広
い面内に形成され(結晶粒界の数が場所によシ大きく異
なる多結晶Si膜が形成される)、キャリア移動度のは
らつきやリーク電流のI3″う2Sの大きいTPTが形
成されるようになる。特に、スイッチングトランジスタ
を形成するTPTの特性としてリーク電流の)ずう7s
が大きいことは、表示素子(LC等)に印加される実効
電圧のはらつきをもたらすもので、コントラストが場所
によシ大きく違ってみえたシ或いはオフセット電圧のば
らつきによシ画素の劣化特性にばらつきを生じたシする
。従って、駆動ICの歩留シは大幅に低下し、現実に使
えるICを得ることがほとんど不可能になる。
Even if it could be made, grains of different sizes would be formed in a wide plane (a polycrystalline Si film would be formed in which the number of grain boundaries varies greatly depending on the location), resulting in variations in carrier mobility and leakage. A TPT with a large current I3'' and 2S is formed.In particular, a characteristic of a TPT forming a switching transistor is that the leakage current is 7s).
A large value causes fluctuations in the effective voltage applied to the display element (LC, etc.), causing the contrast to appear to vary greatly from place to place, or to the deterioration characteristics of pixels due to variations in offset voltage. If there is any variation. Therefore, the yield of drive ICs is significantly reduced, making it almost impossible to obtain ICs that can actually be used.

本発明の目的はかかA従来の欠点を除去し、高性能且つ
大容量表示素子を駆動可能にしたアクティブマ) IJ
ックス表示装置の駆動ICを提供することにある。
The purpose of the present invention is to eliminate the drawbacks of the conventional active material (IJ) and to make it possible to drive high-performance and large-capacity display elements.
An object of the present invention is to provide a driving IC for a box display device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はガラス基板上に一体化形され、 X−Yマトリ
ックス状に配列されたアクティブマトリックス表示装置
の駆動ICにおいて、各表示セルに対応して薄膜トラン
ジスタ及びこの薄膜トランジスタを駆動するための走査
側ドライバをアモルファス8i活性層上に形成し、且つ
前記薄膜トランジスタを駆動するためのデータ側ドライ
バ及びサンプルホールド回路を多結晶Si活性層上に形
成するように構成される。
The present invention provides a driving IC for an active matrix display device integrated on a glass substrate and arranged in an X-Y matrix, in which a thin film transistor and a scanning side driver for driving the thin film transistor are provided corresponding to each display cell. It is formed on the amorphous 8i active layer, and the data side driver and sample hold circuit for driving the thin film transistor are formed on the polycrystalline Si active layer.

〔原理・作用〕[Principle/effect]

本発明では第一に高速のスイッチングスピードが要求さ
れるデータ側ドライバ及びサンプルホールド回路を多結
晶Si活性層上に形成する。また第二に、100kHz
以下の低速で動作すれはよいスイッチング用TPTや走
査側ドライバをアモルファスSi活性層上に形成する。
In the present invention, first, a data-side driver and a sample-and-hold circuit, which require high switching speed, are formed on a polycrystalline Si active layer. Second, 100kHz
A switching TPT and a scanning side driver that can operate at the following low speeds are formed on the amorphous Si active layer.

かかる構成によシ、移動度の大きな多結晶Siは線状に
細長く形成されればよいのでその占有面積は小さくなる
With such a configuration, the polycrystalline Si having high mobility can be formed into a long and thin linear shape, so that the area occupied by the polycrystalline Si can be reduced.

従って、例えばArレーザアニールやエキシマレーザア
ニール等で再結晶化を行って良質の結晶性の膜を線状領
域全体にわたって比較的均一性良く(グレインサイズの
ばらつきも少く)形成することができる。これは膜形成
領域が小さいため、再結晶前の多結晶Siあるいはアそ
ルファス84膜に入る欠陥やボイドの発生率が小さいた
めである。
Therefore, by performing recrystallization using, for example, Ar laser annealing or excimer laser annealing, a high-quality crystalline film can be formed with relatively good uniformity (with little variation in grain size) over the entire linear region. This is because the film formation area is small, so the incidence of defects and voids in the polycrystalline Si or amorphous 84 film before recrystallization is small.

このように均一な高品質膜が得られれは、トランジスタ
の特性(移動度やリーク電流)はらつきも少く、高速の
データドライドを歩留夛よ〈得ることができる。また、
一方のT F ’l’や走査側ドライバは大面積化に適
したアモルファスSiで構成されるので、低リーク電流
、高歩留りの特性を保持することができる。即ち、駆動
IC全体としても高歩留シなICが実現されるようにな
る。また、レーザアニール等を用い、従来よりも良好な
膜質の多結晶8i膜をデータドライバに用いることがで
きるので表示素子の大容量、大面積化が可能になる。
When a uniform high-quality film is obtained in this way, there is less variation in transistor characteristics (mobility and leakage current), and high-speed data drives can be obtained with high yield. Also,
On the other hand, T F 'l' and the scanning side driver are made of amorphous Si, which is suitable for increasing the area, so that characteristics of low leakage current and high yield can be maintained. In other words, a high-yield IC can be realized for the entire drive IC. Furthermore, by using laser annealing or the like, a polycrystalline 8i film with better film quality than before can be used for the data driver, making it possible to increase the capacity and area of the display element.

〔実施例〕〔Example〕

以下1本発明の実施例について1図面を参照して詳細に
説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to one drawing.

第1図は本発明の一実施例を説明するためのアクティブ
マトリックス表示装置の駆動ICの回路構成図である。
FIG. 1 is a circuit diagram of a driving IC for an active matrix display device for explaining one embodiment of the present invention.

第2図は第1図における駆動ICの断面図である。ここ
では、−例として液晶(LC)を駆動するための駆動I
Cについて説明するが、他の表示装置(ELD、VFD
等)を駆動するための駆動ICに対しても適用されるこ
とは言うまでもない。
FIG. 2 is a sectional view of the drive IC in FIG. 1. Here, as an example, a driving I for driving a liquid crystal (LC) is described.
C will be explained, but other display devices (ELD, VFD
Needless to say, the present invention is also applied to a drive IC for driving a device (such as the above).

第1図に示すように、本実施例では高速ドライバ配置領
域11にはデータ側ドライバ13およびサンプルホール
ド回路14が形成され、低速ドライバ配置領域12には
走査側ドライバ15と各セルを構成する薄膜トランジス
タ16が形成される。
As shown in FIG. 1, in this embodiment, a data-side driver 13 and a sample-hold circuit 14 are formed in the high-speed driver arrangement area 11, and a scan-side driver 15 and thin film transistors constituting each cell are formed in the low-speed driver arrangement area 12. 16 is formed.

次に1第2図に示すように、この各セル毎に形成された
薄膜トランジスタ(TPT)16およびこの1゛FT1
6を線順次に選択してLCセルの片側電極にビデオ信号
を供給するための走査側ドライバ15を、ガラス基板2
1上に絶縁膜22を介して形成され水素処理を処したア
モルファス8i (a−8i)活性層24上に形成する
。′即ち、ガラス基板21上の低速ドライバ配置領域1
2のトランジスタ活性層は全てa−81で構成される。
Next, as shown in FIG. 1, a thin film transistor (TPT) 16 formed for each cell and a
6 line-sequentially to supply a video signal to one side electrode of the LC cell.
The amorphous 8i (a-8i) active layer 24 is formed on the active layer 24 with an insulating film 22 interposed therebetween and subjected to hydrogen treatment. 'That is, the low-speed driver arrangement area 1 on the glass substrate 21
All transistor active layers of No. 2 are composed of a-81.

しかるに、TPT 16及び走査側ドライバ15は通常
十数μsecのパルス期間内でスイッチングを行えばよ
いから、a−8iの移動度(0,1〜1cd/ v−S
ec )でも十分対応が可能である。従って、上記の如
き構成で、動作速度に問題が生じる恐れは少い。
However, since the TPT 16 and the scanning side driver 15 normally only need to switch within a pulse period of ten or more μsec, the mobility of a-8i (0.1 to 1 cd/v-S
ec) can also be used. Therefore, with the above configuration, there is little possibility that problems will occur in the operating speed.

また、第1図におけるデータ側ドライバ13やサンプル
ホールド回路14は第2図に示す多結晶Sぜ活性層23
上に形成される。即ち、ガラス基板21上の高速ドライ
バ配置領域11内のトランジスタ活性層は全て多結晶8
iで構成される。このようにすると、多結晶8i活性層
23は、はソ線状に細長く形成されればよくなるので、
IC全体の中に占める面積が従来よりも大幅に小さくて
済む。しかも横に長い帯状のパターンになるのでレーザ
アニール(Arcwレーザアニールやエキシマレーザア
ニール等)等の再結晶化技術を用いることができ結晶性
の良好な高品質膜が得られる。この場合、再結晶化を行
う際の走査回数は数回程度で済むので再結晶化に要する
時間、即ちスループットは短くなる。さらに、膜の形成
される領域が小さいため再結晶化前の膜(多結晶Siあ
るいはa−81)に存在する欠陥、ボイド、クラック等
の発生率がチップ全体に比較してはるかに小さい。
Furthermore, the data side driver 13 and sample hold circuit 14 in FIG.
formed on top. That is, the transistor active layer in the high-speed driver arrangement region 11 on the glass substrate 21 is entirely made of polycrystalline 8
Consists of i. In this way, the polycrystalline 8i active layer 23 only needs to be formed into a long and thin shape.
The area occupied in the entire IC can be significantly smaller than the conventional one. Moreover, since the pattern is a horizontally long strip, a recrystallization technique such as laser annealing (Arcw laser annealing, excimer laser annealing, etc.) can be used, and a high quality film with good crystallinity can be obtained. In this case, since the number of scans required for recrystallization is only a few times, the time required for recrystallization, that is, the throughput is shortened. Furthermore, since the region where the film is formed is small, the incidence of defects, voids, cracks, etc. that exist in the film (polycrystalline Si or A-81) before recrystallization is much smaller than in the entire chip.

このため結晶性の良い高品質膜であシながら、全体にわ
たって比較的グレインサイズのはらつきの小さい且つ均
一性の優れた膜が得られる。このように均一で高品質の
膜が得られるので移動度やリーク電流等の特性ばらつき
の小さい高移動度トランジスタが実現される。従って、
高速動作の必要なデータドライバ13やサンプルホール
ド回路14が容易に実現でき、従来技術では不可能とみ
なされていた表示装置の大容量化且つ大面積化も可能で
ある。
Therefore, a high-quality film with good crystallinity can be obtained, and a film with relatively small variation in grain size and excellent uniformity can be obtained over the entire film. Since a uniform and high-quality film can be obtained in this way, a high-mobility transistor with small variations in characteristics such as mobility and leakage current can be realized. Therefore,
The data driver 13 and sample-and-hold circuit 14 that require high-speed operation can be easily realized, and it is also possible to increase the capacity and area of the display device, which was considered impossible with the prior art.

また、他方のTFT部16及び走査側ドライバ部15に
はa−8iを用いるのでリーク電流が小さくできるとと
もに、大容量且つ大面積のLC表示装置を駆動するのに
適したICを構成することができる。このようにTFT
 16をa−81で構成すると、リーク電流のばらつき
も小さく抑えられるのでLCに印加される実効電圧のば
らつきも少くでき、コントラストやオフセット電圧のは
らつきに伴う画素劣化のばらつきも少く抑えられる。即
ち、大容量表示装置対応の駆動IC全体としての歩留シ
は従来の構成に比べ大幅に向上する。
In addition, since A-8i is used for the other TFT section 16 and the scanning side driver section 15, leakage current can be reduced, and an IC suitable for driving a large-capacity, large-area LC display device can be constructed. can. In this way, TFT
When 16 is made of a-81, variations in leakage current can be suppressed to a small level, so variations in the effective voltage applied to the LC can also be reduced, and variations in pixel deterioration due to variations in contrast and offset voltage can also be suppressed. In other words, the overall yield of the drive IC compatible with large-capacity display devices is significantly improved compared to the conventional configuration.

次に、上述した駆動用ICの製造について説明する。Next, manufacturing of the above-mentioned driving IC will be explained.

第2図に示すように、ガラス基板21上に絶縁膜22 
(8102等)を介して多結晶8i腰23を低圧CVD
法等を用いて形成する。ま九、前記5i02の如き絶縁
膜22もかかる低圧CVD法や常圧CVD法等の手法を
用いて形成する。次に、この多結晶Si膜23をArレ
ーザやエキシマレーザ等を用いてアニール処理する。そ
して、この多結晶Si@2sに、例えばイオン注入技術
を用いてP 、A、等の不純物をソース・ドレイン領域
23′。
As shown in FIG. 2, an insulating film 22 is formed on a glass substrate 21.
Low pressure CVD of polycrystalline 8i waist 23 via (8102 etc.)
Formed using methods such as methods. Ninth, the insulating film 22 as shown in 5i02 is also formed using the low pressure CVD method, normal pressure CVD method, or the like. Next, this polycrystalline Si film 23 is annealed using an Ar laser, an excimer laser, or the like. Then, impurities such as P and A are added to the source/drain regions 23' using, for example, ion implantation technology into this polycrystalline Si@2s.

23#に導入し、適当なアニール処理を行りてソース2
3′、ドレイン23′を形成する。次に1 この上に、
8i0.のようなゲート絶縁膜25をCVD法等で形成
した後、例えばPドープを施した多結晶S1からなるデ
ート電極26を設ける。
23#, perform appropriate annealing treatment, and prepare source 2.
3', forming a drain 23'. Next 1 On top of this,
8i0. After forming the gate insulating film 25 by CVD or the like, a date electrode 26 made of, for example, P-doped polycrystal S1 is provided.

上記の如きプロセスは比較的高温(400〜650°C
程度)の熱処理を経るが、a−8H領域は低温(〜30
0°C以下)で形成される。
Processes such as those described above are carried out at relatively high temperatures (400-650°C).
The a-8H region undergoes heat treatment at a low temperature (~30°C).
(below 0°C).

まづ、絶縁膜22上に、グロー放電法等を用いてa−8
i膜24を形成し、その上部からイオン注入等によシソ
ース、ドレイン領域24’、 24’KP又はAsの不
純物を導入する。その上に、蒸着法やスパッタ法等を用
いて、  8i0.あるいは8 iNx等のゲート絶縁
膜25′を付着する。更に%金属(AI、Au、Cr9
M0.v等)の導電層27(ゲート電極)および28(
配線)を蒸着法等を用−て形成する。この際、この導電
層27,28a多結晶Siのソース、ドレイン領域23
’、23’及びa −8i。
First, a-8 is formed on the insulating film 22 using a glow discharge method or the like.
An i-film 24 is formed, and impurities such as source and drain regions 24', 24'KP or As are introduced from the top thereof by ion implantation or the like. On top of that, 8i0. Alternatively, a gate insulating film 25' of 8 iNx or the like is deposited. Furthermore, % metal (AI, Au, Cr9
M0. conductive layers 27 (gate electrode) and 28 (
(wiring) is formed using a vapor deposition method or the like. At this time, the source and drain regions 23 of the conductive layers 27 and 28a of polycrystalline Si
', 23' and a-8i.

ソース、ドレイン領域24’、24’と電気的接触がと
られる。
Electrical contact is made with the source and drain regions 24', 24'.

このように、はとんど通常の多結晶S1やa −8iを
形成する技術を用いて駆動ICを製造することが可能で
あり、多結晶Siの7ニールエ程を除いては特殊なプロ
セスを要することなく容易に製造することができる。尚
、多結晶8iのアニールも条件が決まれば、スループッ
トが短いのでプロセスを長くするととはほとんどない。
In this way, it is possible to manufacture drive ICs using the usual techniques for forming polycrystalline S1 and a-8i, and no special processes are required except for the 7-neel etching process for polycrystalline Si. It can be easily manufactured without any need. Note that once the conditions for annealing polycrystalline 8i are determined, the throughput is short, so there is little need to lengthen the process.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば高性能なデータド
ライバと低リーク電流のTPT 、走査側ドライバとが
高歩留シで得られるので、大面積且つ大容量の表示装置
を実現することが容易になる。
As explained above, according to the present invention, a high-performance data driver, a TPT with low leakage current, and a scanning side driver can be obtained with high yield, making it possible to realize a large-area, large-capacity display device. becomes easier.

特に、移動度やリーク電流等の特性上のばらつきを小さ
く抑えられるので、表示素子の画質が向上するだけでな
く、画素の劣化のばらつきも少くしたアクティブマトリ
ックス表示装置の駆動ICを得られる効果がある。
In particular, variations in characteristics such as mobility and leakage current can be suppressed to a minimum, which not only improves the image quality of display elements, but also provides a drive IC for active matrix display devices that reduces variations in pixel deterioration. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するためのアクティブ
マトリックス表示装置の駆動ICの回路構成図、第2図
は第1図における駆動ICの断面図である。
FIG. 1 is a circuit configuration diagram of a driving IC of an active matrix display device for explaining one embodiment of the present invention, and FIG. 2 is a sectional view of the driving IC in FIG. 1.

Claims (1)

【特許請求の範囲】[Claims] ガラス基板上に一体化形成され、X−Yマトリックス状
に配列されたアクティブマトリックス表示装置の駆動I
Cにおいて、各表示セルに対応して薄膜トランジスタ及
びこの薄膜トランジスタを駆動するための走査側ドライ
バをアモルファスSi活性層上に形成し、且つ前記薄膜
トランジスタを駆動するためのデータ側ドライバ及びサ
ンプルホールド回路を多結晶Si活性層上に形成したこ
とを特徴とするアクティブマトリックス表示装置の駆動
IC。
Driving I of an active matrix display device integrally formed on a glass substrate and arranged in an X-Y matrix
In C, a thin film transistor and a scanning side driver for driving the thin film transistor are formed on an amorphous Si active layer corresponding to each display cell, and a data side driver and a sample hold circuit for driving the thin film transistor are formed of polycrystalline silicon. A driving IC for an active matrix display device, characterized in that it is formed on a Si active layer.
JP62058034A 1987-03-13 1987-03-13 Driver IC for active matrix display Expired - Lifetime JPH0752329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62058034A JPH0752329B2 (en) 1987-03-13 1987-03-13 Driver IC for active matrix display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62058034A JPH0752329B2 (en) 1987-03-13 1987-03-13 Driver IC for active matrix display

Publications (2)

Publication Number Publication Date
JPS63223788A true JPS63223788A (en) 1988-09-19
JPH0752329B2 JPH0752329B2 (en) 1995-06-05

Family

ID=13072654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62058034A Expired - Lifetime JPH0752329B2 (en) 1987-03-13 1987-03-13 Driver IC for active matrix display

Country Status (1)

Country Link
JP (1) JPH0752329B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527713A (en) * 1991-07-25 1993-02-05 Casio Comput Co Ltd Display driving device and display device
JPH0527712A (en) * 1991-07-25 1993-02-05 Casio Comput Co Ltd Display driving device and display device
JPH05100633A (en) * 1991-10-04 1993-04-23 Casio Comput Co Ltd Liquid crystal driving circuit and liquid crystal display device
US5247375A (en) * 1990-03-09 1993-09-21 Hitachi, Ltd. Display device, manufacturing method thereof and display panel
JPH07135324A (en) * 1993-11-05 1995-05-23 Semiconductor Energy Lab Co Ltd Thin film semiconductor integrated circuit
WO1998048318A1 (en) * 1997-04-22 1998-10-29 Matsushita Electric Industrial Co., Ltd. Drive circuit for active matrix liquid crystal display
US6218678B1 (en) 1993-11-05 2001-04-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6849482B2 (en) 1999-02-12 2005-02-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and method of forming the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584180A (en) * 1981-06-30 1983-01-11 セイコーエプソン株式会社 Active matrix substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584180A (en) * 1981-06-30 1983-01-11 セイコーエプソン株式会社 Active matrix substrate

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247375A (en) * 1990-03-09 1993-09-21 Hitachi, Ltd. Display device, manufacturing method thereof and display panel
JP2776073B2 (en) * 1991-07-25 1998-07-16 カシオ計算機株式会社 Display drive device and display device
JPH0527712A (en) * 1991-07-25 1993-02-05 Casio Comput Co Ltd Display driving device and display device
JPH0527713A (en) * 1991-07-25 1993-02-05 Casio Comput Co Ltd Display driving device and display device
JPH05100633A (en) * 1991-10-04 1993-04-23 Casio Comput Co Ltd Liquid crystal driving circuit and liquid crystal display device
US6475839B2 (en) 1993-11-05 2002-11-05 Semiconductor Energy Laboratory Co., Ltd. Manufacturing of TFT device by backside laser irradiation
US6218678B1 (en) 1993-11-05 2001-04-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JPH07135324A (en) * 1993-11-05 1995-05-23 Semiconductor Energy Lab Co Ltd Thin film semiconductor integrated circuit
US6617612B2 (en) * 1993-11-05 2003-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a semiconductor integrated circuit
WO1998048318A1 (en) * 1997-04-22 1998-10-29 Matsushita Electric Industrial Co., Ltd. Drive circuit for active matrix liquid crystal display
US6411273B1 (en) 1997-04-22 2002-06-25 Matsushita Electric Industrial Co., Ltd. Drive circuit for active matrix liquid crystal display
US6849482B2 (en) 1999-02-12 2005-02-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and method of forming the same
US9097953B2 (en) 1999-02-12 2015-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and method of forming the same

Also Published As

Publication number Publication date
JPH0752329B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
JP3067949B2 (en) Electronic device and liquid crystal display device
US4984033A (en) Thin film semiconductor device with oxide film on insulating layer
US5889291A (en) Semiconductor integrated circuit
JP3108296B2 (en) Display device manufacturing method
US6337235B1 (en) Semiconductor device and manufacturing method thereof
JP2001051292A (en) Semiconductor device and semiconductor display device
KR20010020826A (en) Semiconductor Device and Method for Its Fabrication
JP2000312007A (en) Semiconductor device and manufacture thereof
CN101540332B (en) Display device and manufacturing method thereof
JP7032625B2 (en) Light emitting device
JPH08160466A (en) Liquid crystal display device and its production
JP3173747B2 (en) Method for manufacturing semiconductor device
JP2000208780A (en) Operational amplifying circuit group and differential amplifying circuit group
US5767529A (en) Thin-film transistor having a plurality of island-like regions
US7952098B2 (en) Active matrix electronic array device
JPS63223788A (en) Drive ic for active matrix display device
JP3056813B2 (en) Thin film transistor and method of manufacturing the same
KR100634543B1 (en) Single crystalline silicon tft organic light emitting display and fabrication method thereof
JPH0611729A (en) Liquid crystal display device and its production
JP2003249661A (en) Method for manufacturing semiconductor device
KR100543008B1 (en) Flat Panel Display and method of fabricating the same
JPH0540278A (en) Production of driving circuit integral type active matrix array
JP2002151697A (en) Semiconductor integrated circuit and image display device using it
JP3845566B2 (en) Thin film semiconductor device, method for manufacturing the same, and electronic device including the device
KR100611747B1 (en) Method of Fabricating TFT