JPS63222891A - Image-receiving sheet for thermal transfer recording - Google Patents

Image-receiving sheet for thermal transfer recording

Info

Publication number
JPS63222891A
JPS63222891A JP62057271A JP5727187A JPS63222891A JP S63222891 A JPS63222891 A JP S63222891A JP 62057271 A JP62057271 A JP 62057271A JP 5727187 A JP5727187 A JP 5727187A JP S63222891 A JPS63222891 A JP S63222891A
Authority
JP
Japan
Prior art keywords
image
layer
receiving sheet
thermal transfer
transfer recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62057271A
Other languages
Japanese (ja)
Other versions
JP2555342B2 (en
Inventor
Takashi Toyoda
昂 豊田
Masatsuki Yamanaka
昌月 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yupo Corp
Original Assignee
Yupo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yupo Corp filed Critical Yupo Corp
Priority to JP62057271A priority Critical patent/JP2555342B2/en
Publication of JPS63222891A publication Critical patent/JPS63222891A/en
Application granted granted Critical
Publication of JP2555342B2 publication Critical patent/JP2555342B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/40Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
    • B41M5/41Base layers supports or substrates

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

PURPOSE:To enhance adhesion between an ink-receiving layer and a thermal transfer film and obtain excellent clear transferred images, by using a specified polyolefin synthetic resin film as a base, and providing a specified thick image- receiving layer on the surface of the base. CONSTITUTION:An image-receiving sheet comprises a base 12 constituted of a polyolefin synthetic resin film having a brightness according to JIS P-8123 of at least 90%, a center line average roughness Ra according to JIS B-0601 of 0.3-0.55mum and a compressibility under a stress of 32kg/cm<2> of 15-30%, and an image-receiving layer 11 having a thickness of 0.2-20mum is provided on the surface of the base 12. The compressible property of the base 12 enhances the adhesion between the image-receiving layer 11 as the surface layer and a transfer film 2 when the image-receiving sheet is used as one for thermal transfer recording, and even when the surface of the layer 11 is rugged, projected parts of the surface are pressed into the inside part of the image-receiving sheet 1, resulting in that excellent transferred images are obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は熱転写記録用受容シートに関し、特にサーマル
ヘッド等の電気信号により文字や画像を受容体上に形成
するビデオプリンター等に用いるカラーハードコピー用
の熱転写記録用受容シートに関するものである。 [従来の技術] 従来、顔料を含む熱溶融型色材や昇華性又は気化性染料
を含有する転写層を有する転写シートと受容シートとを
重ね合わせ、転写シートを加熱して、転写層に含まれる
顔料若しくは染料を熱溶融、昇華又は気化させて受容シ
ートに転着させ、受容シート上に顔料画像又は染料画像
を形成させる熱転写方法は知られている。 具体的には、サーマルヘッド等の電気信号により制御さ
れる熱源を用いた転写型感熱記録方式では、第2図のよ
うに色材層22と基体21を有する転写体2と、画像受
容層llと支持体12を有する受容シート1をドラム3
と熱源4の間に挟着させて、電気信号に応じて層22の
色材を画像受容層ll上に転写することによりカラーハ
ードコピーを得ている。 画像受容層11は、用いる色材の内容により異り、顔料
を含む熱溶融型色材の場合は、ポリアクリル系やポリオ
レフィン系等の高分子材料又はそれらに活性白土等の無
機充填材を混合したものからなり、昇華性塩基性染料型
色材の場合には活性白土(活性クレー)層、昇華性分散
染料型色材の場合にはポリエステル等の高分子材料層等
からなっている。 従来の受容体では支持体の厚みむら、又は表面凹凸のた
め画像受容層11の表面は、 5〜15μ■の凹凸があ
り、また l履■当り重量%〜20gmのうねりがあっ
た。この凹凸又はうねりは、スーパーカレンダーによる
表面処理によって多少の改善はなされるが、その改善に
は限界があった。このため。 色材層22から転写される色材は、画像受容層11の表
面凹凸が3〜5鉢■以上又はうねりが1■当りIOμ園
以上では熱溶融色材は勿論、昇華性色材でも画信号に応
じ正確には転写されず、画像のドツトぬけ、ドツト欠は
等の画像品質の乱れを生じ、中間調にザラツキ感を与え
ていた(特開昭59−214698号)。 また、支持体12としては、紙や無機微細粉末を40〜
50重量2含有する熱可塑性樹脂の延伸フィルムよりな
る合成紙(特公昭4B−40794号)、透明なポリエ
チレンテレフタレートフィルムか、または白色度及びイ
ンキ受容性を高めるため、透明フィルムの表面にシリカ
や炭酸カルシウム等の無機化合物をバインダーと共に塗
布した塗工合成紙が用いられる。 熱転写された受容シートのアフターユース(複写、鉛筆
筆記性、保存性等)を考慮した場合、熱転写記録用画像
受容シートとしては、強度、寸法安定性、無塵性の面で
合成樹脂フィルムが好ましいが、透明なプラスチックフ
ィルムは白色度が低くて隠蔽性に欠け、画像のコントラ
ストが弱いため、解読しにくい欠点がある。 したがって、白色度が90%以上と高い無機微細粉末含
有合成樹脂フィルム若しくは透明フィルムの表面にイン
ク受容層を設けた塗工合成樹脂フィルムが好ましい。 しかしながら、後者の塗工合成樹脂フィルムは画像のコ
ントラストが良好になる程度の白色度(85z以上、好
ましくは90%以上)を得るためには、塗工剤を大量に
塗工することが必要であり、経済的に不利であるばかり
でなく、熱転写時に塗[受容層がインクシート側にトラ
ッピングしたり、支持体自体に適度な圧縮率がなく固い
ために、熱転写時の連続階調性や自抜けによるザラツキ
感に問題があった。 前者の無機微細粉末を含有する熱可塑性樹脂フィルムの
延伸物よりなる多層合成樹脂フィルムは表面粗さの良好
かつ圧縮性を有する熱転写記録用画像受容シートとして
熱転写時の連続階調性や多重転写性、鉛筆筆記性、耐水
性等の面で優れている。
[Industrial Application Field] The present invention relates to a receiving sheet for thermal transfer recording, and particularly to a receiving sheet for thermal transfer recording for color hard copies used in video printers, etc., which form characters and images on a receptor using electrical signals from a thermal head, etc. It is related to. [Prior Art] Conventionally, a transfer sheet having a transfer layer containing a heat-melting coloring material containing a pigment or a sublimable or vaporizable dye and a receiving sheet are superimposed, and the transfer sheet is heated to transfer the coloring material contained in the transfer layer. A thermal transfer method is known in which a pigment or dye is thermally melted, sublimated, or vaporized and transferred to a receiving sheet to form a pigment or dye image on the receiving sheet. Specifically, in a transfer type thermal recording method using a heat source controlled by an electric signal such as a thermal head, as shown in FIG. and a support 12 are placed on a drum 3.
and a heat source 4, and a color hard copy is obtained by transferring the coloring material of the layer 22 onto the image-receiving layer 11 in response to an electric signal. The image-receiving layer 11 differs depending on the content of the coloring material used, and in the case of a heat-melting coloring material containing pigments, it may be made of a polymer material such as polyacrylic or polyolefin material, or a polymeric material such as a polyacrylic material or a polyolefin material, or an inorganic filler such as activated clay mixed therein. In the case of a sublimable basic dye type coloring material, it consists of an activated clay (activated clay) layer, and in the case of a sublimable disperse dye type coloring material, it consists of a polymeric material layer such as polyester. In conventional receptors, the surface of the image-receiving layer 11 had unevenness of 5 to 15 .mu.m due to uneven thickness of the support or surface unevenness, and waviness of 20 gm by weight per 1 .mu.m. Although these irregularities or undulations can be improved to some extent by surface treatment using a supercalender, there is a limit to the improvement. For this reason. When the surface unevenness of the image-receiving layer 11 is 3 to 5 cm or more or the waviness is IOμ or more per 1 cm, the coloring material transferred from the coloring material layer 22 can produce image signals not only with heat-melting colorants but also with sublimation colorants. The transfer was not accurate, resulting in disturbances in image quality such as missing dots and missing dots, and giving a rough feel to the intermediate tones (Japanese Patent Application Laid-Open No. 59-214698). In addition, as the support 12, paper or inorganic fine powder can be used for
Synthetic paper made of stretched film of thermoplastic resin containing 50% by weight 2 (Special Publication No. 4B-40794), transparent polyethylene terephthalate film, or silica or carbonate on the surface of the transparent film to improve whiteness and ink receptivity. Coated synthetic paper coated with an inorganic compound such as calcium and a binder is used. Considering the after-use of the thermally transferred receiving sheet (copying, pencil writing, storage stability, etc.), synthetic resin film is preferable as the image receiving sheet for thermal transfer recording in terms of strength, dimensional stability, and dust-free property. However, transparent plastic film has low whiteness, lacks hiding properties, and has weak image contrast, making it difficult to decipher. Therefore, a coated synthetic resin film having an ink-receiving layer provided on the surface of a synthetic resin film containing inorganic fine powder or a transparent film having a high whiteness of 90% or more is preferable. However, with the latter coated synthetic resin film, it is necessary to apply a large amount of coating agent in order to obtain a degree of whiteness (85z or higher, preferably 90% or higher) that provides good image contrast. This is not only economically disadvantageous, but also causes problems such as continuous gradation and self-reflection during thermal transfer due to the receptor layer trapping on the ink sheet side and the support itself not having appropriate compressibility and being hard. There was a problem with the roughness caused by the omission. The former multilayer synthetic resin film, which is made of a stretched thermoplastic resin film containing fine inorganic powder, has good surface roughness and compressibility, and is used as an image-receiving sheet for thermal transfer recording. , excellent in terms of pencil writing properties, water resistance, etc.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

一般的に画像性を良くするためにスーパーカレンダー等
による表面処理で高平滑化することや。 受像層塗工後の表面の中心線平均粗さを IILm以下
にすること(特開昭61−1398号)が知られている
が、スーパーカレンダー等による高平滑化は数gmから
数重量%用層程度のうねり程度の凹凸を改良し得るにす
ぎず、また、カレンダー処理により表面層が固くなるた
め、画像に良好な連続階調性を得ることは困難であり、
依然としてザラツキ感が残っている。また、受像層表面
の中心線平均粗さが上記特開昭81−1398号公゛報
に開示されているように 1ル履以下であっても、中心
線平均粗さが0.29 p−ts以下の平滑になるとイ
ンクの転写性は良くなるが、反面、インクシート転写紙
とのブロッキング現象が問題となってくる。一方、中心
線平均粗さが0.58 IL層以上になると、良好な連
続階調性を得ることができず、低階調〜中間階調域での
白抜けによるザラツキ感が問題となる。また、中心線モ
均粗さが0.3〜0.55gmであっても、その支持体
の圧縮率が20%以Fである場合には白抜けの発生がみ
られ、一方、30%を超えると多重転写時の二色目以降
の濃度低下及びインクシートとのスティッキング現象が
問題となる。 本発明は、かかる問題に鑑みなされたものであり、有用
な熱転写記録用画像受容シートを提供するものである。 [問題点を解決するための手段] 本発明は、顔料を含む熱溶融型色材よりなる転色層若し
くは昇華性又は気化性染料を含有する転色層を有する転
写シートに対し、転写固着性又は染着性を有する樹脂組
成物又はそれらに無機充填剤を含む組成物よりなる画像
受容層を支持体に設けた熱転写記録用画像受容シートに
おいて、前記画像受容シートは、JIS P[1123
による白色度が902以しで、その表面のJIS B−
0601で測定した中心線平均粗さRaが0.3〜0.
55x−であり、かつ、32kg/cmzの応力に対す
る圧縮率が15〜30%の範囲のポリオレフィン合成樹
脂フィルムを支持体とし、この支持体の表面に0.2〜
20IL■の肉厚の画、像受容層が設けられていること
を特徴とする熱転写記録用画像受容シートである。 え杵廊 支持体はJIS P8123による白色度が90x以上
であるポリオレフィン合成樹脂フィルムであり、例えば
無機微細粉末を0−45重量2含有するポリオレフィン
ニ軸延伸フィルムを基材層とし、この基材層の表面に無
機微細粉末を8〜65重量%含有するポリオレフィン−
軸延伸フィルムを紙状層とし、その表面に平均粒径が1
川層以下の無機微細粉末を5z以上を含むポリオレフィ
ン樹脂組成を最外表面層として0.2〜2.5終■の肉
厚で設けた複層構造の合成樹脂フィルムで、表面層の中
心線平均粗さRaがJIS B−061で測定した値で
0.3〜0.55であり、かつ、圧縮率(32kg/c
■2の荷重をかけたときの圧縮量)が15〜30Xであ
るものが挙げられる。 ポリオレフィンとしては、ポリエチレン、ポリプロピレ
ン、エチレン・プロピレン共ll、エチレン・酢酸ビニ
ル共重合体、ポリ (4−メチルペンテン−1)、ポリ
スチレン等が利用できる。 ポリオレフィンに配合すべき無機質微細粉末としては1
紙状層においては炭酸カルシウム、焼成りレイ、ケイ藻
土、タルク、酸化チタン、硫酸バリウム、硫酸アルミニ
ウム、シリカ等の平均粒径が重量%IL層以下のものが
例示される。特に平均粒径が3#Lm以下のものが表面
粗さRaを0.3〜0.55経■の範囲にするのに好ま
しい。 最外層表面層に配合される平均粒径が 1]以ドの無機
微細粉末としては、酸化チタン、硫酸バリウム、硫酸ア
ルミニウム、シリカ等が使用できる。 本発明の支持体は、最外表面層、紙状層の他に他の層、
特に基材層を含むことができる。好ましい支持体の一例
としては、下記(A)の組成物の二軸延伸フィルムを基
材層とし、この基材層の表裏面に、下記(B)の組成物
の一軸延伸フィフィルムの紙状層を介して下記(C)の
組成物の表面層の一軸延伸フィルムが両面または片面の
紙状層に積層されている構造の合成樹脂フィルムであっ
て、第1図にその一例の断面図を示す。 (A)基材層組成 (a)ポリプロピレン     50〜950〜95重
量高密度ポリエチレン、中密度ポリエチレン、低密度ポ
リエチレ、エチレン・酢酸ビ゛ ニル共重合体より選ば
れた樹脂 0〜30重量2 (C)無機微細粉末      50〜5ffiMB(
B)紙状層組成物 (a)ポリプロピレン     35〜925〜92重
量2リスチレン、高密度ポリエチレン、中密度ポリエチ
レン、低密度ポリエチレン、エチレン・酢酸ビニル共重
合体より選ばれた樹脂          0〜30重
量2(c)無機微細粉末      8〜65重量2(
C)最外表面層組成 無機微細粉末を5重量X以上を含有するポリプロピレン
。 この最外表面層のポリプロピレンは、そノ一部(50重
i、′1%以下)をポリスチレンやポリエチレンにおき
かえると、表面層の光沢を低下させることができる。 に記合成樹脂フィルムは、前記(^)の基材層組成物を
シート状に押し出し、ポリプロピレンの融点より低い温
度で一方向に延伸して得られる一軸方向に配向したフィ
ルム(A)の両面に、共押出された組成物(B)と(C
)の溶融積層フィルムを紙状層組成物(B)がフィルム
(A)に接するようにラミネートさせ、次いでこの積層
フィルムをポリプロピレンの融点より低い温度で、前記
延伸方向と直角の方向に延伸することにより得られる合
成樹脂フィルムである。 t?、、 縦方向に一軸延伸したフィルム(A)ノ片面
に、共押出された組成物(B)と(C)の溶融フィルム
を、組成物(B)がフィルム(A)に接するようにラミ
ネートし、フィルム(A)の他方の片面には、組成物(
B)の溶融フィルムを別の押出機を用いてラミネートし
、得られた積層物を横方向に延伸して得られる複層合成
樹脂フィルムであってもよい、第1図はこのような支持
体に受容層を塗工した例である。基材層に配合されてい
る無機微細粉末は、基材層が二輪延伸されることにより
基材層フィルム内部に微細な空孔(ミクロボイド)が多
数形成される。 本発明の支持体は、基材層および紙状層内の多数のミク
ロボイドによって圧縮性があり、支持体の複層構造の肉
厚を選択することにより、温度23℃、相対湿度50%
の雰囲気下で表面を32 kg/cmzの応力で押しつ
けたとき、厚さが15〜30%の範囲で圧縮される程度
の圧縮性を与えることができる。この圧縮性により、熱
転写記録用画像受容シートとして使用の際、表面層の画
像受容層と転写シートとの密着性が向ヒし、画像受容層
の表面に凹凸があっても、その凸部が受容シート内部に
押し込められる結果、優れた転写画像が得られ、また、
多重転写時の転写量の低下を防ぐ効果を有する。 この合成樹脂延伸フィルムの基材層(A)は合成樹脂フ
ィルムの強度を高めるのに寄与し1紙状層(B)はノ人
材層(A)を隠蔽し、合成樹脂フィルムに駅前風合いを
与える。 そして1表面層(C)は、合成樹脂フィルム最外表面層
の粗さRaを0.3〜0.554 mの範囲にするとと
もに、最外表面層を設けない場合と比べ転写インクの受
理性を容易にし、多重転写時の濃度低下の少ない階調性
に優れた高画質の画像を得ることができる。 匹遣シし1岩 画像受容層形成材としては、顔料を含む熱溶融型色材に
対して転写性の良好なものとしては、アクリル系樹脂及
びポリオレフィン系の高分子材料が用いられる。また、
昇華性または気化性染料に対して可染性を示す樹脂とし
ては、ポリエステル等の高分子材料や活性白土の様な材
料を用いられる。中でもアクリル系樹脂が良好である。 具体的には a)、アクリル系共重合体樹脂 b)、下記1)〜3)の混合物 1)アクリル系共重合体樹脂 2)アミ7ノ、(を有するアミン化合物3)エポキシ化
合物 c)、上記a)またはb)と無機または有機系の充填材
(フィラー)の混合物 等が用いられる。 アクリル系共重合体樹脂の単量体の例としては、ジメチ
ルアミノエチルメタクリレート、ジエチルアミノエチル
メタクリレート、ジブチルアミノエチルアクリレート、
ジメチルアミノエチルアクリルアミド、ジエチルアミノ
エチルメタクリルアミド、ジメチルアミノエチルメタク
リルアミド等が挙げられる。 アクリル系共重合体樹脂の他のビニル単量体としては、
スチレン、メタクリル酸メチル、アクリル酸エチル、ア
クリル酸n−ブチル、アクリル酸第三ブチル、メタクリ
ル酸エチル、塩化ビニル、エチレン、アクリル酸、メタ
クリル酸、イタコン酸、アクリロニトリル、メタクリル
アミド等が挙げられる。 上記b)成分のアミン系化合物としては、ジエチレント
リアミン、トリエチレンテトラミン等のポリアルキレン
ポリアミン、ポリエチレンイミン。 エチレン尿素、ポリアミンポリアミドのエビグロルヒド
リン付加物(商品名としてはディックバーキュレス社の
カイメン−5571(、荒用林産化学工業−のAF−重
量%0)、ポリアミンポリアミドの芳香族グリシジルエ
ーテルまたはエステル付加物(商品名としては三相化学
−のサンマイド352 、351およびX−2300−
75、シェル化学−のエビキュアー3255)等が利用
できる。 また、上記b)成分のエポキシ化合物としては、ビスフ
ェノールAのジグリシジルエーテル、ビスフェノールF
のジグリシジルエーテル、フタル酸ジグリシジルエステ
ル、ポリプロピレングリコールジグリシジルエーテル、
トリメチロールプロパントリグリシジルエーテル等が利
用できる。 上記c)r&分の無機フィラーとしては、平均粒径0.
5ル層以下のホワイトカーボンなどの合成シリカ、)Z
Mtカルシウム、クレー、タルク、硫酸アルミニウム、
二酸化チタン、酸化亜鉛などの無機顔料が利用でき、好
ましくはホワイトカーボンなどの合成シリカ、軽質の炭
酸カルシウムなどの無機顔料で平均粒径0.2pm以下
のものが利用できる。 有機系フィラーとしては、種々の高分子微粒子が採用さ
れるが、その粒子直径はlθμ層以下にするのがよい、
有機系フィラーを構成する高分子としては、例えばメチ
ルセルロース、エチルセルロース、ポリスチレン、ポリ
ウレタン、尿素・ホルマリン樹脂、メラミン樹脂、フェ
ノール樹脂、イソ (又はジイソ)ブチレン・無水マレ
イン酸共重合体、スチレン・無水マレイン酸共重合体、
ポリ酢酸ビニル、ポリ塩化ビニル、塩化ビニル・酢酸ビ
ニル共重合体、ポリエステル、ポリアクリル酸エステル
、ポリメタクリル酸エステル、スチレン・ブタジェン・
アクリル系共重合体等が挙げられる。 これらフィラーは通常3011以下の割合で使用される
。特に無機系フィラーはその表面をロート油、ドデシル
硫酸ナトリウム、有機アミン、金属石鹸リグニンスルホ
ン酸ナトリウムなどの非イオン、陽イオン又は両性の活
性剤で処理することにより、転写紙2のインクとの濡れ
が良化され好適に使用できる。 次に各層の肉厚について述べる。 複層構造の支持体の肉厚は40〜800 p一層、好ま
しくは60〜300ル層である。基材層(A)は、合成
樹脂フィルムの肉厚の40%以上を占める。最外表面層
(G)の肉厚は0.2〜2.5p■である。0.2μ翳
未満では最外表面層の中心線平均粗さが0.5θ終履以
りとなり良好な連続階調性を得ることができず、低階調
〜中間階調でのザラツキ感の改良効果が期待できない0
紙状層(B)の無機微細粉末の粒径は通常3終層以下、
好ましくは0.1〜2w層である。また、最外表面層(
C)の肉厚が2.5gs+を超えると最外表面層の中心
線粗さが0.21Lm以下になり、転写シートと画像受
容シートとの剥離が悪く、スティッキング現象を起し、
ビー2トの欠け、抜は等の画像不鮮明の原因となる。 紙状層(B)の肉厚は、支持体12が十分な白色度(9
oz以上)ヲ保ツヨウニ、5〜200AL11力汁通で
あり、支持体が基材層(A)を備えるときは通常5〜8
0JLsである。 1にヱニュ 画像受容層11は、前記支持体12の最外表面層(C)
側に塗工、乾燥されて形成される。塗−[には、プレー
ドコータ、エアーナイフコータ、ロールコータ、バーコ
ータなどの通常の塗工機、あるいはサイズプレス、ゲー
トロール装置などを用いる。 画像受容層llの肉厚は0.2〜20終■、好ましくは
0.5〜重量%終腸である。 必要により、受容シートは更にカレンダー処理により、
その表面をより平滑にされることもある。 [実施例] 以下の実施例及び比較例において用いた支持体は以下の
製造例によって製造されたものである。 製造例1 メルトインデックス(Ml)が0.8のポリプロピレン
79屯量2と高密度ポリエチレン5爪量2との混合物に
、平均粒径 1.5用−の炭酸カルシウム16T(に%
を配合した組成物Aを、270℃に設定した押出機で混
練した後シート状に押出し、冷却装置で冷却して無延伸
シートを得た。このシートを140℃に加熱後、縦方向
に5倍延伸した。 Mlが4.0のポリプロピレン45a!jtxと平均粒
径が1.0体層の炭酸カルシウム551ハとを混合した
組成物Cど、Mlが4.0のポリプロピレン55重量2
に平均粒径が1.5ル■の炭酸カルシウム45重に2を
混合した組成物Bとを、それぞれ別の押出機で溶融混練
し、グイ内で積層して共押出ししたシートを、上記5倍
延伸シートの片面に組成物Cが外側になるように積層し
、該5倍延伸シートの反対面には組成物Bを別の押出機
で溶融混練して押出積層した。この積層物を60℃まで
冷却した後、 182℃まで再加熱し、テンターで横方
向に7.5倍延伸し、 185℃で7二−リング処理し
、60℃まで冷却し、耳部をスリットして4層(C/B
/A/B、肉厚: 2/33/70/35終層)構造の
合成樹脂フィルムを得た。 この合成樹脂フィルムの最外表面(C)のベック指数は
800であり、表面粗さ計によるRaは0.45終履を
有し、圧縮率は24$、支持体としての白色度は95.
8$であった。 製造例2 メルトインデックス(Ml)が0.8のポリプロピレン
79重量%と高密度ポリエチレンSfi量2との混合物
に、平均粒径 1.5鉢腸の炭酸カルシウム16[Iを
配合した組成物Aを、270℃に設定した押出機で混練
した後シート状に押出し、冷却装置で冷却して無延伸シ
ートを得た。このシートを140℃に加熱後、縦方向に
5倍延伸した。 Mlが4.0のポリプロピレンeoi i $に平均粒
径が1.5用層の炭酸カルシウム2flFt$を混合し
た組成物Cと、Mlが4.0のポリプロピレン55重量
%に平均粒径が1.51L+mの炭酸カルシウム45重
量%を混合した組成物Bとを、それぞれ別の押出機で溶
融混練し、グイ内で積層して共押出ししたシートを、上
記5倍延伸シートの片面に組成物Cが外側になるように
積層し、該5倍延伸シートの反対面には組成物Bを別の
押出機で溶融混練して押出積層した。この積層物を80
℃まで冷却した後、182℃まで再加熱し、テンターで
横方向に7.5倍延伸し、 IEi5℃でアニーリング
処理し、60℃まで冷却し、耳部をスリットして4層(
C/B/A/B 、肉厚: 2/33/70/35 h
膳)構造の合成樹脂フィルムを得た。 この合成樹脂フィルムの最外表面Cのベック指数は15
00であり、表面粗さ計によるRaは0.5 gmで、
圧縮率は22z、支持体としての白色度は96.02で
あった。 製造例3 最外表面層Cの組成物として、Mlが4.0のポリプロ
ピレン45重量%と平均粒径がl牌層の炭酸カルシウム
55重量%を混合した組成物Cの代りに、同じポリプロ
ピレン95重量%と平均粒径0.254 tsのTi(
h 5重量%との混合物を用いた他は製造例1と同様に
して第1表に示す物性の合成樹脂フィルムを得た。 製造例4 再外表面層Cの組成物として、MIが4,0のポリプロ
ピレンを用い、4層(C/B/A/B 、肉厚:重量%
/25/75/35)構造にした以外は製造例1と同様
にして第1表に示す物性の合成樹脂フィルムを得た。 製造例5 メルトインデックス(MI)が0.8のポリプロピレン
79重量2と高密度ポリエチレン5重量%との混合物に
、平均粒径 1.5gtaの炭酸カルシウム16屯量2
を配合した組成物Aを、270℃に設定した押出機で混
練した後シート状に押出し、冷却装置で冷却して無延伸
シートを得た。このシートを145°Cに加熱後、縦方
向に5倍延伸した。 XIが4.0のポリプロピレン5511と平均粒径が 
1.5p厘の炭酸カルシウム45重量2とを混合した組
成物Bを、押出機で溶融混練し、ダイ内で積層して共押
出ししたシートを、上記5倍延伸シートの両面に積層し
、次いで60℃まで冷却した後、172°Cまで+Ir
加熱し、テンターで横方向に7.5倍延伸し、 175
℃で7ニーリング処理し、60℃まで冷却し、耳部をス
リットして3層構造(B/A/B、肉厚: 35/70
/35 p−ta )の第1表に示す物性の合成樹脂フ
ィルムを得た。 また、各種の物性測定は以下の方法によるものである。 白色度: JIS P8123 ニよる。 ベラクモ滑度: JIS P−8120で測定した表面平滑度(ベック指
a) 圧縮率: 32 kg/cmzの荷重を加えたときの圧縮にで、次
式によって求めた。 中心線平均粗さ: 小板研究所三次元粗さ測定機(Sト3AK)と解析装置
Model 5PA−11(商品名)で測定し、中心線
モ均粗さを求めた。 単色転写性: 画像受容シートと熱転写フィルム(三菱製紙製、商品名
ゴTFシアン)を重ね合わせ、熱傾斜試験機(東洋精機
製、 Tlpe HG−重量%0)を使用し、熱板を6
0℃より 3℃間隔で熱傾斜させ、0.5kg/cm2
の圧力で5秒間加熱し、熱転写画像を得た。 得られた画像をマクベス濃度計で測定し、濃度と自抜け
の程度から、次の5段階で評価した。 5: 大変良い 4: 良い 3: 実用上支障はない 2: 実用上問題がある l: 不良 多重転写性: 画像受容シートと熱転写フィルムのマゼンタ色を毛ね、
熱板を 5種のシートとも79°Cにし、0.5 kg
/cm 2圧力5秒間加熱して転写を行なった後に、シ
アン色の熱転写フィルムで一色目の画像に重なる様にし
て上記単色転写試験を行なった。評価は単色転写と同様
に行なった。 実施例1 製造例1で得た合成樹脂フィルム支持体の最外表面層(
G)側に、下記組成の塗工材を固形分で約Ig/膳2と
なるように塗工し、80℃で30秒間乾燥して支持体−
ヒに画像受容層(肉厚約1ルー)を設けた画像受容シー
トを得た。各種の評価は第1表に示す。 塗[剤配合: l) カチオン性アクリル系共重合体エマルジョン(固
形分50%)       200重量部2) ポリエ
チレンイミン(日本触媒化学工業■製、商品名:エボミ
ノ5P−018)  8重に部3) ビスフェノールA
のジグリシジルエーテル(油化シェルエポキシ化学■の
「エピコート828J(商品名、エポキシ当量: 1B
?)+2020重 量施例2〜3及び比較例1〜2 支持体として実施例1の合成樹脂フィルムの代りに、製
造例2〜5で得た合成樹脂フィルムを用いる他は実施例
1と同様にして画像受容シートを得た。評価結果は第1
表に示す。 比較例3 支持体として、製造例1の合成樹脂フィルムの代りに、
コート紙(OKコート、81.4 g/、2 )を用い
た他は実施例1と同様にして画像受容シートを得た。評
価結果は@1表に示す。 [効果] 本発明の熱転写記録用画像受容シートは支持体の中に含
まれる多数のミクロボイドによって圧縮型があり、それ
によって表面層のインク受容層と熱転写フィルムとの密
着性が向上し、受容シートの表面に凸部があっても、転
写時には内部に押し込められる結果、得られる転写画像
は優れた鮮明性を有する。また、多重転写時の転写量の
低下を防ぐ効果を有する。
Generally, to improve image quality, the surface is treated with a super calender to make it highly smooth. It is known to reduce the centerline average roughness of the surface after coating the image-receiving layer to IILm or less (Japanese Patent Application Laid-open No. 1398/1983), but high smoothness using a super calender etc. is only for a few gm to several weight percent. It is only possible to improve the unevenness of the layer, and since the surface layer becomes hard due to calendering, it is difficult to obtain good continuous gradation in the image.
There is still a feeling of roughness. Furthermore, even if the center line average roughness of the surface of the image receiving layer is less than 1 R as disclosed in the above-mentioned Japanese Patent Laid-Open No. 81-1398, the center line average roughness is 0.29 p- When the ink sheet is smoothed to less than ts, the ink transferability improves, but on the other hand, the blocking phenomenon between the ink sheet and the transfer paper becomes a problem. On the other hand, when the center line average roughness is 0.58 IL layer or more, good continuous gradation cannot be obtained, and a rough feeling due to white spots in the low to intermediate gradation range becomes a problem. In addition, even if the center line roughness is 0.3 to 0.55 gm, if the compressibility of the support is 20% or more, white spots will occur; If it exceeds this, problems arise such as a decrease in the density of the second and subsequent colors during multiple transfer and a sticking phenomenon with the ink sheet. The present invention was made in view of this problem, and provides a useful image-receiving sheet for thermal transfer recording. [Means for Solving the Problems] The present invention provides a transfer sheet having a color transfer layer made of a heat-melting coloring material containing a pigment or a color transfer layer containing a sublimable or vaporizable dye. Alternatively, in an image-receiving sheet for thermal transfer recording in which a support is provided with an image-receiving layer made of a resin composition having dyeability or a composition containing an inorganic filler therein, the image-receiving sheet conforms to JIS P [1123
The whiteness of the surface is 902 or higher, and the surface is JIS B-
The center line average roughness Ra measured with 0601 is 0.3 to 0.
A support is made of a polyolefin synthetic resin film which is 55x- and has a compressibility of 15 to 30% under a stress of 32 kg/cmz, and the surface of this support is
This is an image-receiving sheet for thermal transfer recording characterized by being provided with an image-receiving layer having a thickness of 20 IL. The support is a polyolefin synthetic resin film with a whiteness of 90x or more according to JIS P8123, for example, a polyolefin biaxially stretched film containing 0 to 45 weight 2 of inorganic fine powder is used as a base layer, and this base layer A polyolefin containing 8 to 65% by weight of inorganic fine powder on the surface of
The axially stretched film is made into a paper-like layer, and the average particle size is 1 on the surface.
It is a synthetic resin film with a multilayer structure in which the outermost surface layer is a polyolefin resin composition containing 5z or more of inorganic fine powder below the river layer and has a wall thickness of 0.2 to 2.5cm. The average roughness Ra is 0.3 to 0.55 as measured by JIS B-061, and the compression ratio (32 kg/c
(2) Compression amount when applying a load of 2) is 15 to 30X. As the polyolefin, polyethylene, polypropylene, ethylene/propylene copolymer, ethylene/vinyl acetate copolymer, poly(4-methylpentene-1), polystyrene, etc. can be used. The inorganic fine powder to be blended into polyolefin is 1.
Examples of the paper-like layer include calcium carbonate, calcined clay, diatomaceous earth, talc, titanium oxide, barium sulfate, aluminum sulfate, silica, etc. whose average particle size is less than the weight % IL layer. In particular, those having an average particle size of 3#Lm or less are preferable in order to set the surface roughness Ra in the range of 0.3 to 0.55 mm. Titanium oxide, barium sulfate, aluminum sulfate, silica, etc. can be used as the inorganic fine powder having an average particle size of 1 or less to be blended in the outermost surface layer. In addition to the outermost surface layer and the paper-like layer, the support of the present invention includes other layers,
In particular, it can include a base layer. As an example of a preferable support, a biaxially stretched film of the following composition (A) is used as a base layer, and a paper-like uniaxially stretched film of the following composition (B) is applied on the front and back surfaces of this base layer. A synthetic resin film having a structure in which a uniaxially stretched film of the surface layer of the composition (C) below is laminated to a paper-like layer on both sides or one side, with a cross-sectional view of an example shown in Fig. 1. show. (A) Base material layer composition (a) Polypropylene 50-950-95 weight Resin 0-30 weight 2 (C ) Inorganic fine powder 50-5ffiMB (
B) Paper-like layer composition (a) Polypropylene 35-925-92 weight 2 Resin selected from listyrene, high-density polyethylene, medium-density polyethylene, low-density polyethylene, ethylene-vinyl acetate copolymer 0-30 weight 2 ( c) Inorganic fine powder 8-65 weight 2 (
C) Outermost surface layer composition Polypropylene containing 5 weight X or more of inorganic fine powder. If a portion (50wt, 1% or less) of the polypropylene in the outermost surface layer is replaced with polystyrene or polyethylene, the gloss of the surface layer can be reduced. The synthetic resin film described in (a) is obtained by extruding the base layer composition of (^) into a sheet shape and stretching it in one direction at a temperature lower than the melting point of polypropylene. , coextruded compositions (B) and (C
) is laminated so that the paper-like layer composition (B) is in contact with the film (A), and then this laminated film is stretched in a direction perpendicular to the stretching direction at a temperature lower than the melting point of polypropylene. This is a synthetic resin film obtained by. T? ,, A molten film of the coextruded compositions (B) and (C) is laminated on one side of the film (A) that has been uniaxially stretched in the longitudinal direction so that the composition (B) is in contact with the film (A). , the other side of the film (A) is coated with the composition (
It may also be a multilayer synthetic resin film obtained by laminating the molten film of B) using another extruder and stretching the resulting laminate in the transverse direction. Figure 1 shows such a support. This is an example in which a receptive layer is coated on the surface. The inorganic fine powder blended into the base layer forms many fine pores (microvoids) inside the base layer film when the base layer is stretched in two wheels. The support of the present invention is compressible due to the large number of microvoids in the base layer and the paper-like layer, and by selecting the wall thickness of the multilayer structure of the support, the support can be compressed at a temperature of 23°C and a relative humidity of 50%.
When the surface is pressed under a stress of 32 kg/cmz in an atmosphere of Due to this compressibility, when used as an image-receiving sheet for thermal transfer recording, the adhesion between the surface image-receiving layer and the transfer sheet is reduced, and even if the surface of the image-receiving layer is uneven, the projections are As a result of being pushed inside the receiving sheet, an excellent transferred image is obtained, and
It has the effect of preventing a decrease in the amount of transfer during multiple transfer. The base layer (A) of this synthetic resin stretched film contributes to increasing the strength of the synthetic resin film, and the paper-like layer (B) hides the personnel layer (A) and gives the synthetic resin film a station-front texture. . The first surface layer (C) has a roughness Ra of the outermost surface layer of the synthetic resin film in the range of 0.3 to 0.554 m, and has a higher transfer ink receptivity than when no outermost surface layer is provided. This makes it possible to obtain high-quality images with excellent gradation and less loss of density during multiple transfer. As the image-receiving layer-forming material, acrylic resins and polyolefin-based polymeric materials are used, as they have good transferability to heat-melting coloring materials containing pigments. Also,
As the resin exhibiting dyeability with sublimable or vaporizable dyes, polymeric materials such as polyester and materials such as activated clay are used. Among them, acrylic resin is good. Specifically, a), an acrylic copolymer resin b), a mixture of the following 1) to 3) 1) an acrylic copolymer resin 2) an amine compound having amine 7, (3) an epoxy compound c), A mixture of a) or b) above and an inorganic or organic filler is used. Examples of monomers for acrylic copolymer resins include dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, dibutylaminoethyl acrylate,
Examples include dimethylaminoethyl acrylamide, diethylaminoethyl methacrylamide, dimethylaminoethyl methacrylamide, and the like. Other vinyl monomers for acrylic copolymer resins include:
Examples include styrene, methyl methacrylate, ethyl acrylate, n-butyl acrylate, tert-butyl acrylate, ethyl methacrylate, vinyl chloride, ethylene, acrylic acid, methacrylic acid, itaconic acid, acrylonitrile, and methacrylamide. Examples of the amine compound of component b) include polyalkylene polyamines such as diethylenetriamine and triethylenetetramine, and polyethyleneimine. Ethylene urea, shrimp glolhydrin adduct of polyamine polyamide (trade name: Kaimen-5571 (trade name: Dick Bercules Co., Ltd., AF-wt% 0 of Aurayo Forestry Chemical Industry Co., Ltd.), aromatic glycidyl ether of polyamine polyamide, or Ester adducts (trade names are Sanmide 352, 351 and
75, Shell Kagaku Ebicure 3255), etc. can be used. In addition, as the epoxy compound of component b) above, diglycidyl ether of bisphenol A, bisphenol F
diglycidyl ether, phthalic acid diglycidyl ester, polypropylene glycol diglycidyl ether,
Trimethylolpropane triglycidyl ether and the like can be used. The inorganic filler for c) r& above has an average particle size of 0.
Synthetic silica such as white carbon with 5 layers or less, )Z
Mt calcium, clay, talc, aluminum sulfate,
Inorganic pigments such as titanium dioxide and zinc oxide can be used, preferably synthetic silica such as white carbon, and light calcium carbonate having an average particle size of 0.2 pm or less. Various polymer fine particles are used as the organic filler, but the particle diameter is preferably less than the lθμ layer.
Examples of polymers constituting the organic filler include methyl cellulose, ethyl cellulose, polystyrene, polyurethane, urea/formalin resin, melamine resin, phenol resin, iso (or diiso) butylene/maleic anhydride copolymer, styrene/maleic anhydride. copolymer,
Polyvinyl acetate, polyvinyl chloride, vinyl chloride/vinyl acetate copolymer, polyester, polyacrylic ester, polymethacrylic ester, styrene/butadiene/
Examples include acrylic copolymers. These fillers are usually used in a ratio of 3011 or less. In particular, inorganic fillers can be treated with nonionic, cationic, or amphoteric activators such as funnel oil, sodium dodecyl sulfate, organic amines, metal soap sodium ligninsulfonate, etc., so that they can become wet with the ink on the transfer paper 2. It has improved properties and can be used suitably. Next, the thickness of each layer will be described. The thickness of the multilayer support is 40 to 800 layers, preferably 60 to 300 layers. The base layer (A) accounts for 40% or more of the thickness of the synthetic resin film. The thickness of the outermost surface layer (G) is 0.2 to 2.5 p. If the thickness is less than 0.2μ, the center line average roughness of the outermost surface layer will be less than 0.5θ, making it impossible to obtain good continuous gradation, resulting in a rough feeling at low to intermediate gradations. No improvement effect can be expected0
The particle size of the inorganic fine powder of the paper-like layer (B) is usually 3 or less final layers,
Preferably it is a 0.1-2w layer. In addition, the outermost surface layer (
When the wall thickness of C) exceeds 2.5 gs+, the center line roughness of the outermost surface layer becomes 0.21 Lm or less, and peeling between the transfer sheet and the image receiving sheet is poor, causing a sticking phenomenon.
This may cause the image to become unclear, such as missing or missing beats. The thickness of the paper-like layer (B) is such that the support 12 has sufficient whiteness (9
oz or more) 5 to 200 AL11 strength, and when the support is provided with a base layer (A), usually 5 to 8
It is 0JLs. The image-receiving layer 11 is the outermost surface layer (C) of the support 12.
It is formed by coating on the side and drying. For coating, a conventional coating machine such as a blade coater, air knife coater, roll coater, or bar coater, or a size press or a gate roll device is used. The wall thickness of the image-receiving layer 11 is from 0.2 to 20% by weight, preferably from 0.5 to 20% by weight. If necessary, the receiving sheet may be further calendered.
The surface may also be made smoother. [Example] The supports used in the following examples and comparative examples were manufactured according to the following manufacturing examples. Production Example 1 A mixture of 79 tons of polypropylene with a melt index (Ml) of 0.8 and 2 tons of high-density polyethylene was added with calcium carbonate 16T (%) with an average particle size of 1.5.
Composition A containing the following was kneaded in an extruder set at 270°C, extruded into a sheet, and cooled in a cooling device to obtain a non-stretched sheet. This sheet was heated to 140°C and then stretched 5 times in the machine direction. Polypropylene 45a with Ml of 4.0! Composition C, which is a mixture of jtx and calcium carbonate 551 with an average particle size of 1.0 body layers, is composed of polypropylene 55 with an Ml of 4.0 weight 2
and Composition B, which is a mixture of 45 parts and 2 parts of calcium carbonate with an average particle size of 1.5 l, are melt-kneaded in separate extruders, laminated in a gooey, and coextruded to form a sheet. Composition C was laminated on one side of the double-stretched sheet so that it was on the outside, and Composition B was melt-kneaded and extruded on the other side of the five-times stretched sheet using a separate extruder. After cooling this laminate to 60°C, it was reheated to 182°C, stretched 7.5 times in the transverse direction using a tenter, subjected to 7-two rings at 185°C, cooled to 60°C, and the edges were slit. and 4 layers (C/B
/A/B, thickness: 2/33/70/35 final layer) A synthetic resin film was obtained. The Beck index of the outermost surface (C) of this synthetic resin film is 800, the Ra measured by a surface roughness meter is 0.45, the compression rate is 24$, and the whiteness as a support is 95.
It was $8. Production Example 2 Composition A was prepared by blending calcium carbonate 16[I] with an average particle size of 1.5 into a mixture of 79% by weight of polypropylene with a melt index (Ml) of 0.8 and 2 amounts of high-density polyethylene Sfi. The mixture was kneaded in an extruder set at 270°C, extruded into a sheet, and cooled in a cooling device to obtain a non-stretched sheet. This sheet was heated to 140°C and then stretched 5 times in the machine direction. Composition C is a mixture of polypropylene eoi i $ with an Ml of 4.0 and 2flFt $ of calcium carbonate with an average particle size of 1.5, and 55% by weight of polypropylene with an Ml of 4.0 and an average particle size of 1.5% by weight. 51L+m of composition B mixed with 45% by weight of calcium carbonate were melt-kneaded in separate extruders, laminated and co-extruded in a gou, and a sheet was prepared with composition C on one side of the 5 times stretched sheet. The sheets were laminated so that they were on the outside, and on the opposite side of the 5-fold stretched sheet, composition B was melt-kneaded using another extruder and extruded and laminated. 80% of this laminate
After cooling to 182°C, it was reheated to 182°C, stretched 7.5 times in the transverse direction with a tenter, annealed at IEi 5°C, cooled to 60°C, and the edges were slit to form 4 layers (
C/B/A/B, wall thickness: 2/33/70/35 h
A synthetic resin film with a structure of 1) was obtained. The Beck index of the outermost surface C of this synthetic resin film is 15
00, Ra measured by surface roughness meter is 0.5 gm,
The compression ratio was 22z, and the whiteness as a support was 96.02. Production Example 3 As the composition of the outermost surface layer C, the same polypropylene 95 was used instead of composition C, which was a mixture of 45% by weight of polypropylene with an Ml of 4.0 and 55% by weight of calcium carbonate with an average particle size of 1 tile layer. Ti (wt%) and average particle size of 0.254 ts (
A synthetic resin film having the physical properties shown in Table 1 was obtained in the same manner as in Production Example 1 except that a mixture with 5% by weight of h was used. Production Example 4 As the composition of the outer surface layer C, polypropylene with an MI of 4.0 was used, and 4 layers (C/B/A/B, wall thickness: weight %) were used.
/25/75/35) A synthetic resin film having the physical properties shown in Table 1 was obtained in the same manner as in Production Example 1 except that the structure was changed. Production Example 5 Calcium carbonate 16 tons with an average particle size of 1.5 gta was added to a mixture of polypropylene 79 weight 2 with a melt index (MI) of 0.8 and high density polyethylene 5 weight % with an average particle size of 1.5 gta.
Composition A containing the following was kneaded in an extruder set at 270°C, extruded into a sheet, and cooled in a cooling device to obtain a non-stretched sheet. This sheet was heated to 145°C and then stretched 5 times in the machine direction. Polypropylene 5511 with an XI of 4.0 and an average particle size of
Composition B, which is a mixture of 1.5 p of calcium carbonate 45 wt. After cooling to 60°C, +Ir to 172°C
Heated and stretched 7.5 times in the transverse direction using a tenter, 175
7-knealing treatment at ℃, cooled to 60℃, and slit the ears to create a 3-layer structure (B/A/B, wall thickness: 35/70
/35 p-ta) and the physical properties shown in Table 1 was obtained. In addition, various physical properties were measured by the following methods. Whiteness: According to JIS P8123. Berakumo smoothness: Surface smoothness measured according to JIS P-8120 (Beck's finger a) Compression rate: Compression when a load of 32 kg/cmz was applied, and was determined by the following formula. Centerline average roughness: Measured using a Koita Research Institute three-dimensional roughness measuring machine (ST3AK) and an analyzer Model 5PA-11 (trade name) to determine the centerline average roughness. Monochromatic transferability: An image receiving sheet and a thermal transfer film (manufactured by Mitsubishi Paper Mills, trade name: GoTF Cyan) were superimposed, and a hot plate was heated to 6.
Heat gradient at 3°C intervals from 0°C, 0.5kg/cm2
A thermal transfer image was obtained by heating for 5 seconds at a pressure of . The obtained image was measured with a Macbeth densitometer and evaluated on the following five scales based on the density and degree of self-bleeding. 5: Very good 4: Good 3: No problems in practical use 2: Problems in practical use l: Poor multi-transferability: The magenta color of the image receiving sheet and the thermal transfer film is blurred.
The heating plate was heated to 79°C for all five types of sheets, and the weight was 0.5 kg.
/cm 2 pressure for 5 seconds to perform the transfer, and then the above-mentioned monochrome transfer test was conducted using a cyan thermal transfer film so as to overlap the image of the first color. Evaluation was performed in the same manner as for monochrome transfer. Example 1 The outermost surface layer of the synthetic resin film support obtained in Production Example 1 (
A coating material having the following composition was applied to the G) side at a solid content of approximately Ig/2, and dried at 80°C for 30 seconds to form a support.
An image-receiving sheet having an image-receiving layer (thickness of about 1 leu) provided on the top was obtained. Various evaluations are shown in Table 1. Coating agent formulation: l) Cationic acrylic copolymer emulsion (solid content 50%) 200 parts by weight 2) Polyethyleneimine (manufactured by Nippon Shokubai Chemical Co., Ltd., trade name: Evomino 5P-018) 8 parts 3) Bisphenol A
Diglycidyl ether (Epicote 828J (trade name, epoxy equivalent: 1B) from Yuka Shell Epoxy Chemical ■
? )+2020 weight Examples 2 to 3 and Comparative Examples 1 to 2 The same procedure as in Example 1 was used except that the synthetic resin film obtained in Production Examples 2 to 5 was used instead of the synthetic resin film in Example 1 as a support. An image receiving sheet was obtained. The evaluation result is the first
Shown in the table. Comparative Example 3 As a support, instead of the synthetic resin film of Production Example 1,
An image receiving sheet was obtained in the same manner as in Example 1, except that coated paper (OK coat, 81.4 g/.2) was used. The evaluation results are shown in Table @1. [Effects] The image-receiving sheet for thermal transfer recording of the present invention has a compression type due to the large number of microvoids contained in the support, which improves the adhesion between the ink-receiving layer on the surface layer and the thermal transfer film, and the image-receiving sheet for thermal transfer recording Even if there are convex portions on the surface, they are pushed inside during transfer, and the resulting transferred image has excellent clarity. It also has the effect of preventing a decrease in the amount of transfer during multiple transfer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の熱転写記録用画像受容シートの一実施
例の断面図であり、第2図は熱転写記録装置のモ面図で
ある。
FIG. 1 is a sectional view of an embodiment of an image-receiving sheet for thermal transfer recording of the present invention, and FIG. 2 is a front view of a thermal transfer recording apparatus.

Claims (7)

【特許請求の範囲】[Claims] (1)顔料を含む熱溶融型色材よりなる転色層若しくは
昇華性又は気化性染料を含有する転色層を有する転写シ
ートに対し、転写固着性又は染着性を有する樹脂組成物
又はそれらに無機充填剤を含む組成物よりなる画像受容
層を支持体に設けた熱転写記録用画像受容シートにおい
て、前記画像受容シートは、JISP8123による白
色度が90%以上で、その表面のJISB−061で測
定した中心線平均粗さRaが0.3〜0.55μmであ
り、かつ、32kg/cm^2の応力に対する圧縮率が
15〜30%の範囲のポリオレフィン合成樹脂フィルム
を支持体とし、この支持体の表面に0.2〜20μmの
肉厚の画像受容層が設けられていることを特徴とする熱
転写記録用画像受容シート。
(1) Resin compositions or resin compositions having transfer fixing or dyeing properties for transfer sheets having a color transfer layer made of a heat-melting coloring material containing a pigment or a color transfer layer containing a sublimable or vaporizable dye. An image-receiving sheet for thermal transfer recording in which a support is provided with an image-receiving layer made of a composition containing an inorganic filler. A polyolefin synthetic resin film having a measured center line average roughness Ra of 0.3 to 0.55 μm and a compressibility of 15 to 30% under a stress of 32 kg/cm^2 is used as a support. An image-receiving sheet for thermal transfer recording, characterized in that an image-receiving layer with a thickness of 0.2 to 20 μm is provided on the surface of the body.
(2)支持体の合成樹脂フィルムが、複層構造の合成樹
脂フィルムであり、無機微細粉末を8〜65重量%含有
するポリオレフィンフィルムよりなる紙状層及びその表
面に平均粒径が1μm以下の無機微細粉末を5重量%以
上含有するポリオレフィンフィルムを最外表面層として
設けた構造の合成樹脂フィルムである、特許請求の範囲
第1項に記載の熱転写記録用画像受容シート。
(2) The synthetic resin film of the support is a synthetic resin film with a multilayer structure, including a paper-like layer made of a polyolefin film containing 8 to 65% by weight of inorganic fine powder, and a paper-like layer having an average particle size of 1 μm or less on its surface. The image-receiving sheet for thermal transfer recording according to claim 1, which is a synthetic resin film having a structure in which a polyolefin film containing 5% by weight or more of inorganic fine powder is provided as the outermost surface layer.
(3)紙状層と最外表面層が一軸方向に同時延伸されて
得られた配向フィルムである、特許請求の範囲第2項に
記載の熱転写記録用画像受容シート。
(3) The image-receiving sheet for thermal transfer recording according to claim 2, which is an oriented film obtained by simultaneously stretching the paper-like layer and the outermost surface layer in a uniaxial direction.
(4)紙状層が基材層の両面に複層されたものである、
特許請求の範囲第2項又は第3項に記載の熱転写記録用
画像受容シート。
(4) Paper-like layers are multilayered on both sides of the base material layer,
An image-receiving sheet for thermal transfer recording according to claim 2 or 3.
(5)基材層が無機微細粉末を0〜45重量%含有する
ポリオレフィン二軸延伸フィルムである、特許請求の範
囲第4項に記載の熱転写記録用画像受容シート。
(5) The image-receiving sheet for thermal transfer recording according to claim 4, wherein the base layer is a biaxially stretched polyolefin film containing 0 to 45% by weight of inorganic fine powder.
(6)支持体の最外表面層の肉厚が0.2〜2.5μm
である、特許請求の範囲第2項又は第3項に記載の熱転
写記録用画像受容シート。
(6) The thickness of the outermost surface layer of the support is 0.2 to 2.5 μm
An image-receiving sheet for thermal transfer recording according to claim 2 or 3, which is:
(7)ポリオレフィンがポリプロピレンである、特許請
求の範囲第1項から第6項までのいずれかに記載の熱転
写記録用画像受容シート。
(7) The image-receiving sheet for thermal transfer recording according to any one of claims 1 to 6, wherein the polyolefin is polypropylene.
JP62057271A 1987-03-12 1987-03-12 Image receiving sheet for thermal transfer recording Expired - Lifetime JP2555342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62057271A JP2555342B2 (en) 1987-03-12 1987-03-12 Image receiving sheet for thermal transfer recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62057271A JP2555342B2 (en) 1987-03-12 1987-03-12 Image receiving sheet for thermal transfer recording

Publications (2)

Publication Number Publication Date
JPS63222891A true JPS63222891A (en) 1988-09-16
JP2555342B2 JP2555342B2 (en) 1996-11-20

Family

ID=13050864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62057271A Expired - Lifetime JP2555342B2 (en) 1987-03-12 1987-03-12 Image receiving sheet for thermal transfer recording

Country Status (1)

Country Link
JP (1) JP2555342B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231984A (en) * 1987-03-20 1988-09-28 Dainippon Printing Co Ltd Sheet to be subjected to thermal transfer
JPH02229082A (en) * 1989-03-02 1990-09-11 Dainippon Printing Co Ltd Sheet to be subjected to thermal transfer
JPH02235793A (en) * 1989-03-10 1990-09-18 Honshu Paper Co Ltd Sheet to be transferred for thermal transfer recording
WO2006121217A1 (en) 2005-05-13 2006-11-16 Oji Paper Co., Ltd. Biaxially stretched multilayer polypropylene film and use thereof
US7776413B2 (en) 2002-09-10 2010-08-17 Yupo Corporation Melt thermal transfer recording paper

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896592A (en) * 1981-12-04 1983-06-08 Toppan Printing Co Ltd Information recording card
JPS60219090A (en) * 1984-04-16 1985-11-01 Toshiba Corp Heat transfer recording paper
JPS60245593A (en) * 1984-05-21 1985-12-05 Matsushita Electric Ind Co Ltd Image-receiving material for thermal transfer
JPS61112693A (en) * 1984-11-07 1986-05-30 Matsushita Electric Ind Co Ltd Image receiving body for thermal transfer recording
JPS61118294A (en) * 1984-11-14 1986-06-05 Ricoh Co Ltd Transfer paper for transfer type thermal recording
JPS61172795A (en) * 1985-01-28 1986-08-04 Dainippon Printing Co Ltd Thermal transfer sheet
JPS6225089A (en) * 1985-07-26 1987-02-03 Nippon Telegr & Teleph Corp <Ntt> Image receiving sheet for thermal transfer recording medium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896592A (en) * 1981-12-04 1983-06-08 Toppan Printing Co Ltd Information recording card
JPS60219090A (en) * 1984-04-16 1985-11-01 Toshiba Corp Heat transfer recording paper
JPS60245593A (en) * 1984-05-21 1985-12-05 Matsushita Electric Ind Co Ltd Image-receiving material for thermal transfer
JPS61112693A (en) * 1984-11-07 1986-05-30 Matsushita Electric Ind Co Ltd Image receiving body for thermal transfer recording
JPS61118294A (en) * 1984-11-14 1986-06-05 Ricoh Co Ltd Transfer paper for transfer type thermal recording
JPS61172795A (en) * 1985-01-28 1986-08-04 Dainippon Printing Co Ltd Thermal transfer sheet
JPS6225089A (en) * 1985-07-26 1987-02-03 Nippon Telegr & Teleph Corp <Ntt> Image receiving sheet for thermal transfer recording medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231984A (en) * 1987-03-20 1988-09-28 Dainippon Printing Co Ltd Sheet to be subjected to thermal transfer
JPH02229082A (en) * 1989-03-02 1990-09-11 Dainippon Printing Co Ltd Sheet to be subjected to thermal transfer
JPH02235793A (en) * 1989-03-10 1990-09-18 Honshu Paper Co Ltd Sheet to be transferred for thermal transfer recording
US7776413B2 (en) 2002-09-10 2010-08-17 Yupo Corporation Melt thermal transfer recording paper
US8268415B2 (en) 2002-09-10 2012-09-18 Yupo Corporation Melt thermal transfer recording paper
WO2006121217A1 (en) 2005-05-13 2006-11-16 Oji Paper Co., Ltd. Biaxially stretched multilayer polypropylene film and use thereof

Also Published As

Publication number Publication date
JP2555342B2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
US5266550A (en) Heat transfer image-receiving sheet
JP4070329B2 (en) Support and thermal transfer image receptor
EP0439049B1 (en) Support for dye transfer type thermosensitive printing sheet
JP3026703B2 (en) Support for thermal transfer image receiving sheet
JPH07179078A (en) Thermal transfer image receiving sheet
JPH0655549B2 (en) Image receiving sheet for thermal transfer recording
JPH07304274A (en) Dyestuff accepting element for thermal dyestuff transfer
US5268349A (en) Recording material
JPS62148292A (en) Image-receiving sheet for thermal transfer recording
JP2555342B2 (en) Image receiving sheet for thermal transfer recording
JPH0460437B2 (en)
JP2753066B2 (en) Synthetic paper made of multilayer resin film
JP2835111B2 (en) Thermal transfer image receiving sheet
JPH043904B2 (en)
JP2569051B2 (en) Image receiving sheet for thermal transfer recording
JP3139889B2 (en) Thermal transfer image receiving sheet
JPH0478103B2 (en)
JPH05229265A (en) Thermal transfer image receiving sheet
US6020286A (en) Dye-receiving element for thermal dye transfer
JPH02133699A (en) Sheet for receiving heat-transfer image
JP4307643B2 (en) Support and thermal transfer image receptor
JPH04347694A (en) Thermal transfer image receiving sheet
JPS62299391A (en) Image-receiving sheet for thermal transfer recording
JP2005186427A (en) Thermal transfer image receiving sheet and manufacturing method thereof
JPH0679979A (en) Thermal transfer image receiving paper

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term