JPS63223529A - Device and method for measuring capacity - Google Patents

Device and method for measuring capacity

Info

Publication number
JPS63223529A
JPS63223529A JP62058063A JP5806387A JPS63223529A JP S63223529 A JPS63223529 A JP S63223529A JP 62058063 A JP62058063 A JP 62058063A JP 5806387 A JP5806387 A JP 5806387A JP S63223529 A JPS63223529 A JP S63223529A
Authority
JP
Japan
Prior art keywords
container
volume
measured
differential pressure
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62058063A
Other languages
Japanese (ja)
Inventor
Akio Furuse
昭男 古瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Instruments Co Ltd
Original Assignee
Cosmo Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Instruments Co Ltd filed Critical Cosmo Instruments Co Ltd
Priority to JP62058063A priority Critical patent/JPS63223529A/en
Priority to US07/148,526 priority patent/US4888718A/en
Priority to KR1019880001587A priority patent/KR910004621B1/en
Publication of JPS63223529A publication Critical patent/JPS63223529A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To eliminate the need for large facilitates and a drying process and to measure the internal capacity of a container with high accuracy by measuring the detection sensitivity of differential pressure detection for capacity variation previously by using a gas and a capacity adding device. CONSTITUTION:The container 17 to be measured is fitted to measurement-side piping and then while solenoid valves SV3 and SV4 are closed, SV5 and SV6 are opened. Then the solenoid valves SV1 and SV2 are opened to charge air in tanks 13 and 14 to set pressure, and the pressure P'T in the tanks is measured. Then stored tank pressure PT and sensitivity S found by adding the capacity adding device 23 are read out to find correcting sensitivity S'. Then the valves SV1, SV2, SV5, and SV6 are closed and the valves SV3 an SV4 are opened to find the pressure difference between the side of the container 17 to be measured and the side of a reference container 18 by a differential pressure detector 19. Then correcting differential pressure is calculated and the sensitivity S; is used to calculate the corrected capacity difference of the container 17 from the container 18. Thus, not water, but air is used to measure the internal capacity of the container with high accuracy.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は容器の内容積を測定するための装置と方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to an apparatus and method for measuring the internal volume of a container.

「従来技術」 従来容器の内容積を正確に測定する一方法として、例え
ば液体、特に水、を容器に入れ、容器が満たされるまで
に入れた水の量をもってその容積の内容積とした。
``Prior Art'' Conventionally, as a method for accurately measuring the internal volume of a container, for example, a liquid, particularly water, is poured into a container, and the amount of water added until the container is filled is taken as the internal volume.

「発明が解決しようとする問題点」 生産工程で多数の容器を次々と測定し、測定後に水を捨
て、容器を乾燥させる必要がある場合、使用した水の排
水設備あるいは回収設備を必要とし、又測定後の容器の
乾燥設備も必要とされる。
``Problem to be solved by the invention'' When a large number of containers are measured one after another in the production process, and it is necessary to discard the water and dry the containers after measurement, drainage equipment or collection equipment for the used water is required. Additionally, equipment for drying the container after measurement is also required.

更に排水、回収設備は水洩れが起らないよう対策を必要
とする。このように水を使って容積測定を行うのは設備
が大きくなるし、乾燥のための設備と時間も余計に必要
とされる欠点がある。また水を扱うということはいろい
ろな面でやっかいなものである。
Furthermore, drainage and recovery equipment must take measures to prevent water leakage. Measuring volume using water in this way requires large equipment, and has the drawback of requiring additional equipment and time for drying. Also, handling water is troublesome in many ways.

水の代りに気体を使って同様の方法で容積測定を行うこ
とを考えた場合、気体は圧縮性であるので容積測定はそ
の気体の圧力の影響を受け、かつ温度の影響も大きい。
If we consider measuring volume using a similar method using gas instead of water, since gas is compressible, volume measurement is affected by the pressure of the gas, and is also greatly affected by temperature.

また水と比べて気体は粘性が小さいことから容器自体及
び容器と測定装置の接続部等における気体の洩れが大き
く影響する。
Furthermore, since gas has a lower viscosity than water, leakage of gas from the container itself, the connection between the container and the measuring device, etc. has a large effect.

従って精度の高い測定は困難であった。Therefore, highly accurate measurement was difficult.

この発明の目的は大きな設備と乾燥工程の必要を避ける
ため、気体を使いかつ高い精度で容器の内容積を測定す
ることが可能であり、特に多数の容器の容積のバラツキ
を順次測定するのに適した容積測定装置と方法を提供す
ることである。
The purpose of this invention is to avoid the need for large equipment and drying processes, and to make it possible to measure the internal volume of a container with high precision using gas, especially when measuring variations in the volume of a large number of containers one after another. It is an object of the present invention to provide a suitable volume measuring device and method.

「問題点を解決するための手段」 この発明によれば、被測定容器側と基準容器側とにそれ
ぞれ気体を供給するための互いにほぼ等しい容積を有す
る一対のタンクと、その被測定容器と基準容器に気体を
供給した状態でその一方の側に既知の容積変化を与える
手段と、その被測定容器と基準容器との間の差圧を測定
する手段と、前記容積変化とその容積変化が与えられる
前と後における差圧の変化分とから検出感度を表わす容
積変化対差圧変化比を算出する手段と、測定した差圧と
検出感度から前記被測定容器の容積を算出する手段とが
設けられる。
"Means for Solving the Problem" According to the present invention, a pair of tanks having substantially equal volumes for supplying gas to the measurement container side and the reference container side, respectively, and the measurement container and the reference container are provided. means for applying a known change in volume to one side of the container while supplying gas; means for measuring the differential pressure between the container to be measured and the reference container; means for calculating a volume change to differential pressure change ratio representing detection sensitivity from a change in differential pressure before and after the measurement, and means for calculating the volume of the container to be measured from the measured differential pressure and detection sensitivity. It will be done.

更にこの発明による容積測定方法は、等しい圧力の気体
が充填されたほぼ等しい容積を有する一対のタンクに感
度測定用被測定容器及び基準容器をそれぞれ接続導通さ
せる工程と、その導通後における前記感度測定用被測定
容器と基準容器の差圧を測定する工程と、前記感度測定
用被測定容器と基準容器のいずれか一方に既知の容積変
化を与える工程と、前記容積変化を与えた後の前記感度
測定用被測定容器と基準容器の差圧を測定する工程と、
測定した2つの差圧と前記容積変化とから検出感度を表
わす容積変化対差圧変化比を算出する工程と、等しい圧
力の気体が充填された前記一対のタンクに被測定容器と
前記基準容器をそれぞれ接続導通させる工程と、その導
通後における前記被測定容器と基準容器の差圧を測定す
る工程と、その測定した差圧と検出感度とから前記基準
容器に対する前記被測定容器の容積差を算出する工程、
とを含む。
Furthermore, the volume measuring method according to the present invention includes the steps of connecting and conducting a sensitivity measurement target container and a reference container to a pair of tanks having substantially equal volumes filled with gas of equal pressure, and performing the sensitivity measurement after the connection. a step of measuring the differential pressure between the container to be measured and the reference container for sensitivity measurement, a step of applying a known volume change to either the container to be measured for sensitivity measurement or the reference container, and a step of measuring the sensitivity after applying the volume change. a step of measuring the differential pressure between the measurement container and the reference container;
a step of calculating a volume change to differential pressure change ratio representing detection sensitivity from the two measured differential pressures and the volume change; and placing the test container and the reference container in the pair of tanks filled with gas of equal pressure. A step of connecting and conducting each, a step of measuring the differential pressure between the container to be measured and the reference container after the connection is made, and a difference in volume of the container to be measured relative to the reference container is calculated from the measured differential pressure and detection sensitivity. The process of
including.

「実施例」 U盪皿夙撓虞 第1図はこの発明の実施例である容積測定装置の機構部
を示しており、以下の実施例の説明において容積測定に
使用する気体は空気である場合とする。
``Example'' Figure 1 shows the mechanical part of a volume measuring device which is an example of the present invention, and in the following description of the example, when the gas used for volume measurement is air. shall be.

圧縮空気源11の圧縮空気は配管により減圧弁12を介
して三方電磁弁Sv、とS V zの入口側に分岐して
供給される。三方電磁弁S■1とSV2の出口側にはそ
れぞれ等しい内容積v7のタンク13.14が配管で接
続されている。タンク13゜14はそれぞれ三方電磁弁
S V3 、  S V<を介して測定側配管15と基
準側配管16に接続されている。測定側配管15及び基
準側配管16にはそれぞれ適当な治具を介して被測定容
器17と基準容器18が取り外し可能に取り付けられて
いる。
The compressed air from the compressed air source 11 is branched and supplied to the inlet sides of the three-way solenoid valves Sv and S V z via a pressure reducing valve 12 via piping. Tanks 13 and 14 each having the same internal volume v7 are connected to the outlet sides of the three-way solenoid valves S1 and SV2 by piping. The tanks 13 and 14 are connected to a measurement side pipe 15 and a reference side pipe 16 via three-way solenoid valves S V3 and S V<, respectively. A container to be measured 17 and a reference container 18 are removably attached to the measurement side piping 15 and the reference side piping 16 via appropriate jigs, respectively.

また測定側配管15と基準側配管16との間にはそれら
間の差圧を測定するための差圧検出器19が配管により
接続されている。更に測定側配管15と基準側配管16
にはそれぞれ排気用の三方電磁弁SVS、SV&が接続
されている。圧力調節弁12の出口側にはタンク13.
14に供給する空気圧の調節を目視するための圧力計2
1が接続されている。また容積計算に必要とされるデー
タとなるタンク13又は14内の圧力を検出するための
圧力検出器22がこの例ではタンク13に接続されてい
る。
Further, a differential pressure detector 19 for measuring the differential pressure between the measuring side piping 15 and the reference side piping 16 is connected by piping. Furthermore, measurement side piping 15 and reference side piping 16
are respectively connected to three-way solenoid valves SVS and SV& for exhaust. A tank 13 is provided on the outlet side of the pressure regulating valve 12.
Pressure gauge 2 for visually checking the adjustment of air pressure supplied to 14
1 is connected. Further, in this example, a pressure detector 22 is connected to the tank 13 for detecting the pressure inside the tank 13 or 14, which is data required for volume calculation.

タンク13と、被測定容器17と、これらに接続された
配管部分とを含む互いに気体が導通された閉じた系を測
定側空気系と呼ぶ、同様にタンク14と、基準容器18
と、これらに接続された配管部分とを含む互いに気体が
導通された閉じた系を基準側空気系と呼ぶ。測定側配管
15には既知の容積変化を測定側空気系に与えるための
容積付加器23が三方電磁弁SV?を介して接続されて
おり、基準側配管16には測定側空気系の全容積と基準
側空気系の全容積とのバランスを調整するための容積調
整器24が接続されている。容積調整器24はシリンダ
とピストンより構成され、つまみ24−1を回動するこ
とによりピストンを移動することができる。
A closed system that includes the tank 13, the container to be measured 17, and the piping section connected to these and which are in gas communication with each other is called the measurement side air system.Similarly, the tank 14 and the reference container 18
A closed system in which gas is conducted to each other, including the air conditioner and the piping portion connected to these, is called the reference side air system. The measurement side piping 15 includes a three-way solenoid valve SV?a volume adder 23 for applying a known volume change to the measurement side air system. A volume adjuster 24 for adjusting the balance between the total volume of the measurement side air system and the total volume of the reference side air system is connected to the reference side piping 16. The volume regulator 24 is composed of a cylinder and a piston, and the piston can be moved by rotating the knob 24-1.

ニー理 上述の構成において測定側空気系と基準側空気系が大気
圧に放置された状態で電磁弁SV3゜S Va 、S 
Vs 、  S Vhを閉じる0次に電磁弁sv、、s
v、を開きタンク13.14に圧力Ptの空気を充填し
、その後に電磁弁S v+ 、  S Vzを閉じ、電
磁弁SVs、SV4を開けた場合に差圧検出器19で検
出される差圧ΔPがどのように表わされるかを検出する
In the above configuration, when the measurement side air system and the reference side air system are left at atmospheric pressure, the solenoid valves SV3゜S Va , S
Vs, S Zero-order solenoid valve sv,,s that closes Vh
The differential pressure detected by the differential pressure detector 19 when the solenoid valves S v+ and S Vz are closed and the solenoid valves SVs and SV4 are opened. Detect how ΔP is expressed.

タンク13.14の配管部をも含む容積は互いに等しく
■7、容積付加器23が接続されてない状態、即ち電磁
弁SV?が閉じた状態の被測定容器17とそれに接続さ
れた測定側配管15を含む容積をVW、基準容器18と
それに接続された基準側配管16を含む容積をVW、電
磁弁SVs。
The volumes of the tanks 13 and 14 including the piping portions are equal to each other (7), and the volume adder 23 is not connected, that is, the solenoid valve SV? VW is the volume including the measured container 17 in a closed state and the measurement side pipe 15 connected thereto, VW is the volume including the reference container 18 and the reference side pipe 16 connected thereto, and is the solenoid valve SVs.

SV、を開けた後の測定側及び基準側空気系の圧力をそ
れぞれPw、PH1差圧検出器で検出される差圧をΔP
とする。
The pressure of the measurement side and reference side air system after opening the SV is Pw, respectively, and the differential pressure detected by the PH1 differential pressure detector is ΔP.
shall be.

V、−V、4=ΔV        −+11PwP、
=ΔP       ・・・(2)ボイルの法則より次
式が成立する。
V, -V, 4=ΔV -+11PwP,
=ΔP (2) According to Boyle's law, the following equation holds true.

Vt・Pt =(Vt+Vs) ・PM  −(31V
y・Pt−(Vy+VJ・Pil ・・・(41式(1
1,+21を式(4)に代入し、その結果に式(3)の
PHを代入すると、 VW ・Pt ”(Vy+VM+ΔV)(PM+AP)
となり、これよりΔPは次式で表わされる。
Vt・Pt=(Vt+Vs)・PM−(31V
y・Pt−(Vy+VJ・Pil...(41 formula (1
1, +21 into equation (4) and the PH of equation (3) into the result, VW ・Pt ”(Vy+VM+ΔV)(PM+AP)
From this, ΔP is expressed by the following equation.

ここでΔv<< (Vy +VN )が成り立つとする
と式(5)は次のように近位できる。
Assuming that Δv<< (Vy +VN) holds here, equation (5) can be approximated as follows.

(Vt+Vx)ズ 式(6)から次の事が理解できる。即ち、第1図に示す
構成においてVi、Vイは変化しないとみなせるので、
測定側空気系と基準側空気系との容積差ΔVがある場合
、電磁弁SVs、SV4を開けた後に検出される差圧Δ
Pはタンク13.14に与えた初期圧力Pアと容積差Δ
■の積に比例する。
(Vt+Vx) The following can be understood from equation (6). That is, in the configuration shown in FIG. 1, it can be assumed that Vi and Vi do not change, so
When there is a volume difference ΔV between the measurement side air system and the reference side air system, the differential pressure Δ detected after opening the solenoid valves SVs and SV4
P is the initial pressure Pa given to tank 13.14 and the volume difference Δ
■Proportional to the product of.

その比例定数にはに=Vy/(Vr+VH)”であり、
ΔP/Δv=Sとおけば式(6)は次のように変形でき
る。
Its proportionality constant is = Vy/(Vr+VH),
By setting ΔP/Δv=S, equation (6) can be transformed as follows.

ΔP Δ■ Sは第1図の構成における差圧検出器19の容積差に対
する差圧検出感度を表わしている。
ΔP Δ■ S represents the differential pressure detection sensitivity with respect to the volume difference of the differential pressure detector 19 in the configuration shown in FIG.

タンク13.14に与える初期圧力P?が一定であれば
式(7)はΔVが充分小さい範囲では常に成立するとい
えるので異なる容積差Δv1.Δvtに対シソレソれ5
=API/ΔV + 、 S =ΔPt/Δv2であれ
ば次式が成立する。
Initial pressure P given to tank 13.14? If Δv1. is constant, it can be said that equation (7) always holds true within a sufficiently small range of ΔV. Therefore, for different volume differences Δv1. Against Δvt 5
If = API/ΔV + and S = ΔPt/Δv2, the following equation holds true.

ΔV1   ΔV、  ΔVt−ΔvI即ち、異なる容
積差Δv1.ΔV2を与える2つの被測定容器を接続し
た場合についてそれぞれ差圧ΔP1.ΔP2を測定し、
式(8)により感度Sを計算することができる。実際に
は1つの被測定容器についてまず差圧ΔP1を測定し、
次に容積付加器23により大気圧の空気が入っている既
知の容積ΔV、を付加し、同様に差圧ΔP2を測定する
ΔV1 ΔV, ΔVt−ΔvI, that is, different volume differences Δv1. When two vessels to be measured giving ΔV2 are connected, the differential pressure ΔP1. Measure ΔP2,
Sensitivity S can be calculated using equation (8). In reality, the differential pressure ΔP1 is first measured for one container to be measured,
Next, a known volume ΔV containing air at atmospheric pressure is added by the volume adder 23, and the differential pressure ΔP2 is similarly measured.

付加した容積Δv3は式(8)における容積差の変化分
(Δv2−Δ■、)であり、従って式(8)から感度S
が計算できる。
The added volume Δv3 is the change in volume difference (Δv2−Δ■,) in equation (8), and therefore, from equation (8), the sensitivity S
can be calculated.

測定側空気系と基準側空気系の配管の内容積が同じにな
るよう設計すれば式(11においてΔ■は被測定容器1
7と基準容器18との容積差に等しい。
If the pipes of the measuring side air system and the reference side air system are designed to have the same internal volume, then Δ■ in Equation 11 is equal to
7 and the reference container 18.

従ってあらかじめ決めた初期圧力PTに対し上述のよう
に感度Sが計算されると、この感度Sを使って未知の容
積を持つ他の被測定容器17と基準容器18との容積差
ΔVを次式で求めることができる。
Therefore, when the sensitivity S is calculated as described above for the predetermined initial pressure PT, this sensitivity S is used to calculate the volume difference ΔV between the reference container 18 and another measured container 17 having an unknown volume using the following formula. It can be found by

ΔV=ΔP/S           ・・・(9)被
測定容器17と基準容器18の容積をそれぞれV、、V
、と表わせば被測定容器17の容積V。
ΔV=ΔP/S (9) Let the volumes of the measured container 17 and the reference container 18 be V, , V, respectively.
, is the volume V of the container 17 to be measured.

は V、−VII +ΔV            ・・・
αωで計算できる。但し、測定精度を上げるためにはΔ
v<< (’V、+VN )の条件を充分満足させる必
要があり、そのためには容積差ΔV自身が小さいことが
好ましい。即ち、基準容器18としては被測定容器17
の容積とできるだけ近いものを選択することが望ましい
。生産された同一種類の多数の容積のバラツキを測定す
るのであれば、それらの容器の適当なものを1つ選んで
それを基準容器18として使用し、式(9)によりその
基準容器18に対する他の容器の容積差を次々と測定す
ることが可能となる。
is V, -VII +ΔV...
It can be calculated using αω. However, in order to improve measurement accuracy, Δ
It is necessary to fully satisfy the condition v<<('V, +VN), and for this purpose, it is preferable that the volume difference ΔV itself is small. That is, the container to be measured 17 is used as the reference container 18.
It is desirable to select a volume that is as close as possible to the volume of . If you want to measure the variation in volume of a large number of produced containers of the same type, select one of those containers and use it as the reference container 18, and calculate the other containers for that reference container 18 using equation (9). This makes it possible to successively measure the difference in volume between containers.

一般的には設計された各種の被測定容器の設計容積はあ
らかじめわかっているので接続する被測定容器の種類を
変える場合に基準容器18を変更するかわりに容積調整
器24により所望の基準容積とほぼ同じとなるよう調整
設定してもよい。この調整によりΔVの容積が基準容器
18に与えられ、被測定容器17の容積とほぼ同じ容積
の基準容器を装着したことと等価になる。容積調整器2
4による調整の後に前述のように差圧ΔPI、ΔPgを
測定し、式(8)から感度を計算する。この場合、以後
の容積測定において基準容器18の内容積は(V、+Δ
V)であるとみなして式αφの計算を行う。即ち V、−V、+ΔV+ΔV     ・・・αDによって
被測定容器17の容積を計算する。
Generally, the designed volumes of various designed containers to be measured are known in advance, so when changing the type of container to be measured, instead of changing the reference container 18, the volume adjuster 24 can be used to adjust the desired reference volume. Adjustments may be made so that they are approximately the same. This adjustment gives a volume of ΔV to the reference container 18, which is equivalent to mounting a reference container with approximately the same volume as the volume of the container to be measured 17. Volume regulator 2
4, the differential pressures ΔPI and ΔPg are measured as described above, and the sensitivity is calculated from equation (8). In this case, the internal volume of the reference container 18 will be (V, +Δ
Equation αφ is calculated assuming that V). That is, the volume of the container 17 to be measured is calculated using V, -V, +ΔV+ΔV . . . αD.

羞it疋 上述においては被測定容器17は洩れの無いものとして
考えてきたが、次に微少な洩れがあった場合について検
討する。もし洩れが無ければ電磁弁SV3.SV4を時
点t、で開けた後の測定側及び基準側空気系間の差圧は
第3図の一点鎖線(イ)で示すように短時間δのうちに
一定値に達し、その後変化はしない、これを差圧検出器
19で観測した場合は、差圧検出器として例えばダイア
フラム型差圧検出器を使用した場合はそのダイアフラム
の変位の応答が遅いこととその過渡現象のため実&i 
(IT)で示すように立上りが遅くかつオーバーシュー
トした後に前記一定値に戻る。所が、被測定容器17に
その内容積に比べて微少な洩れがある場合は時間ととと
もに測定側空気系の圧力が減少し、従って差圧検出器1
9の出力も変化する。
In the above, it has been assumed that the container to be measured 17 has no leakage, but next we will consider the case where there is a slight leakage. If there is no leakage, solenoid valve SV3. After opening SV4 at time t, the differential pressure between the measurement side and reference side air systems reaches a constant value within a short time δ, as shown by the dashed line (a) in Figure 3, and does not change thereafter. When this is observed with the differential pressure detector 19, for example, if a diaphragm type differential pressure detector is used as the differential pressure detector, the response of the displacement of the diaphragm is slow and the transient phenomenon occurs.
As shown by (IT), the rise is slow and after overshooting, it returns to the constant value. However, if there is a small leak in the container 17 to be measured compared to its internal volume, the pressure in the measurement side air system will decrease over time, and therefore the differential pressure detector 1
The output of 9 also changes.

この変化は短い時間内では直線的変化とみなせるので、
差圧検出器19の応答特性も考慮すると検出された差圧
は実線(ハ)に示すように変化する。
This change can be regarded as a linear change within a short period of time, so
Considering the response characteristics of the differential pressure detector 19, the detected differential pressure changes as shown by the solid line (c).

電磁弁SV3.SV、を開けた直後(例えばδ後)にお
いでは実際に洩れて出た空気の量は無視できる程少いの
でその時の差圧を正しい差圧として使えばよい。その差
圧は曲線(ハ)の直線部分を延長して時点t0における
縦軸(差圧)と交叉する点の差圧値ΔP0とほぼ等しい
。線(ハ)の直線領域内における時点t1とt2とで検
出した差圧をΔP。
Solenoid valve SV3. Immediately after opening the SV (for example, after δ), the amount of air that actually leaked out is so small that it can be ignored, so the differential pressure at that time can be used as the correct differential pressure. The differential pressure is approximately equal to the differential pressure value ΔP0 at the point where the straight line portion of the curve (C) is extended and intersects the vertical axis (differential pressure) at time t0. The differential pressure detected between time points t1 and t2 within the linear region of line (c) is ΔP.

ΔP2とするとΔP0は次式で与えられる。When ΔP2 is assumed, ΔP0 is given by the following equation.

1、 −1゜ 弐叩により求めた差圧ΔP0を式(9)のΔPの代りに
使えば被測定容器17に洩れがあっても高い精度で基準
容器18に対する容積差Δ■を求めることができる。式
(2)は洩れに対する差圧の補正を表わしているが、洩
れ以外の原因、例えば閉じた空気系内の気体の温度低下
によっても差圧に変化が生じる。しかしながらその変化
が短期間内で直線的であるとみなせるならば、同様に補
正が可能である。結局式亜による補正は、洩れ、温度変
化、その他すべての原因による総合的な差圧変化を補正
していることになる。
1. If the differential pressure ΔP0 obtained by tapping -1° is used in place of ΔP in equation (9), the volume difference Δ■ with respect to the reference container 18 can be determined with high accuracy even if there is a leak in the measured container 17. can. Although equation (2) represents a correction of the differential pressure for leakage, changes in the differential pressure also occur due to causes other than leakage, such as a decrease in the temperature of the gas in a closed air system. However, if the change can be considered linear within a short period of time, correction is possible as well. After all, the correction by Equation A corrects the overall differential pressure change due to leakage, temperature change, and all other causes.

怒1J1旧 同じ値の検出感度Sを使って式(9)により多数の容器
の基準容器18に対する容積差ΔVを順次測定していく
場合、式(7)から明らかなようにタンク13.14に
与える初期圧力P7は測定毎に常に同じである必要があ
るが、圧縮空気源11の圧力が変化すれば当然P7も変
化する。しかしながらタンク13.14の容積Vア及び
基準容器1日の容積■、は変化しないので比例定数 に=VT/(VT+Vg)”は一定テアル、従ッテタン
ク13.14に与える初期圧力がP′7の時の検出感度
をS′と表わせば次式が成立する。
When the volume difference ΔV of a large number of containers with respect to the reference container 18 is sequentially measured using equation (9) using the same detection sensitivity S, as is clear from equation (7), The initial pressure P7 to be applied must always be the same for each measurement, but if the pressure of the compressed air source 11 changes, P7 will naturally change as well. However, since the volume Va of the tank 13.14 and the daily volume of the reference container 2 do not change, the proportionality constant = VT/(VT+Vg) is constant. If the detection sensitivity at the time is expressed as S', the following equation holds true.

S’−−に−P’ア      ・・・aS式(7)と
(至)により次式が得られる。
S'-- to -P'a...aS Formula (7) and (to) yield the following formula.

S’=S−P’T/P丁       ・・・αO従っ
て各被測定容器17の測定において電磁弁sv、、sv
zを開けてタンク13.14に充填した空気の圧力P′
アを圧力検出器22により検出し、弐〇〇により感度を
補正し、その補正した感度S′を式(9)における感度
Sの代りに使えばよく、容積測定毎にあらかじめ感度測
定を行う必要はない。
S'=S-P'T/Pd...αO Therefore, in the measurement of each container 17 to be measured, the solenoid valves sv,, sv
Pressure P' of air filled in tank 13.14 after opening z
A can be detected by the pressure detector 22, the sensitivity can be corrected by 200, and the corrected sensitivity S' can be used in place of the sensitivity S in equation (9). It is necessary to measure the sensitivity in advance for each volume measurement. There isn't.

胴11旧旧l衣 第2図は第1図の容積測定機構部の動作を制御し、かつ
各種定数及び測定値を受けて検出感度Sあるいは容積差
ΔV等を計算するための制御部を示し、マイクロコンピ
ュータ31とその他の周辺回路とから構成されている。
Figure 2 shows a control unit that controls the operation of the volume measuring mechanism shown in Figure 1 and calculates the detection sensitivity S or volume difference ΔV based on various constants and measured values. , a microcomputer 31, and other peripheral circuits.

マイクロコンビエータ31はCPU 41. RAM 
42. ROM 43、入力ボート44、出力ポート4
5を含み、これらは共通バス46を介して互いに接続さ
れている。
The micro combinator 31 has a CPU 41. RAM
42. ROM 43, input port 44, output port 4
5, which are connected to each other via a common bus 46.

第1図における差圧検出器19及び圧力検出器22の出
力はマルチプレクサ32の入力側にそれぞれ接続され、
差圧信号ΔP及び圧力信号PTの一方が選択されて出力
側に接続される。マルチプレクサ32の出力側は増幅器
33に接続され、差圧信号ΔP又は圧力信号Ptが増幅
される。増幅器33の出力はAD変換器の入力に接続さ
れディジタル信号に変換されるとともにモニター用のメ
ータ35にも接続されアナログ表示される。AD変換器
34の出力は入力ボート44を介してコンピュータ31
内に取込まれる。入力ボート44には各種タイマの設定
時間’I”+ 、Tt 、Ts及び容積付加器23の付
加容積値ΔVを入力するためのキーボード36が接続さ
れている。出力ポート45には計算結果を表示するため
の表示器37、及び第1図における各電磁弁の開閉駆動
を行うための駆動回路38が接続されている。ROM 
43にはこの発明の装置による検出感度測定と容積差測
定のための第4図及び第5図に示す動作手順がプログラ
ムとして記憶されており、CPUはこのプログラムに従
って駆動回路38による電磁弁S V +〜SV、の開
閉制御、マルチプレクサ32における信号の選択、表示
器37における計算結果の表示、指示器39に対する指
示表示等の他に検出感度、及び測定容積等の必要な計算
を実行する。
The outputs of the differential pressure detector 19 and the pressure detector 22 in FIG. 1 are respectively connected to the input side of the multiplexer 32,
One of the differential pressure signal ΔP and the pressure signal PT is selected and connected to the output side. The output side of the multiplexer 32 is connected to an amplifier 33, and the differential pressure signal ΔP or the pressure signal Pt is amplified. The output of the amplifier 33 is connected to the input of the AD converter and converted into a digital signal, and is also connected to a monitor meter 35 for analog display. The output of the AD converter 34 is sent to the computer 31 via an input port 44.
taken within. A keyboard 36 is connected to the input port 44 for inputting set times 'I''+, Tt, Ts of various timers and the added volume value ΔV of the volume adder 23.The output port 45 displays the calculation results. A display 37 for operating the valve and a drive circuit 38 for opening and closing each electromagnetic valve shown in FIG. 1 are connected.ROM
43 stores as a program the operating procedures shown in FIGS. 4 and 5 for measuring the detection sensitivity and measuring the volume difference by the apparatus of the present invention, and the CPU operates the solenoid valve S V by the drive circuit 38 according to this program. In addition to controlling the opening and closing of + to SV, selecting signals at the multiplexer 32, displaying calculation results on the display 37, displaying instructions on the indicator 39, etc., necessary calculations such as detection sensitivity and measurement volume are executed.

軌−作(感度測定) まずこの発明の装置により容積測定を行う前に検出感度
Sを測定する。そのためには被測定容器17として洩れ
のないものを測定側配管15に接続する。次に圧力計2
1の指示を監視しながら減圧弁12を調節してタンク1
3.14に与える空気の圧力を設定する。設定が終ると
操作者はキーボード36により開始の指示を入力する。
Trajectory Creation (Sensitivity Measurement) First, the detection sensitivity S is measured before volumetric measurement is performed using the apparatus of the present invention. For this purpose, a leak-free container 17 to be measured is connected to the measurement side piping 15. Next, pressure gauge 2
While monitoring the instructions in step 1, adjust the pressure reducing valve 12 to remove tank 1.
3. Set the air pressure to be applied in 14. After completing the settings, the operator inputs a start instruction using the keyboard 36.

以下第4図に示す動作のフローチャートに従って第1図
の機構部を制御しかつ第2図の制御部で測定データにも
とづき各種計算を行う。
Hereinafter, the mechanical section shown in FIG. 1 is controlled according to the operation flowchart shown in FIG. 4, and various calculations are performed based on the measured data in the control section shown in FIG.

ステップS1で電磁弁SVs、SVnを閉じ、SV、、
SVa 、SVtを開き大気に開放する。
In step S1, close the solenoid valves SVs and SVn, and SV...
SVa and SVt are opened to the atmosphere.

ステップSsで電磁弁SV+ 、SV2を開はタンク1
3.14に設定した圧力の空気を充填する。
In step Ss, open solenoid valves SV+ and SV2 in tank 1.
3. Fill with air at the pressure set in 14.

・ステップS81でRAM42内の所定のアドレスに設
定したT+タイマを始動し、時間T、が経過したかを判
定する。TIが経過したならばタンク13゜14内の圧
力は平衡に達っしたと判断してステップS4で電磁弁S
V+、SVz、SVs、SVi 、SVtを閉じ、ステ
ップS、で電磁弁S V 3. S V aを開く。ス
テップS、でRAM42の所定のアドレスに設定したT
寡タイマを始動し、時間Ttが経過したかを判定する。
- In step S81, a T+ timer set at a predetermined address in the RAM 42 is started, and it is determined whether time T has elapsed. When TI has elapsed, it is determined that the pressure in the tanks 13 and 14 has reached equilibrium, and the solenoid valve S is activated in step S4.
Close V+, SVz, SVs, SVi, and SVt, and close solenoid valve S V in step S.3. Open S V a. T set at the predetermined address of the RAM 42 in step S.
A low timer is started and it is determined whether the time Tt has elapsed.

T2が経過したならば測定側空気系及び基準側空気系の
圧力はそれぞれ平衡に達っしたと判断しステップS、で
マルチプレクサ32により差圧ΔPを選択して差圧検出
器19からのその時の検出差圧ΔP1を取込みRAM4
2の所定アドレスに記憶する。ステップS、で電磁弁S
Vtを開き所定の容積ΔV、を測定側空気系に付加する
。ステップS、でT2タイマを再び始動させ時間T2が
経過したかを判定する。T2が経過したならばステップ
31+1でマルチプレクサ32により差圧ΔPを選択し
て差圧検出器19からの検出差圧ΔP2を取込みRAM
42の所定アドレスに記憶する。ステップS、で差圧Δ
P1とΔP、の変化分ΔPを計算し、ステップSI!で
付加した容積ΔV、に対する差圧変化ΔPを表わす検出
感度Sを計算する。次にステップSI!で電磁弁S、V
3゜SV4を閉じ、電磁弁SV3.SV&を開き、空気
系を大気に開放(ベント)する6次にステップS14で
再びT、タイマを始動し、時間T、が経過したならばス
テップSI8で指示器39を点灯して感度測定を終了す
る。ステップSI!で計算された感度SはRAM42の
所定アドレスに記憶しておく。
When T2 has elapsed, it is determined that the pressures of the measurement side air system and the reference side air system have reached equilibrium, and in step S, the multiplexer 32 selects the differential pressure ΔP to calculate the current value from the differential pressure detector 19. Load detected differential pressure ΔP1 into RAM4
2 at a predetermined address. Step S, solenoid valve S
Vt is opened and a predetermined volume ΔV is added to the measurement side air system. In step S, the T2 timer is started again and it is determined whether time T2 has elapsed. After T2 has elapsed, in step 31+1, the multiplexer 32 selects the differential pressure ΔP and takes in the detected differential pressure ΔP2 from the differential pressure detector 19 and stores it in the RAM.
42 at a predetermined address. In step S, the differential pressure Δ
Calculate the change ΔP between P1 and ΔP, and step SI! Calculate the detection sensitivity S representing the differential pressure change ΔP with respect to the added volume ΔV. Next step SI! Solenoid valve S, V
3°Close SV4 and open solenoid valve SV3. Open the SV& and open (vent) the air system to the atmosphere.6 Next, in step S14, start the timer T again, and when the time T has elapsed, turn on the indicator 39 in step SI8 to end the sensitivity measurement. do. Step SI! The calculated sensitivity S is stored at a predetermined address in the RAM 42.

勉−立(容積測定) 次に第5図に示すフローチャートに従って被測定容器1
7と基準容器18の容積差ΔV及び/又は被測定容器1
7の内容積■1を測定する動作について説明する。
Study (volume measurement) Next, measure the container 1 according to the flowchart shown in Fig. 5.
Volume difference ΔV between 7 and reference container 18 and/or measured container 1
The operation of measuring the internal volume 1 of 7 will be explained.

被測定容器17を測定側配管15に取付けた後、操作者
がキーボードより開始の指示を行うとステップS+ で
電磁弁SV、、SV4を閉じ、SVs。
After the container 17 to be measured is attached to the measurement side piping 15, when the operator issues a start instruction from the keyboard, the solenoid valves SV, SV4 are closed in step S+, and SVs is activated.

SV、を開く。ステップS2で電磁弁S V 1. S
 V tを開きへタンク13.14に設定された圧力の
空気を充填する。ステップS、でRAM42内の所定ア
ドレスに設定したT、タイマを始動させ、時間T1が経
過したかを判定する。T、が経過したならばステップS
4でタンク内圧力P′アを測定する。
Open SV. In step S2, the solenoid valve S V1. S
Open Vt and fill the tank 13.14 with air at the set pressure. In step S, a timer T set at a predetermined address in the RAM 42 is started, and it is determined whether time T1 has elapsed. If T has elapsed, step S
4, measure the tank internal pressure P'a.

ステップSsで感度測定工程において)lAl’142
に記憶したタンク圧力P?と感度Sを読み出し補正感度
S′を弐〇旬により計算する。ステップS、で電磁弁S
V+ 、SVt、SVs 、SVaを閉じ、ステップS
、で電磁弁SV3.SVJを開く0次にステップSIで
RAM42の所定のアドレスに設定したT2タイマを始
動し、時間T2が経過したかを判定する。T2が経過し
たならばステップS、で測定側と基準側の空気系の圧力
差ΔP、を測定RAM42に取込む。ステップ316で
RAM 42の所定アドレスに設定したT、タイマを始
動し時間T4が経過したかを判定する。T4が経過した
ならばステップS、で再び2つの空気系の差圧ΔP、を
測定しRAM42に取込む、ステップS1!でRAM4
2から測定差圧ΔP+、ΔPg及びタイマ時間Tt。
In the sensitivity measurement process in step Ss) lAl'142
Tank pressure P stored in ? Then, the sensitivity S is read out and the corrected sensitivity S' is calculated by 2. Step S, solenoid valve S
Close V+, SVt, SVs, SVa, step S
, solenoid valve SV3. Opening SVJ Next, in step SI, a T2 timer set at a predetermined address in the RAM 42 is started, and it is determined whether time T2 has elapsed. After T2 has elapsed, in step S, the pressure difference ΔP between the air systems on the measurement side and the reference side is loaded into the measurement RAM 42. At step 316, a timer is started with T set at a predetermined address in the RAM 42, and it is determined whether time T4 has elapsed. After T4 has elapsed, in step S, the differential pressure ΔP between the two air systems is measured again and loaded into the RAM 42, step S1! RAM4
2 to the measured differential pressure ΔP+, ΔPg and timer time Tt.

T4、即ち(t+−to)および(tz −t+ )を
読み出し、式叩により補正差圧ΔP0を計算する。ステ
ップ5IffでRAM42から補正感度S′を読み出し
式(9)により基準容器18に対する被測定容器17の
補正された容積差ΔVを計算する。次にステップ314
で容積差ΔVを表示器37に表示し、ステップsrsで
電磁弁3V、、SV、を閉じ、電磁弁S Vs 、 S
 V&を開く、ステップS I 6 i’ T 3タイ
マを始動し、時間T、が経過したならばステップSL’
lで指示器39を点灯し測定を終了する。もし必要であ
ればステップS11とS14の間で被測定容器17の容
積■、を式αωにより計算するステップS′1.を点線
で示すように設けてもよい。
T4, that is, (t+-to) and (tz-t+) are read out, and the corrected differential pressure ΔP0 is calculated by formula. In step 5Iff, the corrected sensitivity S' is read from the RAM 42 and the corrected volume difference ΔV of the measured container 17 with respect to the reference container 18 is calculated using equation (9). Then step 314
In step srs, the volume difference ΔV is displayed on the display 37, and in step srs, the solenoid valves 3V, SV, are closed, and the solenoid valves S Vs , S
Open V&, step SI 6 i' T 3 Start timer, and if time T, has elapsed, step SL'
Turn on the indicator 39 with l to end the measurement. If necessary, step S'1. calculates the volume 1 of the container 17 to be measured between steps S11 and S14 using the formula αω. may be provided as shown by the dotted line.

前述のように容積調整は、被測定容器I7の種類、即っ
てその容積が変わった場合、基準容器を交換せず容積調
整器24を調整することによって等価的に新しい種類の
被測定容器17とほぼ等しい容積の基準容積18を取付
けたことと同じになる。従って必ずしも被測定容器の種
類の数だけ基準容器を用意する必要はなく、容積調整器
24を設けることによって用意しなければならない基準
容器の数を減らすことが可能である。この場合、第4図
の感度測定の前に移動調整した容器調整器24の容積変
化Δvcは第5図の容積測定時にもそのまま保持してお
く必要がある。従って第5図のステップSl、Iにおけ
る測定した容積差は、使用した基準容器18の容積をv
′、とすれば、等価基準容#lkv、−(v’、+ΔV
c)に対する容積差を表わしており、弐〇のは次のよう
に変形される。
As mentioned above, when the type of the container I7 to be measured, that is, its volume, changes, the volume adjustment can be performed by adjusting the volume adjuster 24 without replacing the reference container to equivalently change the type of container 17 to be measured. This is the same as installing a reference volume 18 with a volume approximately equal to . Therefore, it is not necessarily necessary to prepare as many reference containers as there are types of containers to be measured, and by providing the volume adjuster 24, it is possible to reduce the number of reference containers that need to be prepared. In this case, the volume change Δvc of the container adjuster 24, which was moved and adjusted before the sensitivity measurement shown in FIG. 4, needs to be maintained as it is during the volume measurement shown in FIG. Therefore, the volume difference measured in steps Sl and I in FIG.
′, equivalent reference volume #lkv, −(v′, +ΔV
It represents the volume difference with respect to c), and the number 20 is transformed as follows.

v、−(v’、+ΔV、)=ΔV   ・・・(2)従
って被測定容器17の容積を求める場合に第5図のステ
ップS’+3において■1の替りに(■’+s+ΔVc
)を使って計算する必要がある。勿論、容積調整器24
を測定側空気系に取付けた場合は弐〇〇において■、の
替りに(V、+ΔVC)を使えばよい。
v, - (v', +ΔV,) = ΔV (2) Therefore, when determining the volume of the container 17 to be measured, in step S'+3 of FIG.
) must be used to calculate. Of course, the volume regulator 24
If it is installed in the air system on the measurement side, (V, +ΔVC) can be used instead of ■ in 200.

多数の容器に、ついて測定を行うにはまず第4図のフロ
ーチャートに示す検出感度Sを求め、あとはそれぞれの
被測定容器について第5図に示す測定を実行すればよい
。勿論被測定容器ごとに初期タンク圧をptに正しく設
定すれば第5図におけるステップSa、Ssは省略し、
ステップSISにおいて補正しない感度Sを使えばよい
In order to perform measurements on a large number of containers, it is sufficient to first determine the detection sensitivity S shown in the flowchart of FIG. 4, and then carry out the measurement shown in FIG. 5 for each container to be measured. Of course, if the initial tank pressure is correctly set to pt for each container to be measured, steps Sa and Ss in FIG. 5 can be omitted.
It is sufficient to use the sensitivity S that is not corrected in step SIS.

式il+で定義しているのは常に測定側空気系と基準側
空気系の容積差であり、従って容積付加器23は基準側
ではなく基準側空気系に取付けてもよい。
What is defined by the formula il+ is always the difference in volume between the measurement side air system and the reference side air system, so the volume adder 23 may be attached to the reference side air system instead of the reference side.

同様に容積調整器24も基準側ではなく測定側空気系に
取付けてもよい、更に容積付加器23と容積調整器24
を同じ側に付けてもよい、容積調整器24は中立点から
容積を増加する方にも減少する方にも調整できるものが
好ましい。
Similarly, the volume adjuster 24 may also be attached to the measurement side air system instead of the reference side.
It is preferable that the volume adjuster 24 can be adjusted to increase or decrease the volume from the neutral point.

式(6)ニおける比例定数K = V丁/(VT+ V
M)”は・与えられたvMに対してV y = V 、
lに選ぶとKが最大となる。即ちもし測定すべき各容器
の体積がほぼ同じ大きさであれば、あらかじめタンク1
3゜14の容積をv、 =V、、となるように選んで装
置を設計することにより最適感度を得ることができる。
The proportionality constant K in equation (6) = V / (VT + V
M)” is V y = V for a given vM,
If you choose l, K will be the maximum. In other words, if the volumes of the containers to be measured are approximately the same,
Optimum sensitivity can be obtained by designing the device by choosing a volume of 3°14 such that v, =V, .

「発明の作用効果」 以上説明したようにこの発明によれば水を使わず気体を
使って被測定容器の容積を次々と測定することができる
ため特に生産ラインにおける容積測定に適している。ま
たその容積測定のためには容積付加器の使用によりあら
かじめ容積変化に対する差圧変化の検出感度を測定して
おけば、被測定容器に洩れがあったり、温度により気体
圧力が変化しても較正された正しい容積差あるいは容積
を測定することが可能である。
"Operations and Effects of the Invention" As explained above, according to the present invention, the volume of containers to be measured can be measured one after another using gas without using water, and is therefore particularly suitable for volume measurement on a production line. In addition, in order to measure the volume, if you use a volume adder to measure the detection sensitivity of differential pressure changes with respect to volume changes in advance, it will be possible to calibrate even if there is a leak in the container to be measured or the gas pressure changes due to temperature. It is possible to measure the correct volume difference or volume created.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は容積測定装置の機構部を示す図、第2図は容積
測定装置の制御部を示す図、第3図は差圧検出器の時間
に対する出力変化を示す図、第4図は感度測定動作を示
すフローチャートご第5図は容積測定動作を示すフロー
チャートである。 11:圧縮空気源、12:減圧弁、13.14:タンク
、15:測定側配管、16二基準側配管、17:被測定
容器、18:基準容器、19:差圧検出器、21:圧力
計、22:圧力検出器、23:容積付加器、24:容積
調整器、35:メータ型電圧計、S V +〜SV、:
二方電磁弁。
Figure 1 is a diagram showing the mechanism of the volume measuring device, Figure 2 is a diagram showing the control unit of the volume measuring device, Figure 3 is a diagram showing the output change over time of the differential pressure detector, and Figure 4 is the sensitivity. Flowchart showing measurement operation FIG. 5 is a flowchart showing volume measurement operation. 11: Compressed air source, 12: Pressure reducing valve, 13.14: Tank, 15: Measurement side piping, 16 Two reference side piping, 17: Measured container, 18: Reference container, 19: Differential pressure detector, 21: Pressure meter, 22: pressure detector, 23: volume adder, 24: volume regulator, 35: meter type voltmeter, SV + ~ SV,:
Two-way solenoid valve.

Claims (5)

【特許請求の範囲】[Claims] (1)A 被測定容器側と基準容器側とにそれぞれ気体
を供給するための互いにほぼ等しい容積を有する一対の
タンクと、 B 前記被測定容器と基準容器に気体を供給した状態で
その一方の側に既知の容積変化を与える手段と、 C 前記被測定容器と基準容器との間の差圧を測定する
手段と、 D 前記容積変化と、その容積変化が与えられる前と後
における差圧の変化分とから検出感度を表わす容積変化
対差圧変化比を算出する手段と、 E 測定した差圧と検出感度とから前記被測定容器の容
積を算出する手段、 とから成る容積測定装置。
(1) A: A pair of tanks having approximately equal volumes for supplying gas to the measurement container side and the reference container side, respectively; (C) means for measuring the differential pressure between the container to be measured and the reference container; and (D) measuring the volume change and the differential pressure before and after the volume change is applied. A volume measuring device comprising: means for calculating a volume change to differential pressure change ratio representing detection sensitivity from the change; and E means for calculating the volume of the container to be measured from the measured differential pressure and detection sensitivity.
(2)前記タンクの初期圧力を測定する手段と、検出感
度を測定する時に与えた前記タンクの初期圧力と、容積
測定をする時に与えた前記タンクの初期圧力とから検出
感度を補正するための手段とを含む特許請求の範囲第1
項記載の容器測定装置。
(2) a means for measuring the initial pressure of the tank, a means for correcting the detection sensitivity from the initial pressure of the tank given when measuring the detection sensitivity, and the initial pressure of the tank given when measuring the volume; The first claim that includes the means
Container measuring device as described in section.
(3)前記差圧を測定する手段により所定時間をおいて
測定した2つの差圧データから測定差圧を較正する手段
を含む特許請求の範囲第1項記載の容積測定装置。
(3) The volume measuring device according to claim 1, further comprising means for calibrating the measured differential pressure from two differential pressure data measured at a predetermined time interval by the differential pressure measuring means.
(4)前記被測定容器側と基準容器側のいずれか一方に
取付けられ、容積を均衡させるための容積調整手段を含
む特許請求の範囲第1項記載の容積測定装置。
(4) The volume measuring device according to claim 1, further comprising a volume adjusting means attached to either the measured container side or the reference container side for balancing the volumes.
(5)等しい圧力の気体が充填されたほぼ等しい容積を
有する一対のタンクに感度測定用被測定容器及び基準容
器をそれぞれ接続導通させる工程と、その導通後におけ
る前記感度測定用被測定容器と基準容器の差圧を測定す
る工程と、 前記感度測定用被測定容器と基準容器のいずれか一方に
既知の容積変化を与える工程と、 前記容積変化を与えた後の前記感度測定用被測定容器と
基準容器の差圧を測定する工程と、測定した2つの差圧
と前記容積変化とから検出感度を表わす容積変化対差圧
変化比を算出する工程と、 等しい圧力の気体が充填された前記一対のタンクに被測
定容器と前記基準容器をそれぞれ接続導通させる工程と
、 その導通後における前記被測定容器と基準容器の差圧を
測定する工程と、 その測定した差圧と検出感度とから前記基準容器に対す
る前記被測定容器の容積差を算出する工程、 とを含む容積測定方法。
(5) Connecting and electrically connecting the container to be measured for sensitivity measurement and the reference container to a pair of tanks having approximately equal volumes filled with gas at the same pressure, and the container to be measured for sensitivity measurement and the reference after the electrical connection. a step of measuring the differential pressure of the container; a step of applying a known volume change to either the container to be measured for sensitivity measurement or the reference container; and the container to be measured for sensitivity measurement after the volume change has been applied. a step of measuring the differential pressure of the reference container; a step of calculating a volume change to differential pressure change ratio representing detection sensitivity from the two measured differential pressures and the volume change; and the pair filled with gas of equal pressure. A step of connecting and electrically connecting the container to be measured and the reference container to the tank, a step of measuring the differential pressure between the container to be measured and the reference container after the electrical connection, and determining the reference container from the measured differential pressure and detection sensitivity. A volume measuring method comprising: calculating a volume difference of the container to be measured with respect to the container.
JP62058063A 1987-02-25 1987-03-13 Device and method for measuring capacity Pending JPS63223529A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62058063A JPS63223529A (en) 1987-03-13 1987-03-13 Device and method for measuring capacity
US07/148,526 US4888718A (en) 1987-02-25 1988-01-26 Volume measuring apparatus and method
KR1019880001587A KR910004621B1 (en) 1987-02-25 1988-02-15 Volume measure system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62058063A JPS63223529A (en) 1987-03-13 1987-03-13 Device and method for measuring capacity

Publications (1)

Publication Number Publication Date
JPS63223529A true JPS63223529A (en) 1988-09-19

Family

ID=13073449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62058063A Pending JPS63223529A (en) 1987-02-25 1987-03-13 Device and method for measuring capacity

Country Status (1)

Country Link
JP (1) JPS63223529A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889757A (en) * 1972-02-24 1973-11-22
JPS5484763A (en) * 1977-12-19 1979-07-05 Mitsubishi Electric Corp Volume measuring method and apparatus
JPS5485062A (en) * 1977-12-19 1979-07-06 Mitsubishi Electric Corp Method and apparatus of measuring volume

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889757A (en) * 1972-02-24 1973-11-22
JPS5484763A (en) * 1977-12-19 1979-07-05 Mitsubishi Electric Corp Volume measuring method and apparatus
JPS5485062A (en) * 1977-12-19 1979-07-06 Mitsubishi Electric Corp Method and apparatus of measuring volume

Similar Documents

Publication Publication Date Title
US4888718A (en) Volume measuring apparatus and method
US4686638A (en) Leakage inspection method with object type compensation
US4523452A (en) Method of measuring leak rates
US3918291A (en) Method and apparatus for testing leakage rate
US4670847A (en) Pressure variation detecting type leakage inspection equipment
KR20090003195A (en) Leakage inspecting method and leakage inspecting device for pipe lines
JPH0466307B2 (en)
US9429493B2 (en) Manifold assembly for a portable leak tester
CN104501899A (en) Device and method for precise measurement of volume and density of object
CN106525333A (en) Simple micro-pressure instrument calibration device
JP2001066211A (en) Method and apparatus for automatically calibrating transmitter
JPH03170040A (en) Accuracy confirmation device for automatic safety valve inspection device
JPS63223529A (en) Device and method for measuring capacity
JP2012255687A (en) Pressure leakage measuring method
JP2000039347A (en) Flowrate inspection device
JPS63208720A (en) Device and method for measuring capacity
US4515012A (en) Valve testing system utilizing an artificial atmosphere
JPH04230830A (en) Method and apparatus for analyzing quantity of dispersed gas in liquid
JPS5920093B2 (en) Leakage measuring device
JP2618952B2 (en) Calibration device for differential pressure transmitter
JP3715543B2 (en) Airtight performance test method
RU2298774C1 (en) Method for controlling reservoir sealing tightness
RU2282166C1 (en) Device for calibrating pressure gages
US11680866B2 (en) Bleeding air regulator control pneumatic circuit, and leakage detection system for testing a device under test
JP3186644B2 (en) Gas leak inspection method