JPS63223569A - Method and device for calibrating anemometer for measuring air current - Google Patents

Method and device for calibrating anemometer for measuring air current

Info

Publication number
JPS63223569A
JPS63223569A JP62057984A JP5798487A JPS63223569A JP S63223569 A JPS63223569 A JP S63223569A JP 62057984 A JP62057984 A JP 62057984A JP 5798487 A JP5798487 A JP 5798487A JP S63223569 A JPS63223569 A JP S63223569A
Authority
JP
Japan
Prior art keywords
anemometer
pitot tube
gas flow
probe
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62057984A
Other languages
Japanese (ja)
Other versions
JPH063458B2 (en
Inventor
Yukio Tamori
田森 行男
Nobuyuki Kogure
小暮 信之
Masaaki Shirahase
白波瀬 雅明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62057984A priority Critical patent/JPH063458B2/en
Publication of JPS63223569A publication Critical patent/JPS63223569A/en
Publication of JPH063458B2 publication Critical patent/JPH063458B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Measuring Volume Flow (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PURPOSE:To execute a measurement with high accuracy by providing horizontally in a straight line a Pitot tube and an anemometer to an axis provided on the tip of a detecting probe, and bringing this axis to a rotation or a reciprocating motion along a gas flow. CONSTITUTION:A Pitot tube 8 and a thermal type anemometer 9 of equal length are attached to one axis 10, and this axis 10 is brought to a rotation or a reciprocating motion at a low speed. When a detecting probe 1 is installed in a duct 7, each part connected to this probe 1 transfers an electrical signal received by a nose tube in a detecting probe 1, to an information converting part 4, in an information and motion transfer part 2, and also, transfers it to the detecting probe 1 from a motion control part 3. Also, in the motion control part 3, motion speed of the probe 1 inserted into the duct 7 is controlled arbitrarily, and in a data processing and indicating part 5, the periodical variation of pressure and the electrical signal, which follows up the rotation and the reciprocating motion of the Pitot tube 8 and the anemometer 9 is indicated, therefore, a gas flow velocity in the duct can be known, and by executing a data analysis, a true gas flow velocity can be indicated.

Description

【発明の詳細な説明】 C産業上の利用分野〕 この発明は、煙道又はダクト内を流れるガスの流速測定
、又は作業環境など一般の環境中での気流測定において
用いられる風速計、特に熱式風速計の校正方法および装
置に関するものである。
Detailed Description of the Invention C. Industrial Application Field This invention relates to an anemometer used in measuring the flow rate of gas flowing in a flue or duct, or in measuring air flow in a general environment such as a working environment, The present invention relates to a method and device for calibrating a type anemometer.

〔従来の技術〕[Conventional technology]

従来、気流の流速測定に際しては、第4図に示すL型ピ
トー管(プラントル型ピトー管)が標準の測定装置とし
て用いられ、すなわち、L字形の鼻管aの先端部で流れ
のもつ全圧すを受け、一方、鼻管の側壁において静圧C
を求め、両者の差、すなわち動圧を水柱計(通常、傾斜
マノメータ)を用いて測定し、流速を計算する。しかし
、このピトー管は気流速度が小さい場合(例えば5+a
/s以下)では、水柱高さは1lI11程度又はそれ以
下となり、動圧の値を1桁しか読みとることができず、
測定精度上の点から不利であり、したがって熱式など他
の原理を異にする風速計を利用することが行ねれてきた
Conventionally, when measuring the flow rate of airflow, an L-shaped Pitot tube (Prandtl-type Pitot tube) shown in Fig. 4 has been used as a standard measuring device. while the static pressure C at the side wall of the nasal canal
The difference between the two, that is, the dynamic pressure, is measured using a water column meter (usually a tilted manometer), and the flow velocity is calculated. However, this pitot tube is used when the airflow velocity is small (for example, 5+a
/s or less), the water column height is about 1lI11 or less, and the dynamic pressure value can only be read in one digit.
This is disadvantageous in terms of measurement accuracy, and therefore it has been difficult to use anemometers with different principles, such as thermal type.

しかし、周知のようにこれらの風速計は、気体の物性、
特に密度すなわちガス組成の影響を受けるので、使用に
際しては標準となるピトー管によって校正を行うことが
必要とされ、この場合、空気を測定対象とする場合には
、空気をキャリアガスとして試験風洞において校正する
ことは比較的容易であり、特に問題はないが、空気以外
の例えば燃焼排ガスなどの気流の場合には、試験風洞内
に当該の混合気体を調整して送入する必要があるため、
その校正は容易でない。
However, as is well known, these anemometers are based on the physical properties of gas,
In particular, it is affected by the density, that is, the gas composition, so it is necessary to calibrate it using a standard Pitot tube before use.In this case, if air is the measurement target, a test wind tunnel with air as a carrier gas is used. Calibration is relatively easy and there are no particular problems, but in the case of airflow other than air, such as combustion exhaust gas, it is necessary to adjust and send the relevant gas mixture into the test wind tunnel.
Its proofreading is not easy.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

つまり、これら風速計はピトー管による校正を要し、一
方、ピトー管は低速の測定には不適当であるという矛盾
があり、このためには、煙道の同じ流れ系内に縮流等に
より流れ速度が増大している場所を探し、そのうえで低
流速域の測定位置での風速計により測定を行えばよいの
であるが、実際には無理であり、したがって低速流域の
高精度測定は困難とされている。
In other words, these anemometers require calibration using pitot tubes, and on the other hand, pitot tubes are unsuitable for low-velocity measurements. It would be possible to find a place where the flow velocity is increasing and then take measurements using an anemometer at a measurement position in a low-velocity region, but this is not practical, and therefore high-precision measurements in low-velocity areas are considered difficult. ing.

〔問題点を解決するための手段] このためには、これら風速計をピトー管と併用して比較
校正を行うに当り、低流速域では動圧(差圧)が極めて
小さいことから、この値を拡大するために両者を共に流
れ方向に沿って移動させながら、両者の指示値の変化を
検出すれば精度の高い測定ができるわけである。この発
明はこの点に着目してピトー管と他の風速計の検出用プ
ローブを並設し、両者のプローブ先端を任意の回転数に
より流れ方向に平行に同軸回転させるか、又は任意の速
度により流れ方向にそって往復運動させることにより、
流れに対し1周期的に相対移動させて両者の指示値(電
気的信号又は圧力信号)の変化を検出し、さらに必要に
応じて回転速度又は往復運動の速度を変え、両者の検出
値の比較によりガス組成その他の性状により(熱式)風
速計への影響度を知り、測定および校正を行うようにし
たものである。
[Means for solving the problem] For this purpose, when performing comparative calibration using these anemometers in combination with a pitot tube, it is necessary to use this value, since the dynamic pressure (differential pressure) is extremely small in the low flow velocity region. Highly accurate measurements can be made by detecting changes in the indicated values of both while moving them along the flow direction to enlarge the flow. This invention focuses on this point, and the pitot tube and the detection probe of another anemometer are arranged side by side, and the tips of both probes are coaxially rotated parallel to the flow direction at an arbitrary number of rotations, or at an arbitrary speed. By reciprocating along the flow direction,
Detect changes in both indicated values (electrical signals or pressure signals) by moving relative to the flow once, then change the rotational speed or reciprocating speed as necessary and compare the detected values of both. This allows the degree of influence on the (thermal) anemometer to be determined based on the gas composition and other properties, and measurement and calibration can then be performed.

〔発明の実施例〕[Embodiments of the invention]

この発明における装置の実施例を図面について説明する
と、第1図に示すように装置全体は、検出用プローブ1
、情報・運動伝達部2、運動制御部3、情報変換部4、
データ処理・指示部5.記録部6で構成されている。
An embodiment of the device according to the present invention will be described with reference to the drawings. As shown in FIG. 1, the entire device consists of a detection probe 1
, information/movement transmission section 2, motion control section 3, information conversion section 4,
Data processing/instruction unit 5. It is composed of a recording section 6.

検出用プローブ1は、ダクト7内に設けられたプローブ
、すなわち機器の入力部として、測定される信号を可撓
ケーブルを介して、外部の機器に伝える別個のユニット
として形成され、第2図および3図に明らかなように等
長のピトー管8と熱式風速計9が1つの軸lOに取りつ
けられ、この軸10が低速で回転あるいは往復動するよ
うになっている。
The detection probe 1 is formed as a probe installed in the duct 7, i.e. as an input of the equipment, as a separate unit which transmits the signal to be measured via a flexible cable to the external equipment, as shown in FIGS. As is clear from FIG. 3, a pitot tube 8 and a thermal anemometer 9 of equal length are attached to one shaft 10, and this shaft 10 rotates or reciprocates at a low speed.

第2図(A) (B)は、その回転型のものの平面図、
正面図を示す。図示のように情報・運動伝達部2の一端
に、内部に設けた低速モーター11に連ねて軸10が設
けられ、その先端に等長のピトー管8.熱式風速計9が
互いに外側方に向けて突設されている。この結果′、第
2図(B)に示すように図において反時計方向に回転す
る軸lOによりピトー管8の鼻管aの先端は下方に向か
う間は、矢印で示す排ガスの流れに抗して旋回する。
Figures 2 (A) and (B) are plan views of the rotating type;
A front view is shown. As shown in the figure, a shaft 10 is provided at one end of the information/movement transmitting section 2 in series with a low-speed motor 11 provided inside, and a pitot tube 8 of equal length is provided at the tip of the shaft 10. Thermal anemometers 9 are provided to protrude outward from each other. As a result, as shown in FIG. 2(B), while the tip of the nasal tube a of the pitot tube 8 moves downward due to the axis lO rotating counterclockwise in the figure, it resists the flow of exhaust gas shown by the arrow. Turn around.

第3図(A) (B) (C)は、往復動型のものの平
面図。
FIGS. 3(A), 3(B), and 3(C) are plan views of the reciprocating type.

正面図、往復動機構の説明図を示す。図示のように情報
・運動伝達部2の一端に回動機構12を介して案内腕1
3が取りつけられ、この案内腕13に設けた溝孔14か
ら外部へ軸10が突設され、その先端にピトー管8.熱
式風速計9が付設されている。この軸10は適宜の往復
動機構例えば第3図(C)に示すように軸lOの一端を
モーター11により常時一定方向に移行する無端チェー
ン15に設けた突子16に係合して往復動するようにな
っている。この第3図に示すものでは、ダクト内に挿入
されたプローブ先端の案内腕13を矢印で示す気流の方
向にそって配置する必要があるので、使用に当っては、
これをダクト内に挿入後、遠隔操作により前記回動機構
12を作動して上記状態を維持する。こうして往復動す
る軸10によりピトー管8の鼻管aの先端は第3図(B
)において下方に向かって移動する間は排ガスの流れと
対向している。
A front view and an explanatory diagram of the reciprocating mechanism are shown. As shown in the figure, a guide arm 1 is connected to one end of the information/movement transmitting section 2 via a rotation mechanism 12.
3 is attached to the guide arm 13, and a shaft 10 projects outward from a slot 14 provided in the guide arm 13, and a pitot tube 8. A thermal anemometer 9 is attached. This shaft 10 is reciprocated by a suitable reciprocating mechanism, for example, as shown in FIG. It is supposed to be done. In the device shown in FIG. 3, the guide arm 13 at the tip of the probe inserted into the duct must be placed along the direction of the airflow indicated by the arrow.
After inserting this into the duct, the rotation mechanism 12 is operated by remote control to maintain the above state. In this way, the tip of the nasal tube a of the pitot tube 8 is moved by the reciprocating shaft 10 as shown in FIG.
), it faces the flow of exhaust gas while moving downward.

〔作用・効果〕[Action/Effect]

上記の構成により、いま検出用プローブ1を第1図に示
すようにダクト7内に設置した場合、このプローブ1に
連なる各部は、情報・運動伝達部2では、検出用プロー
ブ1におけるピトー管8の鼻管で受けた電気的信号を情
報変換部4へ伝達するとともに、運動を運動制御部3か
ら検出用プローブ1へ伝達し、また運動制御部3では、
ダクト7内に挿入したプローブ1の運動速度を任意に制
御し、さらに情報変換部4では、鼻管で受けた両圧力を
電気的信号に変換・増幅し、データ処理・指示部5では
、プローブ1の運動つまりピトー管8、風速計9の回転
又は往復運動に伴う圧力及び電気的信号の周期的変化を
指示させるから、こうして周期的変化の最大値や特異値
と運動速度の対応関係から、運動が零のときの指示値、
すなわちダクト内のガス流速を知ることができ、このよ
うなデータ解析を行うことにより、真のガス流速を指示
することができる。そして記録部6において、この指示
値をアナログ又はデジタル方式により記録するとともに
、さらに数値表示することができる。
With the above configuration, when the detection probe 1 is installed in the duct 7 as shown in FIG. The electrical signal received by the nasal tube of the body is transmitted to the information converting unit 4, and the movement is transmitted from the movement control unit 3 to the detection probe 1, and in the movement control unit 3,
The speed of movement of the probe 1 inserted into the duct 7 is controlled arbitrarily, and the information converter 4 converts and amplifies both pressures received through the nasal tube into electrical signals. 1, that is, the rotation or reciprocating motion of the pitot tube 8 and anemometer 9. Therefore, from the correspondence between the maximum value or singular value of the periodic change and the motion speed, The indicated value when the movement is zero,
That is, the gas flow velocity within the duct can be known, and by performing such data analysis, the true gas flow velocity can be indicated. Then, in the recording section 6, this instruction value can be recorded by an analog or digital method and can also be displayed numerically.

以上のように、この発明によれば、従来、特に低流速に
おいて気流の速度を測定する上で、空気を測定対象とす
る場合には有効とされるものの、空気以外の気体の流速
を測定する場合には、ガス組成などが指示値に影響を及
ぼすために測定値の校正を必要とする熱式風速計等にお
いて、その校正を極めて容易に現場で行うことができ、
かつ、精度よく行うことができる。
As described above, according to the present invention, although it has conventionally been considered effective when measuring air velocity, particularly at low flow velocity, when air is the measurement target, it is possible to measure the velocity of gas other than air. In some cases, such as thermal anemometers, which require calibration of measured values because gas composition etc. affect the indicated values, the calibration can be performed extremely easily on-site.
Moreover, it can be performed with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は、この発明における装置の実
施例を示し、第1図は全体系統図、第2図、第3図は検
出用プローブの各側を示し、第2図(A)は回転型プロ
ーブの平面図、同(B)は正面図、第3図(A) (B
) (C)は往復動型プローブの平面図、正面図、往復
動機構の説明図、第4図はピトー管の正面図を示す。 1・・・検出用プローブ、5・・・データ処理・指示部
、7・・・ダクト、8・・・ピトー管、9・・・風速計
、10・・・軸、11・・・モーター、12・・・回動
機構、13・・・案内腕、14・・・溝孔、a・・・鼻
管。
1, 2, and 3 show an embodiment of the apparatus according to the present invention, FIG. 1 is an overall system diagram, FIGS. 2 and 3 show each side of the detection probe, and FIG. Figure (A) is a plan view of the rotary probe, Figure (B) is a front view, Figure 3 (A) (B)
) (C) shows a plan view, a front view, and an explanatory diagram of the reciprocating mechanism of the reciprocating probe, and FIG. 4 shows a front view of the pitot tube. DESCRIPTION OF SYMBOLS 1... Detection probe, 5... Data processing/instruction unit, 7... Duct, 8... Pitot tube, 9... Anemometer, 10... Shaft, 11... Motor, 12... Rotation mechanism, 13... Guide arm, 14... Slot, a... Nasal tube.

Claims (2)

【特許請求の範囲】[Claims] (1)ピトー管と風速計を検出用プローブの先端に設け
た軸に一直線状に横設し、この軸を測定すべきガス流れ
に沿って回転あるいは往復動させることにより、上記ピ
トー管と風速計の先端をガス流れと対向させて移動させ
るとともに、これらピトー管、風速計の指示値の変化を
検出し、その指示値と移動速度からガス流速を測定し、
風速計の校正を行う気流測定における風速計の校正方法
(1) A pitot tube and an anemometer are horizontally installed in a straight line on a shaft provided at the tip of a detection probe, and by rotating or reciprocating this shaft along the gas flow to be measured, the pitot tube and the wind speed are measured. The tip of the meter is moved to face the gas flow, and changes in the readings of the pitot tube and anemometer are detected, and the gas flow velocity is measured from the readings and the speed of movement.
Anemometer calibration method for airflow measurement.
(2)ガス流れ中に挿入すべき検出用プローブの先端に
、回転あるいは往復動する軸を設けて、この軸にピトー
管と風速計を一直線状に横設するとともに、これらピト
ー管と風速計の各指示値の変化を検出する機構を付設し
てなる気流測定における風速計の校正装置。
(2) A shaft that rotates or reciprocates is provided at the tip of the detection probe to be inserted into the gas flow, and a pitot tube and an anemometer are horizontally installed on this shaft in a straight line. Anemometer calibration device for airflow measurement, which is equipped with a mechanism to detect changes in each indicated value.
JP62057984A 1987-03-13 1987-03-13 Method and apparatus for calibrating anemometer in low-speed air flow Expired - Lifetime JPH063458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62057984A JPH063458B2 (en) 1987-03-13 1987-03-13 Method and apparatus for calibrating anemometer in low-speed air flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62057984A JPH063458B2 (en) 1987-03-13 1987-03-13 Method and apparatus for calibrating anemometer in low-speed air flow

Publications (2)

Publication Number Publication Date
JPS63223569A true JPS63223569A (en) 1988-09-19
JPH063458B2 JPH063458B2 (en) 1994-01-12

Family

ID=13071276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62057984A Expired - Lifetime JPH063458B2 (en) 1987-03-13 1987-03-13 Method and apparatus for calibrating anemometer in low-speed air flow

Country Status (1)

Country Link
JP (1) JPH063458B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100758039B1 (en) 2006-03-13 2007-09-11 한국표준과학연구원 A portable anemometer calibrating apparatus and anemometer calibrating method thereby
WO2013093328A1 (en) * 2011-12-22 2013-06-27 Institut National De Recherche En Sciences Et Technologies Pour L'environnement Et L'agriculture (Irstea) Method and calibration installation of a sensor for measuring data representative of the flow speed of a fluid stream
US20140130608A1 (en) * 2012-11-14 2014-05-15 Phillip M. Adams Pitot tube velocimeter system
CN113671873A (en) * 2021-08-20 2021-11-19 中煤科工集团重庆研究院有限公司 High-precision wind speed detection method for reducing self-calibration power consumption

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433540A (en) * 1977-08-22 1979-03-12 Kiyoji Naruse Aqueous dispersion composition of thermoplastic resin capable of provinding waterrinsoluble coating film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433540A (en) * 1977-08-22 1979-03-12 Kiyoji Naruse Aqueous dispersion composition of thermoplastic resin capable of provinding waterrinsoluble coating film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100758039B1 (en) 2006-03-13 2007-09-11 한국표준과학연구원 A portable anemometer calibrating apparatus and anemometer calibrating method thereby
WO2013093328A1 (en) * 2011-12-22 2013-06-27 Institut National De Recherche En Sciences Et Technologies Pour L'environnement Et L'agriculture (Irstea) Method and calibration installation of a sensor for measuring data representative of the flow speed of a fluid stream
FR2985030A1 (en) * 2011-12-22 2013-06-28 Centre Nat Machinisme Agricole METHOD, DEVICE AND INSTALLATION FOR CALIBRATION OF A DATA MEASURING SENSOR REPRESENTATIVE OF THE SPEED OF FLOW OF A FLUID FLOW
US20140130608A1 (en) * 2012-11-14 2014-05-15 Phillip M. Adams Pitot tube velocimeter system
US9068840B2 (en) * 2012-11-14 2015-06-30 Phillip M. Adams Pitot tube velocimeter system
CN113671873A (en) * 2021-08-20 2021-11-19 中煤科工集团重庆研究院有限公司 High-precision wind speed detection method for reducing self-calibration power consumption

Also Published As

Publication number Publication date
JPH063458B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
EP0597899B1 (en) Angle of attack sensor using inverted ratio of pressure differentials
CN203053472U (en) Tool for measuring pressure and velocity of eddy flow field
Özahi et al. Simple methods for low speed calibration of hot-wire anemometers
US3699811A (en) Flow velocity and direction instrument
US7930134B2 (en) Electronic device for measuring motion of screw mechanism
JPS63223569A (en) Method and device for calibrating anemometer for measuring air current
Nowack Improved calibration method for a five-hole spherical Pitot probe
CN107941172A (en) Flue cross section accumulates online test method and device
RU166715U1 (en) ION-LABEL AIR FLOW SPEED METER
CN106918437B (en) Four-hole probe for measuring subsonic two-dimensional flow field
CN202974319U (en) Dynamic measuring device for angle measurement precision
CN115200487A (en) Safety measuring device and safety evaluation method for large-diameter pipeline
JPS63223567A (en) Method and device for measuring low flow velocity by pitot tube
CN207622710U (en) Flue cross section accumulates on-line measuring device
Ingram et al. An automated instrumentation system for flow and loss measurements in a cascade
Ladson et al. Instrumentation for calibration and control of a continuous-flow cryogenic tunnel
RU2098630C1 (en) Station for monitoring shaft guide parameters
EP0595615A2 (en) System and method for measuring the speed of fluid flow of varying direction
Morris et al. Measurement and Instrumentation
CN211318484U (en) Novel wind speed sensor
CN219675159U (en) Bidirectional flow sensor
JP2911921B2 (en) Measuring method for long objects
CN211318487U (en) Novel wing air velocity transducer
RU2333498C2 (en) Flow rate meter calibration method
SU613247A1 (en) Gas stream speed transducer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term