JPH0460437B2 - - Google Patents

Info

Publication number
JPH0460437B2
JPH0460437B2 JP62125400A JP12540087A JPH0460437B2 JP H0460437 B2 JPH0460437 B2 JP H0460437B2 JP 62125400 A JP62125400 A JP 62125400A JP 12540087 A JP12540087 A JP 12540087A JP H0460437 B2 JPH0460437 B2 JP H0460437B2
Authority
JP
Japan
Prior art keywords
sheet
image
layer
microns
synthetic paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62125400A
Other languages
Japanese (ja)
Other versions
JPS63290790A (en
Inventor
Takashi Toyoda
Masatsuki Yamanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yupo Corp
Original Assignee
Yupo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yupo Corp filed Critical Yupo Corp
Priority to JP62125400A priority Critical patent/JPS63290790A/en
Publication of JPS63290790A publication Critical patent/JPS63290790A/en
Publication of JPH0460437B2 publication Critical patent/JPH0460437B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/38207Contact thermal transfer or sublimation processes characterised by aspects not provided for in groups B41M5/385 - B41M5/395
    • B41M5/38214Structural details, e.g. multilayer systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/40Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
    • B41M5/41Base layers supports or substrates

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、たとえば熱転写記録用画像受容シー
ト、とくにサーマルヘツド等の電気信号により文
字や画像を受容体上に形成するビデオプリンター
等に用いるカラーコピーに用いられる熱転写記録
用画像受容シートに関する。 本発明の熱転写記録用画像受容シートを用いて
感熱転写された複写は、カールが防止され、か
つ、表面に印字、印刷されたときの凹凸が、支持
体の裏面に残ることがない。 〔従来技術〕 従来、昇華性又は気化性染料を含有する転写層
を有する転写シートと、受容シートとを重ね合
せ、転写シートを加熱して、転写層に含まれる染
料を昇華又は気化させて受容シートに染着させ、
受容シート上に染料画像を形成させる熱転写は知
られている。 具体的には、サーマルヘツド等の電気信号によ
り制御される熱源を用いた転写型感熱記録方式で
は、第1図のように色材層22と基体21を有す
る転写体2と、画像受容層11と支持体12を有
する受容シート1をドラム3と熱源4の間に狭着
させて、電気信号に応じて層22を色材を画像受
容層11上に転写させることによりカラーコピー
を得ている。 画像受容層11は、用いる色材の内容により異
り、顔料を含む熱溶融型色材の場合には、支持体
12そのものを用いてよく、昇華性塩基性染料型
色材の場合には活性白土(活性クレー)層を、昇
華性分散染料型色材の場合にはポリエステル等の
高分子材料コート層等からなつている。従来の受
容体では支持体の厚みむら、又は表面凹凸のため
画像受容層11の表面は、5〜15μmの凹凸があ
り、又、1mm当り10〜20μmのうねりがあつた。
この凹凸又はうねりは、スーパーカレンダーによ
る表面処理においても多少の改善がなされるだけ
で限界があつた。このため、色材層22から転写
される色材は、画像受容層11の表面凹凸が3〜
5μm以上又はうねりが1mm当り10μm以上では熱
溶融色材は勿論、昇華性色材でも画像信号に応じ
て正確に転写されず、画像のドツトぬけ、ドツト
欠け等の画像品質の乱れを生じ、中間調にザラツ
キ感を与えていた(特開昭59−214696号)。 また、支持体12としては、紙や無機微細粉末
を40〜50重量%含有する熱可塑性樹脂の延伸フイ
ルムよりなる合成紙(特公昭46−40794号)、透明
なポリエチレンテレフタレートフイルムまたは透
明フイルムの表面に、白色度及び染着性を高める
ため、シリカや炭酸カルシウム等の無機化合物を
バインダーと共に表面に塗布した塗工合成紙等が
用いられる。 熱転写された受容シートのアフターユース(複
写、鉛筆筆記性、保存性等)を考慮した場合、熱
転写記録用画像受容シートとしては、強度、寸法
安定性、印字ヘツドとの密着性の面から無機微細
粉末を含有するポリオレフイン樹脂フイルムを延
伸して得られるフイルム内部に微細なボイドを多
数有する合成紙が好ましい(特開昭60−245593
号、同61−112693号、特願昭62−25080号)。 〔従来技術の問題点〕 このポリオレフイン樹脂系合成紙は、ソフト感
を出し、印字ヘツドとの密着性、給排紙性を良好
とするため、素材のポリオレフインの融点よりも
低い温度でフイルム内部に無機微細粉末を核にボ
イドを形成させている。 しかし、ポリオレフインの融点は、ポリエチレ
ンテレフタレートやポリアミドの融点(240〜255
℃)と比較して167℃以下と低く、かつ、印字ヘ
ツドによる印刷のとき、受容シートの表面の温度
が融点よりも高い190〜200℃近くとなりこの印字
の際の熱により合成紙が収縮し、感熱転写された
受容シートが印字、印刷された内側面にカールす
る問題が指摘されている。(特開昭60−245593号、
同61−283595号)。 また、微細なボイドをフイルム内部に有する構
造であるので、表面の印字の凹凸応力がそのまま
合成紙の裏面まで伝わつて画像受容シートの裏面
に凹凸が呈現される問題が稀に起る。 〔問題点を解決する具体的手段〕 本発明においては、画像受容シートの支持体と
して合成紙を複数枚用い、合成紙と合成紙の間に
剛性が合成紙よりも高い素材シートを挾持させる
ことによりカールの防止と、印字応力の裏面層側
までの移行を防止させる。 即ち、本発明は、支持体の表面に画像受容層が
設けられた熱転写記録用画像受容シートにおい
て、次の(イ)〜(ホ)を満足するものであることを特徴
とする熱転写記録用画像受容シートを提供するも
のである。 (イ) 前記支持体として、JIS P−8132で測定した
ヤング率が26000Kg/cm2以上である熱可塑性樹
脂シートまたは紙より選ばれた剛性シートの表
裏面に、粒径が3ミクロン以下の無機微細粉末
を含有するポリオレフイン樹脂フイルムの延伸
物によりなるフイルム内部延伸により無機微細
粉末を核に形成されたボイドを多数有する合成
紙が一体に貼合された積層体を用いる。 (ロ) 前記合成紙は、次の方法で算出されたボイド
率が20〜50%である。 ボイド率=延伸前のフイルムの密度−延伸後のボ
イド含有樹脂シートの密度/延伸前のフイルムの密度×
100(%) (ハ) 支持体の剛性シートは、表裏面の合成紙の熱
変形温度よりも30℃以上高い熱変形温度を有す
る。 (ニ) 合成紙のヤング率は9000〜26000Kg/cm2であ
る。 (ホ) 熱転写記録用画像受容シートのヤング率は
17000〜40000Kg/cm2であり、JIS P−8125で測
定したテーバー剛度が3〜15g−cmである。 (支持体の合成紙) 支持体の合成紙としては、特公昭46−40794号、
特開昭57−149363号、特公昭60−36173号公報等
に記載される無機微細粉末を含有するポリオレフ
イン樹脂の延伸フイルムによりなる合成紙および
その表面に帯電防止ポリマー塗工層を設けた合成
紙も利用可能であるが、無機微細粉末を0〜
25wt%含有するポリオレフイン樹脂フイルムを
表面層とし、比表面積が10000cm2/g以上の無機
微細粉末を、表面層の含有量より多く含み、延伸
により生じる微細なボイドを多数含有するポリオ
レフイン樹脂フイルムの中芯層、および、無機微
細粉末を25〜75重量%含有するポリオレフインの
一軸延伸フイルムよりなる裏面層よりなる多層樹
脂延伸フイルムであつて、その表面層は、平坦面
より突出した突出物の最長長さが50ミクロン以上
のものが0.1m2当り10個以下であり、多層樹脂延
伸フイルムの32Kg/cm2の応力で押しつけた時の
(雰囲気−温度23℃、相対湿度50%)圧縮率が20
%〜40%であるポリオレフイン系合成紙が白抜け
がなく、印刷面、鉛筆筆記性の面で好ましい。 (表面層) インク受容層側の多層ポリオレフイン樹脂延伸
フイルムの表面層は、比表面積が10000cm2/g以
上の無機微細粉末を0〜10重量%未満、好ましく
は5〜8重量%含む一軸延伸が2軸延伸の樹脂フ
イルムである。反対側の裏面層は、同じ組成の樹
脂フイルムの一軸延伸物が、鉛筆筆記性を要求さ
れる場合は、比表面積が10000cm2/g以上の無機
微細粉末を25〜70重量%含有する一軸延伸の樹脂
フイルムである。裏面層の後者の一軸延伸樹脂フ
イルムは、無機微細粉末を核とした微細な長尺状
の空〓(ボイド)を多数有し、表面には微細な亀
裂を多数有するものである。 表面層、裏面層を構成するポリオレフイン樹脂
としては、たとえばポリエチレン、ポリプロピレ
ン、エチレン−プロピレン共重合体、エチレン−
酢酸ビニル共重合体、ポリ(4−メチルペンテン
−1)等が利用でき、これらの中でもポリプロピ
レンが耐熱性、耐溶剤性、コストの面で好まし
い。 このポリオレフインに、ポリスチレン、ポリア
ミド、ポリエチレンテレフタレート、エチレン−
酢酸ビニル共重合体の部分加水分解物、エチレン
−アクリル酸共重合体およびその塩、塩化ビニリ
デン共重合体たとえば塩化ビニル−塩化ビニリデ
ン共重合体等を配合してもよい。 無機質微細粉末としては平均粒径が3ミクロン
以下の炭酸カルシウム、焼成クレイ、ケイ藻土、
タルク、酸化チタン、硫酸バリウム、硫酸アルミ
ニウム、シリカ等を用いることができる。 前述したように、多層ポリオレフイン樹脂延伸
フイルムは、表面層、中芯層の他に、裏面層を含
むことができる。熱転写記録用画像受容シートの
支持体である合成紙の一例としては、中芯層形成
用組成物Aの一軸延伸フイルムシートの片面に、
表面層形成用の組成物Bの樹脂シートを溶融積層
し、他面に、無機微細粉末を25〜70重量%含有す
る裏面層形成用樹脂組成物Cの樹脂シートを溶融
積層し、この多層シートを一旦冷却後、再加熱し
てAのシートの一軸延伸方向と直交する方向に延
伸し、ついで熱処理することにより得られる。こ
の延伸によつて組成物Aのシートは二軸延伸さ
れ、その内部には多数の空〓(ミクロボイド)が
形成される。一方、表面層B、裏面層Cは、一軸
方向に延伸されたフイルムであり、表面には微小
な凹凸があり、表面平滑度(BEKK INDEX)
が500〜15000秒程度のものである。 (A) 中芯層組成 (a) ポリプロピレン 50〜95重量% (b) 高密度ポリエチレン、中密度ポリエチレ
ン、低密度ポリエチレン、エチレン・酢酸ビ
ニル共重合体により選ばれた樹脂
0〜30重量% (c) 無機微細粉末 10〜25重量% (B) 表面層組成 (a) ポリプロピレン 35〜92重量% (b) ポリスチレン、高密度ポリエチレン、中密
度ポリエチレン、低密度ポリエチレン、エチ
レン・酢酸ビニル共重合体より選ばれた樹脂
0〜30重量% (c) 無機微細粉末 0〜10重量% (C) 裏面層 (a) ポリプロピレン 25〜75重量% (b) ポリスチレン、高密度ポリエチレン、中密
度ポリエチレン、低密度ポリエチレン、エチ
レン・酢酸ビニル共重合体 0〜20重量% (c) 無機微細粉末 25〜75重量% 表面積、裏面積と中芯層の各層の厚さは、表面
積と裏面積の合計の厚さが多層樹脂延伸フイルム
の全肉厚の10〜40%で、中芯層の厚さが90〜60%
であることが好ましい。表面層と裏面層の厚さが
厚すぎると中芯層の圧縮性を生かすことができ
ず、薄すぎると表面平滑性が低下しすぎ、ヘツド
と受容シートとの密着性が不安定となる。 この多層ポリオレフイン樹脂延伸フイルムは、
中芯層Aの中に含まれる多数の微細なボイドによ
つて圧縮性があり、温度23℃、相対湿度50%の雰
囲気下で、表面より32Kg/cm2の応力で押しつけら
れた時、厚さが20〜40%程度にまで圧縮されう
る。 この圧縮性により、熱転写記録用画像受容シー
トとして多層延伸ポリオレフイン樹脂フイルムが
使用された時、表面層のインク受容量と熱転写染
料含有フイルム(熱転写リボン)との密着性が向
上し、熱転写記録用画像受容シートの表面に凸部
があつても、内部に押し込められる結果、得られ
る転写画像は優れた鮮明性を有するものである。 この微細なボイド含有シートの内部ボイドの量
は、 ボイド率=延伸前のフイルムの密度−延伸後のボ
イド含有樹脂シートの密度/延伸前のフイルムの密度×
100(%) で示した場合、ボイド率が20〜50%、より好まし
くは25〜50%の範囲にあるのが好ましい。 表面層としては無機微細粉末を含まないポリオ
レフイン樹脂フイルムのみでもよいが、必要に応
じて無機微細粉末を混合させることがあり、中芯
層の表面凹凸によつて表面層の無機微細粉末は適
当に選定される。表面層の無機微細粉末の含量
は、JIS P−8120で測定した表面平滑度(ベツク
指数)が500〜15000秒程度のものとなるように選
定するのが好ましい。 表面層に混合される無機微細粉末は、できるだ
け表面層に大きな凸部を作らないものが選ばれ、
325メツシユ残が10ppm以下のものが好ましい。
粒径は3ミクロン以下のものが好ましい。 支持体12の表面層Bの表面よりの突出物は、
その長径lが50ミクロン以上のものが0.1m2当り
10個以下となることが熱転写した画像の欠けが実
用上問題とならない点で重要である。 無機微細粉末は、平均粒径が3ミクロン以下で
あつても、その中には粒径が15ミクロンや20ミク
ロンのような粒子が少量存在したり、粒子同志複
数個凝集してその長径が50ミクロンと巨大となる
ものがある。この巨大粒子が画像受容シート1の
支持体12の表面に有ると、この上に設けられる
画像受容層11は均一な皮膜が形成できずひどい
場合にはピンホールとなり、これが白抜けの原因
となる。 支持体12の表面層Bの樹脂表面13の平坦面
より突出している突出物の高さhは、無機微細粉
末の長径lより小さい。この高さhが20ミクロン
以上の突出物が0.1m2当り5個以下であることが
白抜け防止の面で好ましい。 表面転写画像受容層の反対面の裏面層Cは、転
写時のロールとのすべり性、転写後の裏面層への
筆記性を賦与するため、無機微細粉末を25〜75重
量%、好ましくは30〜60重量%含有させるのがよ
くJIS P−8120で測定した表面平滑度(ベツク指
数)が50〜2000秒となるように選定するのが好ま
しい。 合成紙の肉厚は、30〜80ミクロン、好ましくは
40〜80ミクロンである。又、合成紙のヤング率は
9000〜26000Kg/cm2が好ましい。 (剛性シート) 印字ヘツドの熱による延伸多層ポリオレフイン
系合成紙の収縮応力を打消すために、合成紙間に
挾持される剛性シートは、合成紙のヤング率
(9000〜26000Kg/cm2)よりも高いヤング率
(26000Kg/cm2以上)を有するシートでポリエチレ
ンテレフタレート、ポリアミド(ナイロン6、ナ
イロン6,6、ナイロン6,10、ナイロン6,12
等)ポリフエニレンサルフアイド、ポリカーボネ
ート、アイソタクチツクポリスチレン等の熱可塑
性樹脂シートが用いられる。 これらシートは延伸されていてもよく、また無
機微細粉末で補強されていてもよい。さらに紙も
使用できる。この剛性シートは合成紙の素材樹脂
のポリオレフインの熱変形温度より30℃以上高い
熱変形温度を有する素材を用いるのが画像受容シ
ートに耐熱性を付与できる点で好ましい。 剛性シートの肉圧は5〜120ミクロン、好まし
くは10〜18ミクロンである。 〔支持体〕 支持体は、剛性シートと合成紙を溶剤型接着剤
を用いて合成紙a,cにより剛性シートbを挾持
するように一体に接着することにより得られる
(第3図参照)。 また、剛性シートの素材の樹脂と、前述の中芯
層組成物Aを共押出し、シート状とした後、これ
を縦方向に延伸し、ついでこの表裏層に前述の表
面層組成物Bと、裏面層組成物Cを溶融ラミネー
トし、ついで横方向に延伸することによつても得
られる。 溶剤型接着剤としては、ポリイソシアネート系
接着剤、ポリエステル系接着剤、アクリル系接着
剤、エチレン・酢酸ビニル共重合体水性エマルジ
ヨン等が利用できる。 (画像受容層) 画像受容層を形成する樹脂としては、オリゴエ
ステルアクリレート樹脂、飽和ポリエステル樹
脂、塩化ビニル・酢酸ビニル共重合体、アクリル
エステル・スチレン共重合体、エポキシアクリレ
ート樹脂等が利用され、これらはトルエン、キシ
レン、メチルエチルケトン、シクロヘキサノン等
に溶解し、塗工液として用いられる。 この塗工液は、耐光性を高めるために紫外線吸
収剤および/または光安定剤を含有することがで
きる。紫外線吸収剤としては例えば2−(2′−ヒ
ドロキシ−3,3′−ジ−t−ブチルフエニル)−
5−クロロベンゾトリアゾール、2−(2−ヒド
ロキシ−3,5−t−アミルフエニル)−2H−ベ
ンゾトリアゾール、2−(2′−ヒドロキシ−3′−
t−ブチル−5′−メチルフエニル)−5−クロロ
ベンゾトリアゾール、2−(2′−ヒドロキシ−3′,
5′−t−ブチルフエニル)−ベンゾトリアゾール、
2−(2′−ヒドロキシ−3′,5′−ジ−t−アミルフ
エニル)ベンゾトリアゾール等が挙げられる。光
安定剤としては例えばジステアリルペンタエリス
リト−ルジフオスフアイト、ビス(2,4−ジ−
t−ブチルフエニル)ペンタエリスリトールルジ
フオスフアイト、ジフエニルペンタエリスリトー
ルジフオスフアイト、サイクリツクネオペンタン
テトライルビス(オクタデシルフオスフアイト)、
トリス(ノニルフエニル)フオスフアイト、1−
〔2−〔3−(3,5−ジ−t−ブチル−4−ヒド
ロキシフエニル)プロピオニルオキシ〕エチル〕
−4−〔3−(3,5−ジ−t−ブチル−4−ヒド
ロキシフエニル)プロピオニルオキシ〕−2,2,
6,6−テトラメチルピペリジン等が挙げられ
る。これら紫外線吸収剤、光安定化剤の添加量は
受像層3を構成する樹脂100重量部に対しそれぞ
れ0.05〜10重量部、0.5〜3重量部が好ましい。 又、熱転写シートとの離型性を向上せしめるた
めに画像受容層中に離型剤を含有せしめることが
できる。離型剤としてはポリエチレンワツクス、
アミドワツクス、テフロンパウダー等の固型ワツ
クス類;弗素系、燐酸エステル系の界面活性剤;
シリコーンオイル等が挙げられるがシリコーンオ
イルが好ましい。 上記シリコーンオイルとしては油状のものも用
いることができるが、硬化型のものが好ましい。 更に、画像受容層の白色度を向上して転写画像
の鮮明度を更に高めるとともに被熱転写シート表
面に筆記性を付与し、かつ転写された画像の再転
写を防止する目的で画像受容層中に白色顔料を添
加することができる。白色顔料としては、酸化チ
タン、酸化亜鉛、カオリンクレー等が用いられ、
これらは2種以上混合して用いることができる。
酸化チタンとしてはアナターゼ形酸化チタン、ル
チル形酸化チタンを用いることができ、アナター
ゼ形酸化チタンとしては例えばKA−10,KA−
20,KA−15,KA−30,KA−35,KA−60,
KA−80,KA−90(いずれもチタン工業(株)製)等
が挙げられ、ルチル形酸化チタンとしてはKR−
310,KR−380,KR−460,KR−480(いずれも
チタン工業(株)製)等が挙げられる。白色顔料の添
加量は画像受容量を構成する樹脂100重量部に対
して5〜50重量部が好ましい 画像受容層11の肉厚は、0.2〜20ミクロンが
一般である。 (熱転写画像受容シート) 支持体の表面に、画像受容層形成用塗工液を塗
布し、乾燥して溶媒を飛散させることにより本発
明の熱転写画像受容シートが得られる。 この画像受容シートの肉厚は80〜280ミクロン
で、JIS P−8125で測定したテーバー剛度が3〜
15g−cmのものがカール防止、給排紙性の面で好
ましい。 以下、実施例を挙げて本発明を更に詳細に説明
する。 合成紙の製造例 例 1 (1) メルトインデツクス(MI)の0.8のポリプロ
ピレン80重量%に、平均粒径1.5ミクロンの炭
酸カルシウム20重量%を配合(A)し、270℃に設
定した押出機にて混練後、シート状に押出し、
冷却装置により冷却して、無延伸シートを得
た。このシートを、140℃に加熱後、縦方向に
5倍延伸した。 (2) MI4.0のポリプロピレン95重量%に平均粒径
1.5μの炭酸カルシウム5重量%を混合した表面
層用の組成物Bを押出機で溶融混練し、押出し
たシートを(1)の5倍延伸シートの片面に積層
し、(1)の5倍延伸シートの反対面にMI4.0のポ
リプロピレン60重量%に平均粒径1.5μの炭酸カ
ルシウム40重量%を混合した裏面層用の組成物
Cを別の押出機で溶融混練し、押出積層し、つ
いで60℃まで冷却後、162℃まで加熱し、テン
ターで横方向に7.5倍延伸し、165℃でアニーリ
ング処理し、60℃まで冷却し、耳部をスリツト
して3層(B/A/C;肉厚10/30/20ミクロ
ン)構造の合成紙を得た。 この合成紙の表面Bのベツク指数は6800秒であ
り、支持体としての白色度が94.2%であり、32
Kg/cm2の応力に対する圧縮率は26%であつた。 また、表面層Bの樹脂表面13より突出してい
る突出物の長径lが50ミクロン以上の突起個数は
0.1m2当り4個であつた。 例 2 (1) メルトインデツクス(MI)の0.8のポリプロ
ピレン80重量%に、平均粒径1.5ミクロンの炭
酸カルシウム20重量%を配合(A)し、270℃に設
定した押出機にて混練後、シート状に押出し、
冷却装置により冷却して、無延伸シートを得
た。このシートを、140℃に加熱後、縦方向に
5倍延伸した。 (2) MI4.0g/10分のポリプロピレン97.5重量%
に平均粒径0.3μの硫酸バリウム2.5重量%を混
合した組成物Bを押出機で溶融混練し、押出し
たシートを(1)の5倍延伸シートの片面に積層
し、(1)の5倍延伸シートの反対面にMI4.0のポ
リプロピレン60重量%に平均粒径1.5μの炭酸カ
ルシウム40重量%を混合した組成物Cを別の押
出機で溶融混練し、押出積層しついで60℃まで
冷却後、162℃まで加熱し、テンターで横方向
に7.5倍延伸し、165℃でアニーリング処理し、
60℃まで冷却し、耳部をスリツトして3層
(B/A/C;肉厚10/30/20ミクロン)構造
の合成紙を得た。 この合成紙の表面Bのベツク指数は5700秒であ
り、支持体としての白色度が96.0%であり圧縮率
は23%であつた。 また、表面層Bの樹脂表面13より突出してい
る突出物の長径lが50ミクロン以上の突起個数は
0.1m2当り7個であつた。 例 3 表面層Bの組成物として、ポリプロピレン98重
量%と平均粒径0.25ミクロンのTiO2 2重量%と
の混合物を用いる他は例1と同様にして表1に示
す物性の合成紙を得た。 例 4 ダイのスリツト幅を変更する他は例1と同様に
して肉厚がB/A/C;40/80/40ミクロンの3
層構造の合成紙を得た。 例 5 (1) メルトインデツクス(MI)の0.8のポリプロ
ピレン70重量%、高密度ポリエチレン5重量%
の混合物に平均粒径1.5ミクロンの炭酸カルシ
ウム20重量%を配合(A)し、270℃に設定した押
出機にて混練後、シート状に押出し、冷却装置
により冷却して、無延伸シートを得た。このシ
ートを、140℃に加熱後、縦方向に5倍延伸し
た。 (2) MI4.0のポリプロピレン(C)とMI4.0のポリプ
ロピレン50重量%に平均粒径1.5ミクロンの炭
酸カルシウム50重量%を混合した組成物Bを
別々の押出機で溶融混練し、ダイ内で積層しシ
ート状に共押出し、(1)の5倍延伸シートの表面
(C)が外側になるように積層し、反対面にMI4.0
のポリプロピレン50重量%と平均粒径1.5μの炭
酸カルシウム50重量%を混合した組成物Bを別
の押出機で溶融混練し押出積層し、ついで60℃
まで冷却後、160℃まで加熱し、テンターで横
方向に7.5倍延伸し、165℃でアニーリング処理
した後、60℃まで冷却し、耳部をスリツトし
て、4層構造(C/B/A/B;肉厚5/10/
30/15ミクロン)の合成紙を得た。 なお、突出物の突出個数の測定は次の方法で行
つた。 (1) 20cm×25cmに断裁した合成紙試料の表面に斜
光線をあて、突出部分を目視で捜しマークをつ
ける。 (2) マークがつけられた突出部分を、倍率25倍に
設定した実体顕微鏡で観察し、PEAKスケール
ルーペのNo.2スケールで測定し、長径が50μm
以上のものの個数を数える。 (3) これを2枚の試料について行い、合成個数を
0.1m2当りの突起個数(径)とする。 次に圧縮率は次の方法で測定した。 (1) 支持体表面に6cm2を有するリング状の治具を
160Kg/cm2の圧力をかけた時の厚みの減少を圧
力をかける前の厚みで割つたものを圧縮率とし
て求めた。温度23℃、相対湿度50%で測定し
た。
[Industrial Field of Application] The present invention is applicable to, for example, image receiving sheets for thermal transfer recording, particularly for color copying used in video printers and the like that form characters and images on a receptor using electrical signals from a thermal head. This invention relates to an image receiving sheet. Copies thermally transferred using the image-receiving sheet for thermal transfer recording of the present invention are prevented from curling, and the unevenness caused by printing on the front surface does not remain on the back surface of the support. [Prior art] Conventionally, a transfer sheet having a transfer layer containing a sublimable or vaporizable dye and a receiving sheet are placed on top of each other, and the transfer sheet is heated to sublimate or vaporize the dye contained in the transfer layer and receive the dye. Dye the sheet,
Thermal transfer of forming dye images on receiver sheets is known. Specifically, in a transfer type thermal recording method using a heat source controlled by an electric signal such as a thermal head, as shown in FIG. A color copy is obtained by sandwiching a receiving sheet 1 having a support 12 between a drum 3 and a heat source 4, and transferring a coloring material from a layer 22 onto the image receiving layer 11 in response to an electric signal. . The image-receiving layer 11 differs depending on the content of the coloring material used. In the case of a heat-melting type coloring material containing a pigment, the support 12 itself may be used, and in the case of a sublimable basic dye type coloring material, the support 12 itself may be used. In the case of a sublimable disperse dye type coloring material, the white clay (activated clay) layer is made up of a coating layer of a polymeric material such as polyester. In conventional receptors, the surface of the image-receiving layer 11 had irregularities of 5 to 15 .mu.m and waviness of 10 to 20 .mu.m per mm due to uneven thickness of the support or surface irregularities.
This unevenness or waviness can only be improved to some extent even with surface treatment using a supercalender. For this reason, the coloring material transferred from the coloring material layer 22 has surface irregularities of 3 to 3.
If the waviness is 5 μm or more or the waviness is 10 μm or more per mm, not only heat-melting color materials but also sublimation color materials will not be transferred accurately according to the image signal, resulting in disturbances in image quality such as missing dots and missing dots. It gave a rough feel to the key (Japanese Patent Application Laid-Open No. 59-214696). The support 12 may be paper, a synthetic paper made of a stretched film of thermoplastic resin containing 40 to 50% by weight of inorganic fine powder (Japanese Patent Publication No. 40794/1983), a transparent polyethylene terephthalate film, or the surface of a transparent film. Coated synthetic paper, etc., whose surface is coated with an inorganic compound such as silica or calcium carbonate together with a binder, is used to improve whiteness and dyeability. Considering the after-use of the thermally transferred receiving sheet (copying, pencil writing, storage stability, etc.), inorganic fine image receiving sheets for thermal transfer recording are preferred in terms of strength, dimensional stability, and adhesion to the printing head. Synthetic paper, which is obtained by stretching a polyolefin resin film containing powder and has many fine voids inside the film, is preferable (Japanese Patent Laid-Open No. 60-245593).
No. 61-112693, patent application No. 62-25080). [Problems with conventional technology] This polyolefin resin-based synthetic paper is heated inside the film at a temperature lower than the melting point of the polyolefin material in order to provide a soft feel and improve adhesion to the print head and paper feeding/ejection properties. Void is formed using inorganic fine powder as the core. However, the melting point of polyolefin is higher than that of polyethylene terephthalate or polyamide (240-255
When printing with the printing head, the temperature of the surface of the receiving sheet is higher than the melting point, approaching 190-200°C, and the heat during printing causes the synthetic paper to shrink. It has been pointed out that there is a problem in which the thermally transferred receiving sheet curls on the printed inner surface. (Unexamined Japanese Patent Publication No. 60-245593,
61-283595). In addition, since the film has a structure with fine voids inside, the stress of unevenness of printing on the front surface is transmitted directly to the back side of the synthetic paper, so that a problem rarely occurs in which unevenness appears on the back side of the image receiving sheet. [Specific means for solving the problem] In the present invention, a plurality of sheets of synthetic paper are used as a support for the image receiving sheet, and a material sheet having higher rigidity than the synthetic paper is sandwiched between the synthetic papers. This prevents curling and transfer of printing stress to the back layer side. That is, the present invention provides an image-receiving sheet for thermal transfer recording in which an image-receiving layer is provided on the surface of a support, which satisfies the following (a) to (e). A receiving sheet is provided. (a) As the support, inorganic particles with a particle size of 3 microns or less are coated on the front and back surfaces of a rigid sheet selected from a thermoplastic resin sheet or paper with a Young's modulus of 26000 Kg/cm 2 or more as measured by JIS P-8132. A laminate is used in which synthetic paper, which is made of a stretched polyolefin resin film containing fine powder and has a large number of voids formed with inorganic fine powder as cores by internal stretching of the film, is bonded together. (b) The synthetic paper has a void ratio of 20 to 50% calculated by the following method. Void ratio = Density of film before stretching - Density of void-containing resin sheet after stretching / Density of film before stretching ×
100 (%) (c) The rigid sheet of the support has a heat distortion temperature that is 30°C or more higher than the heat distortion temperature of the synthetic paper on the front and back sides. (d) The Young's modulus of synthetic paper is 9000 to 26000 Kg/cm 2 . (e) The Young's modulus of the image-receiving sheet for thermal transfer recording is
It is 17000 to 40000 Kg/cm 2 , and the Taber stiffness measured according to JIS P-8125 is 3 to 15 g-cm. (Synthetic paper for support) As synthetic paper for support, Japanese Patent Publication No. 46-40794,
Synthetic paper made of a stretched film of polyolefin resin containing inorganic fine powder and synthetic paper with an antistatic polymer coating layer provided on its surface, as described in JP-A-57-149363, JP-B-60-36173, etc. Although it is also possible to use inorganic fine powder from 0 to
The surface layer is a polyolefin resin film containing 25 wt%, and the polyolefin resin film contains a larger amount of inorganic fine powder with a specific surface area of 10,000 cm 2 /g or more than the content of the surface layer, and contains many fine voids caused by stretching. A multilayer resin stretched film consisting of a core layer and a back layer made of a uniaxially stretched polyolefin film containing 25 to 75% by weight of inorganic fine powder, the surface layer having the longest length of the protrusions that protrude from the flat surface. The number of particles with a diameter of 50 microns or more is 10 or less per 0.1 m2 , and the compression ratio of the multilayer resin stretched film when pressed with a stress of 32Kg/ cm2 (atmosphere - temperature 23℃, relative humidity 50%) is 20
% to 40% is preferable in terms of no white spots and good printing surface and pencil writability. (Surface layer) The surface layer of the multilayer polyolefin resin stretched film on the side of the ink receiving layer is a uniaxially stretched film containing 0 to less than 10% by weight, preferably 5 to 8% by weight, of inorganic fine powder having a specific surface area of 10000 cm 2 /g or more. It is a biaxially stretched resin film. For the back layer on the opposite side, if a uniaxially stretched resin film with the same composition is required to have pencil writability, a uniaxially stretched product containing 25 to 70% by weight of inorganic fine powder with a specific surface area of 10,000 cm 2 /g or more is used. This is a resin film. The latter uniaxially stretched resin film of the back layer has many fine elongated voids with inorganic fine powder as the core, and has many fine cracks on the surface. Examples of the polyolefin resin constituting the surface layer and back layer include polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-propylene copolymer.
Vinyl acetate copolymer, poly(4-methylpentene-1), etc. can be used, and among these, polypropylene is preferable in terms of heat resistance, solvent resistance, and cost. This polyolefin contains polystyrene, polyamide, polyethylene terephthalate, ethylene-
Partial hydrolysates of vinyl acetate copolymers, ethylene-acrylic acid copolymers and their salts, vinylidene chloride copolymers such as vinyl chloride-vinylidene chloride copolymers, etc. may be blended. Examples of inorganic fine powders include calcium carbonate, calcined clay, diatomaceous earth, and calcined clay with an average particle size of 3 microns or less.
Talc, titanium oxide, barium sulfate, aluminum sulfate, silica, etc. can be used. As mentioned above, the multilayer polyolefin resin stretched film can include a back layer in addition to the surface layer and the core layer. As an example of synthetic paper that is a support for an image-receiving sheet for thermal transfer recording, on one side of a uniaxially stretched film sheet of core layer forming composition A,
A resin sheet of composition B for forming a surface layer is melt-laminated, and on the other side, a resin sheet of resin composition C for forming a back layer containing 25 to 70% by weight of inorganic fine powder is melt-laminated, and this multilayer sheet is obtained. It is obtained by once cooling, reheating, stretching in a direction perpendicular to the uniaxial stretching direction of the sheet A, and then heat-treating. By this stretching, the sheet of composition A is biaxially stretched, and a large number of voids (microvoids) are formed inside the sheet. On the other hand, the surface layer B and the back layer C are films stretched in the uniaxial direction, and have minute irregularities on the surface, and the surface smoothness (BEKK INDEX)
is about 500 to 15000 seconds. (A) Core layer composition (a) Polypropylene 50-95% by weight (b) Resin selected from high-density polyethylene, medium-density polyethylene, low-density polyethylene, and ethylene-vinyl acetate copolymer
0 to 30% by weight (c) Inorganic fine powder 10 to 25% by weight (B) Surface layer composition (a) Polypropylene 35 to 92% by weight (b) Polystyrene, high density polyethylene, medium density polyethylene, low density polyethylene, ethylene. Resin selected from vinyl acetate copolymer
0-30% by weight (c) Inorganic fine powder 0-10% by weight (C) Back layer (a) Polypropylene 25-75% by weight (b) Polystyrene, high-density polyethylene, medium-density polyethylene, low-density polyethylene, ethylene/acetic acid Vinyl copolymer 0 to 20% by weight (c) Inorganic fine powder 25 to 75% by weight 10~40% of total wall thickness, core layer thickness is 90~60%
It is preferable that If the surface layer and back layer are too thick, the compressibility of the core layer cannot be utilized, and if they are too thin, the surface smoothness will be too low and the adhesion between the head and the receiving sheet will become unstable. This multilayer polyolefin resin stretched film is
The core layer A has compressibility due to the large number of fine voids contained in it, and when pressed from the surface with a stress of 32 kg/cm 2 in an atmosphere of a temperature of 23°C and a relative humidity of 50%, the thickness can be compressed to about 20-40%. Due to this compressibility, when a multilayer stretched polyolefin resin film is used as an image-receiving sheet for thermal transfer recording, the amount of ink received on the surface layer and the adhesion with the thermal transfer dye-containing film (thermal transfer ribbon) are improved, and the image for thermal transfer recording is improved. Even if there are convex portions on the surface of the receiving sheet, the convex portions are pushed into the interior, so that the resulting transferred image has excellent clarity. The amount of internal voids in this fine void-containing sheet is as follows: Void ratio = Density of film before stretching - Density of void-containing resin sheet after stretching / Density of film before stretching ×
When expressed as 100 (%), it is preferable that the void ratio is in the range of 20 to 50%, more preferably 25 to 50%. The surface layer may be made of only a polyolefin resin film that does not contain inorganic fine powder, but if necessary, inorganic fine powder may be mixed. Selected. The content of the inorganic fine powder in the surface layer is preferably selected so that the surface smoothness (Beck index) measured according to JIS P-8120 is about 500 to 15000 seconds. The inorganic fine powder mixed into the surface layer is selected to avoid creating large protrusions on the surface layer as much as possible.
325 mesh residue is preferably 10 ppm or less.
The particle size is preferably 3 microns or less. The protrusions from the surface of the surface layer B of the support 12 are:
0.1m2 for those with a long diameter l of 50 microns or more
It is important that the number of defects be 10 or less because chipping of the thermally transferred image does not pose a practical problem. Even if an inorganic fine powder has an average particle size of 3 microns or less, there may be a small amount of particles with a particle size of 15 microns or 20 microns, or there may be a number of particles agglomerated together with a major diameter of 50 microns. There are things that are as large as microns. If these giant particles exist on the surface of the support 12 of the image-receiving sheet 1, the image-receiving layer 11 provided thereon will not be able to form a uniform film, and in severe cases will form pinholes, which will cause white spots. . The height h of the protrusion protruding from the flat surface of the resin surface 13 of the surface layer B of the support 12 is smaller than the long axis l of the inorganic fine powder. In terms of preventing white spots, it is preferable that the number of protrusions with a height h of 20 microns or more is 5 or less per 0.1 m 2 . The back layer C on the opposite side of the front transferred image-receiving layer contains 25 to 75% by weight of inorganic fine powder, preferably 30% by weight, in order to provide slipperiness with the roll during transfer and writability to the back layer after transfer. The content is preferably 60% by weight, and it is preferably selected so that the surface smoothness (Beck index) measured according to JIS P-8120 is 50 to 2000 seconds. The wall thickness of synthetic paper is 30-80 microns, preferably
It is 40-80 microns. In addition, the Young's modulus of synthetic paper is
9000-26000Kg/ cm2 is preferable. (Rigid sheet) In order to cancel the shrinkage stress of the stretched multilayer polyolefin synthetic paper due to the heat of the printing head, the rigid sheet sandwiched between the synthetic papers has a Young's modulus higher than that of the synthetic paper (9000 to 26000 Kg/cm 2 ). Sheet with high Young's modulus (26000Kg/cm2 or more ) made of polyethylene terephthalate, polyamide (nylon 6, nylon 6,6, nylon 6,10, nylon 6,12)
etc.) Thermoplastic resin sheets such as polyphenylene sulfide, polycarbonate, and isotactic polystyrene are used. These sheets may be stretched or reinforced with inorganic fine powder. You can also use paper. It is preferable to use a material having a heat distortion temperature 30° C. or more higher than that of polyolefin, which is the resin material of the synthetic paper, for this rigid sheet, since heat resistance can be imparted to the image-receiving sheet. The rigid sheet has a wall thickness of 5 to 120 microns, preferably 10 to 18 microns. [Support] The support is obtained by bonding the rigid sheet and synthetic paper together using a solvent adhesive so that the rigid sheet b is sandwiched between the synthetic papers a and c (see FIG. 3). Further, the resin of the material of the rigid sheet and the above-mentioned core layer composition A are co-extruded to form a sheet, which is then stretched in the longitudinal direction, and then the above-mentioned surface layer composition B is applied to the front and back layers. It can also be obtained by melt laminating the back layer composition C and then stretching it in the transverse direction. As the solvent-based adhesive, polyisocyanate adhesive, polyester adhesive, acrylic adhesive, ethylene/vinyl acetate copolymer aqueous emulsion, etc. can be used. (Image-receiving layer) As the resin forming the image-receiving layer, oligoester acrylate resin, saturated polyester resin, vinyl chloride/vinyl acetate copolymer, acrylic ester/styrene copolymer, epoxy acrylate resin, etc. are used. is dissolved in toluene, xylene, methyl ethyl ketone, cyclohexanone, etc. and used as a coating liquid. This coating liquid can contain an ultraviolet absorber and/or a light stabilizer to improve light resistance. Examples of ultraviolet absorbers include 2-(2'-hydroxy-3,3'-di-t-butylphenyl)-
5-chlorobenzotriazole, 2-(2-hydroxy-3,5-t-amyl phenyl)-2H-benzotriazole, 2-(2'-hydroxy-3'-
t-Butyl-5'-methylphenyl)-5-chlorobenzotriazole, 2-(2'-hydroxy-3',
5'-t-butylphenyl)-benzotriazole,
Examples include 2-(2'-hydroxy-3',5'-di-t-amyl phenyl)benzotriazole. Examples of light stabilizers include distearyl pentaerythritol diphosphorite, bis(2,4-di-
t-butylphenyl) pentaerythritol diphosphite, diphenylpentaerythritol diphosphite, cyclic neopentanetetrayl bis(octadecyl phosphite),
Tris(nonylphenyl)phosphite, 1-
[2-[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionyloxy]ethyl]
-4-[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionyloxy]-2,2,
Examples include 6,6-tetramethylpiperidine. The amounts of these ultraviolet absorbers and light stabilizers added are preferably 0.05 to 10 parts by weight and 0.5 to 3 parts by weight, respectively, per 100 parts by weight of the resin constituting the image receiving layer 3. Furthermore, a release agent may be included in the image-receiving layer in order to improve the releasability from the thermal transfer sheet. As a mold release agent, polyethylene wax,
Solid waxes such as amide wax and Teflon powder; fluorine-based and phosphate-based surfactants;
Examples include silicone oil, but silicone oil is preferred. Although an oily silicone oil can be used as the silicone oil, a hardened type is preferable. Furthermore, in order to improve the whiteness of the image-receiving layer to further enhance the clarity of the transferred image, to provide writability to the surface of the heat-transfer sheet, and to prevent the transferred image from being re-transferred, the image-receiving layer contains White pigments can be added. As white pigments, titanium oxide, zinc oxide, kaolin clay, etc. are used.
These can be used in combination of two or more types.
As titanium oxide, anatase titanium oxide and rutile titanium oxide can be used, and examples of anatase titanium oxide include KA-10 and KA-
20, KA-15, KA-30, KA-35, KA-60,
Examples include KA-80 and KA-90 (both manufactured by Titan Kogyo Co., Ltd.), and examples of rutile titanium oxide include KR-
310, KR-380, KR-460, KR-480 (all manufactured by Titan Kogyo Co., Ltd.), and the like. The amount of the white pigment added is preferably 5 to 50 parts by weight per 100 parts by weight of the resin constituting the image receiving amount. The thickness of the image receiving layer 11 is generally 0.2 to 20 microns. (Thermal Transfer Image-Receiving Sheet) The thermal transfer image-receiving sheet of the present invention can be obtained by applying a coating solution for forming an image-receiving layer on the surface of a support and drying to scatter the solvent. The wall thickness of this image receiving sheet is 80 to 280 microns, and the Taber stiffness measured according to JIS P-8125 is 3 to 280 microns.
15 g-cm is preferable in terms of curl prevention and paper feeding/discharging properties. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example of manufacturing synthetic paper 1 (1) 80% by weight of polypropylene with a melt index (MI) of 0.8 is blended with 20% by weight of calcium carbonate with an average particle size of 1.5 microns (A), and an extruder set at 270°C. After kneading, it is extruded into a sheet,
It was cooled using a cooling device to obtain a non-stretched sheet. This sheet was heated to 140°C and then stretched 5 times in the machine direction. (2) Average particle size in 95% by weight of polypropylene with MI4.0
Composition B for the surface layer mixed with 5% by weight of 1.5μ calcium carbonate was melt-kneaded in an extruder, and the extruded sheet was laminated on one side of a sheet stretched 5 times as much as (1), and On the opposite side of the stretched sheet, composition C for the back layer, which is a mixture of 60% by weight of polypropylene with MI4.0 and 40% by weight of calcium carbonate with an average particle size of 1.5μ, is melt-kneaded in a separate extruder and extrusion laminated. Then, after cooling to 60℃, heating to 162℃, stretching 7.5 times in the transverse direction with a tenter, annealing at 165℃, cooling to 60℃, and slitting the edges to form 3 layers (B/A/C). A synthetic paper with a wall thickness of 10/30/20 microns was obtained. The Betzke index of surface B of this synthetic paper is 6800 seconds, the whiteness as a support is 94.2%, and 32
The compression ratio against a stress of Kg/cm 2 was 26%. In addition, the number of protrusions that protrude from the resin surface 13 of the surface layer B and have a longer diameter l of 50 microns or more is
There were 4 pieces per 0.1m2 . Example 2 (1) 80% by weight of polypropylene with a melt index (MI) of 0.8 is blended with 20% by weight of calcium carbonate (A) having an average particle size of 1.5 microns, and after kneading in an extruder set at 270°C, extruded into a sheet,
It was cooled using a cooling device to obtain a non-stretched sheet. This sheet was heated to 140°C and then stretched 5 times in the machine direction. (2) MI4.0g/10min polypropylene 97.5% by weight
Composition B, which is a mixture of 2.5% by weight of barium sulfate with an average particle size of 0.3μ, is melt-kneaded in an extruder, and the extruded sheet is laminated on one side of a sheet stretched 5 times that of (1). On the opposite side of the stretched sheet, composition C, which is a mixture of 60% by weight of polypropylene with an MI of 4.0 and 40% by weight of calcium carbonate with an average particle size of 1.5μ, is melt-kneaded in another extruder, laminated by extrusion, and then cooled to 60°C. After that, it was heated to 162℃, stretched 7.5 times in the transverse direction with a tenter, and annealed at 165℃.
It was cooled to 60°C and the edges were slit to obtain a synthetic paper with a three-layer (B/A/C; wall thickness: 10/30/20 microns) structure. The Becs index of surface B of this synthetic paper was 5700 seconds, the whiteness as a support was 96.0%, and the compression ratio was 23%. In addition, the number of protrusions that protrude from the resin surface 13 of the surface layer B and have a longer diameter l of 50 microns or more is
There were 7 pieces per 0.1m2 . Example 3 A synthetic paper with the physical properties shown in Table 1 was obtained in the same manner as in Example 1, except that a mixture of 98% by weight of polypropylene and 2% by weight of TiO 2 with an average particle size of 0.25 microns was used as the composition for surface layer B. . Example 4 Same as Example 1 except for changing the die slit width, but the wall thickness is B/A/C; 40/80/40 microns.
A synthetic paper with a layered structure was obtained. Example 5 (1) 70% by weight polypropylene with a melt index (MI) of 0.8, 5% by weight high density polyethylene
Add 20% by weight of calcium carbonate (A) with an average particle size of 1.5 microns to the mixture (A), knead it in an extruder set at 270°C, extrude it into a sheet, and cool it with a cooling device to obtain an unstretched sheet. Ta. This sheet was heated to 140°C and then stretched 5 times in the machine direction. (2) Composition B, which is a mixture of MI4.0 polypropylene (C) and 50% by weight of polypropylene with MI4.0 and 50% by weight of calcium carbonate with an average particle size of 1.5 microns, is melt-kneaded in a separate extruder and placed in a die. Laminated and coextruded into a sheet, the surface of the sheet stretched 5 times as in (1)
Stack them so that (C) is on the outside, and MI4.0 on the other side.
Composition B, which is a mixture of 50% by weight of polypropylene of
After cooling to 60°C, heating to 160°C, stretching 7.5 times in the transverse direction with a tenter, annealing at 165°C, cooling to 60°C, slitting the edges, and creating a 4-layer structure (C/B/A /B; Wall thickness 5/10/
30/15 micron) synthetic paper was obtained. The number of protrusions was measured by the following method. (1) Shine an oblique light onto the surface of a synthetic paper sample cut into 20cm x 25cm pieces, visually locate and mark any protruding parts. (2) Observe the marked protruding part with a stereomicroscope set to 25x magnification, measure it with the No. 2 scale of a PEAK scale loupe, and find that the major axis is 50 μm.
Count the number of the above items. (3) Do this for two samples and calculate the composite number.
Number of protrusions (diameter) per 0.1m2 . Next, the compressibility was measured by the following method. (1) A ring-shaped jig with a diameter of 6 cm 2 is placed on the surface of the support.
The compression ratio was calculated by dividing the decrease in thickness when a pressure of 160 kg/cm 2 was applied by the thickness before applying pressure. Measurements were made at a temperature of 23°C and a relative humidity of 50%.

【表】 剛性シートの例 例 1 肉厚が50μのポリエチレンテレフタレートの2
軸延伸フイルム。 ヤング率47500Kg/cm2 例 2 パルプ紙。肉厚50μ、秤量65g/m2、ヤング率
73000Kg/cm2、耐熱性300℃以上。 例 3 肉厚が40μの2軸延伸ポリフエニレンサルフア
イドフイルム。 ヤング率40000Kg/cm2、耐熱性220℃以上。 支持体の製造例 各例で得た表2に示す合成紙aの裏面層側に、
接着剤として東洋モートン(株)製溶剤型ウレタン接
着剤“BLS−2080A”(樹脂)とBLS−2080B(硬
化剤)の混合物を3g/m2となるように塗布した
後、表2に示す剛性シートbを貼着し、更にこの
剛性シートの裏面に前記接着剤を塗付し、表2に
示す合成紙cの表面層側を前記接着剤に貼合し、
表2に示す支持体を得た。 実施例1〜7、比較例1〜2 表2に示す支持体の合成紙aの表面層側に、下
記組成の画像受容層形成組成物をワイヤーバーコ
ーテイングにより乾燥時の厚さが4μmとなるよ
うに塗布し、乾燥させて表2に示す物性の熱転写
記録用画像受容シートを得た。 バイロン200(東洋紡製飽和ポリエステル:Tg=
67℃) 5.3重量部 バイロン290(東洋紡製飽和ポリエステル:Tg=
77℃) 5.3重量部 ビニライトVYHH(ユニオンカーバイド製塩化ビ
ニル−酢酸ビニル共重合体) 4.5重量部 酸化チタン(チタン工業製KA−10) 1.5重量部 KF−393(信越シリコーン製アミノ変性シリコー
ンオイル) 1.1重量部 X−22−343(信越シリコーン製エポキシ変性シリ
コーンオイル) 1.1重量部 トルエン 30重量部 メチルエチルケトン 30重量部 シクロヘキサノン 22重量部 比較例 3 王子油化合成紙(株)のポリプロピレン系合成紙ユ
ポFPG150(商品名;肉厚150μmの)片面に、エ
ポキシアクリレート樹脂10重量部、オリゴエステ
ルアクリレート樹脂20重量部、増感剤として2−
ヒドロキシ−2−メチルプロピオフエノン1.5重
量部、酢酸エチル60重量部からなる塗工液をワイ
ヤーで塗工し、60℃の熱風で乾燥後、1kwの高圧
水銀灯により照射して厚さ8μmの硬化樹脂層を
形成させて支持体を得た。 この支持体の硬化樹脂層の側に、実施例1で用
いた画像受容形成組成物を塗工し、実施例1と同
様に乾燥させて表2に示す物性の熱転写画像受容
シートを得た。 比較例 4 王子油化合成紙(株)のポリプロピレン系合成紙ユ
ポFPG150(商品名;肉厚150μmの)片面に、エ
ポキシアクリレート樹脂10重量部、オリゴエステ
ルアクリレート樹脂20重量部、増感剤として2−
ヒドロキシ−2−メチルプロピオフエノン1.5重
量部、酢酸エチル60重量部からなる塗工液をワイ
ヤーで塗工し、60℃の熱風で乾燥後、1kwの高圧
水銀灯により照射して厚さ8μmの硬化樹脂層を
形成させて支持体を得た。 この支持体の硬化樹脂層とは反対側に、実施例
1で用いた画像受容層形成組成物を塗工し、実施
例1と同様に乾燥させて表2に示す物性の熱転写
記録用画像受容シートを得た。 比較例 5 王子油化合成紙(株)のポリプロピレン系合成紙ユ
ポFPG150(商品名;肉厚150μmの)両面に、エ
ポキシアクリレート樹脂10重量部、オリゴエステ
ルアクリレート樹脂20重量部、増感剤として2−
ヒドロキシ−2−メチルプロピオフエノン1.5重
量部、酢酸エチル60重量部からなる塗工液をワイ
ヤーで塗工し、60℃の熱風で乾燥後、1kwの高圧
水銀灯により照射して表裏をそれぞれ厚さ8μm
の硬化樹脂層を形成させて支持体を得た。 この支持体の硬化樹脂層の一方側に、実施例1
で用いた画像受容層形成組成物を塗工し、実施例
1と同様に乾燥させて表2に示す物性の熱転写画
像受容シートを得た。 これら熱転写用画像受容シートを次の方法で評
価した。結果を表2に示す。 (1) 画像の判定方法: 各実施例、比較例で作成した画像受容シート
と昇華性染料を塗布乾燥した三菱製紙(株)製転写
フイルム“TTFシアン”(商品名)を重ね合
せ、熱傾斜試験機(東洋精機製Type−HG−
100)を使用し、熱板を120℃より10℃かんかく
で5点熱傾斜させ0.5Kg/cm2の圧力で2秒間加
熱し、転写画像を得た。 得た転写画像の濃度をマクベス濃度計で測定
し、下記の5段階で評価した。 5:大変良い。 4:良い 3:実用上支章はない。 2:実用上、少々問題有る。 1:実用にならない。 カールの評価: 各実施例、比較例で作成した画像受容シート
を、日立カラービデオプリンター(VY−50)で
転写し、23℃、50%雰囲気中に24時間放置した時
の受容シートの4端の持ち上り高さの平均値を求
めた。 転写画像の表面応力の支持体の裏面層迄の移行の
有無: カール評価に使用した転写画像と反対側の受容
シートの合成紙の裏面層の凹凸の有無を目視で判
定。 給排紙性; 日立カラービデオプリンター(VY−50)で転
写した際の熱転写画像受容シートの該装置への給
紙性、該装置からの排紙性を調べた。 5:大変良好。3:実用上問題ない。1:実用
に耐えない。
[Table] Examples of rigid sheets 1 Polyethylene terephthalate with a wall thickness of 50μ 2
Axial stretched film. Young's modulus 47500Kg/cm 2 Examples 2 Pulp paper. Wall thickness 50μ, weight 65g/m 2 , Young's modulus
73000Kg/cm 2 , heat resistance over 300℃. Example 3 Biaxially stretched polyphenylene sulfide film with a wall thickness of 40μ. Young's modulus 40000Kg/cm 2 , heat resistance over 220℃. Manufacturing Examples of Supports On the back layer side of synthetic paper a shown in Table 2 obtained in each example,
After applying a mixture of solvent-type urethane adhesive "BLS-2080A" (resin) and BLS-2080B (curing agent) manufactured by Toyo Morton Co., Ltd. as an adhesive at a concentration of 3 g/ m2 , the rigidity shown in Table 2 was obtained. Pasting sheet b, further applying the adhesive on the back side of this rigid sheet, pasting the surface layer side of synthetic paper c shown in Table 2 to the adhesive,
A support shown in Table 2 was obtained. Examples 1 to 7, Comparative Examples 1 to 2 An image-receiving layer-forming composition having the following composition was coated with a wire bar on the surface layer side of the synthetic paper a of the support shown in Table 2 to give a dry thickness of 4 μm. It was coated and dried to obtain an image-receiving sheet for thermal transfer recording having the physical properties shown in Table 2. Byron 200 (Toyobo saturated polyester: Tg=
67℃) 5.3 parts by weight Byron 290 (Toyobo saturated polyester: Tg=
77℃) 5.3 parts by weight Vinyrite VYHH (Union Carbide's vinyl chloride-vinyl acetate copolymer) 4.5 parts by weight Titanium oxide (Titan Kogyo's KA-10) 1.5 parts by weight KF-393 (Shin-Etsu Silicone's amino-modified silicone oil) 1.1 Weight parts 10 parts by weight of epoxy acrylate resin, 20 parts by weight of oligoester acrylate resin, 2- as a sensitizer on one side (product name: 150 μm thick)
A coating solution consisting of 1.5 parts by weight of hydroxy-2-methylpropiophenone and 60 parts by weight of ethyl acetate was applied with a wire, dried with hot air at 60°C, and then irradiated with a 1kw high-pressure mercury lamp to harden to a thickness of 8 μm. A support was obtained by forming a resin layer. The image receiving and forming composition used in Example 1 was coated on the cured resin layer side of this support and dried in the same manner as in Example 1 to obtain a thermal transfer image receiving sheet having the physical properties shown in Table 2. Comparative Example 4 10 parts by weight of epoxy acrylate resin, 20 parts by weight of oligoester acrylate resin, and 2 parts by weight of oligoester acrylate resin were added to one side of polypropylene synthetic paper Yupo FPG150 (product name; wall thickness 150 μm) manufactured by Oji Yuka Synthetic Paper Co., Ltd. as a sensitizer. −
A coating solution consisting of 1.5 parts by weight of hydroxy-2-methylpropiophenone and 60 parts by weight of ethyl acetate was applied with a wire, dried with hot air at 60°C, and then irradiated with a 1kw high-pressure mercury lamp to harden to a thickness of 8 μm. A support was obtained by forming a resin layer. The image-receiving layer forming composition used in Example 1 was coated on the opposite side of the support from the cured resin layer, and dried in the same manner as in Example 1. Got a sheet. Comparative Example 5 10 parts by weight of epoxy acrylate resin, 20 parts by weight of oligoester acrylate resin, and 2 parts by weight of oligoester acrylate resin were applied to both sides of polypropylene synthetic paper Yupo FPG150 (product name; wall thickness: 150 μm) manufactured by Oji Yuka Synthetic Paper Co., Ltd. −
A coating solution consisting of 1.5 parts by weight of hydroxy-2-methylpropiophenone and 60 parts by weight of ethyl acetate was applied with a wire, dried with hot air at 60°C, and then irradiated with a 1kw high-pressure mercury lamp to coat the front and back sides with a thickness of 1.5 parts by weight. 8μm
A support was obtained by forming a cured resin layer. On one side of the cured resin layer of this support, Example 1
The image-receiving layer forming composition used in Example 1 was applied and dried in the same manner as in Example 1 to obtain a thermal transfer image-receiving sheet having the physical properties shown in Table 2. These thermal transfer image-receiving sheets were evaluated by the following method. The results are shown in Table 2. (1) Image judgment method: The image-receiving sheet prepared in each example and comparative example was overlaid with transfer film “TTF Cyan” (trade name) manufactured by Mitsubishi Paper Mills Co., Ltd. coated with sublimable dye and dried, and then thermally tilted. Testing machine (Toyo Seiki Type-HG-
100), the hot plate was heated at 5 points from 120° C. to 10° C. and heated for 2 seconds at a pressure of 0.5 kg/cm 2 to obtain a transferred image. The density of the obtained transferred image was measured using a Macbeth densitometer and evaluated on the following five scales. 5: Very good. 4: Good 3: Practically speaking, there are no branches. 2: There are some practical problems. 1: Not practical. Evaluation of curl: The four edges of the image receiving sheet prepared in each example and comparative example were transferred using a Hitachi color video printer (VY-50) and left in a 50% atmosphere at 23°C for 24 hours. The average value of the lifting height was determined. Whether or not the surface stress of the transferred image transfers to the back layer of the support: Visually determine the presence or absence of unevenness on the back layer of the synthetic paper of the receiving sheet on the opposite side of the transferred image used for curl evaluation. Paper feeding and discharging properties: The paper feeding properties and paper discharging properties of the thermal transfer image-receiving sheet when transferred to the Hitachi color video printer (VY-50) were investigated. 5: Very good. 3: No practical problem. 1: Not suitable for practical use.

【表】【table】

Claims (1)

【特許請求の範囲】 1 支持体の表面に画像受容層が設けられた熱転
写記録用画像受容シートにおいて、次の(イ)〜(ホ)を
満足するものであることを特徴とする熱転写記録
用画像受容シート。 (イ) 前記支持体として、JIS P−8132で測定した
ヤング率が26000Kg/cm2以上である熱可塑性樹
脂シートまたは紙より選ばれた剛性シートの表
裏面に、粒径が3ミクロン以下の無機微細粉末
を含有するポリオレフイン樹脂フイルムの延伸
物よりなるフイルム内部延伸により無機微細粉
末を核に形成されたボイドを多数有する合成紙
が一体に貼合された積層体を用いる。 (ロ) 前記合成紙は、次の方法で算出されたボイド
率が20〜50%である。 ボイド率=延伸前のフイルムの密度−延伸後のボ
イド含有樹脂シートの密度/延伸前のフイルムの密度×
100(%) (ハ) 支持体の剛性シートは、表裏層の合成紙の熱
変形温度よりも30℃以上高い熱変形温度を有す
る。 (ニ) 合成紙のヤング率は9000〜26000Kg/cm2であ
る。 (ホ) 熱転写記録用画像受容シートのヤング率は
17000〜40000Kg/cm2であり、JIS P−8125で測
定したテーバー剛度が3〜15g−cmである。 2 剛性シートがポリエチレンテレフタレートの
2軸延伸シートであることを特徴とする特許請求
の範囲第1項記載の熱転写記録用画像受容シー
ト。 3 合成紙が、粒径が3ミクロン以下の無機微細
粉末を0〜10wt%含有するポリオレフイン樹脂
フイルムを表面層(画像受容層と接する側)と
し、比表面積が10000cm2/g以上の無機微細粉末
を、表面層の含有量より多く含み、延伸により生
じたボイドを多数含有するポリオレフイン樹脂フ
イルムの中芯層と、無機微細粉末を25〜75重量%
含有するポリオレフイン一軸延伸フイルムの裏面
層よりなる多層樹脂延伸フイルムであつて、その
表面層は、平坦面より突出した突出物の最長長さ
が50ミクロン以上のものが0.1m2当り10個以下で
あり、多層樹脂延伸フイルムの32Kg/cm2応力に対
する圧縮率が20%〜40%であることを特徴とする
特許請求の範囲第1項記載の熱転写記録用画像受
容シート。 4 画像受容層の肉厚が0.2〜20ミクロンであり、
合成紙の肉厚が30〜80ミクロンであり、剛性シー
トの肉厚が5〜120ミクロンであり、熱転写記録
用画像受容シートの肉厚が80〜270ミクロンであ
ることを特徴とする特許請求の範囲第1項記載の
熱転写記録用画像受容シート。
[Scope of Claims] 1. An image-receiving sheet for thermal transfer recording in which an image-receiving layer is provided on the surface of a support, which satisfies the following (a) to (e): Image receiving sheet. (a) As the support, inorganic particles with a particle size of 3 microns or less are coated on the front and back surfaces of a rigid sheet selected from a thermoplastic resin sheet or paper with a Young's modulus of 26000 Kg/cm 2 or more as measured by JIS P-8132. A laminate is used in which synthetic paper, which is made of a stretched polyolefin resin film containing fine powder and has a large number of voids formed with inorganic fine powder as cores by internal stretching of the film, is bonded together. (b) The synthetic paper has a void ratio of 20 to 50% calculated by the following method. Void ratio = Density of film before stretching - Density of void-containing resin sheet after stretching / Density of film before stretching x
100 (%) (c) The rigid sheet of the support has a heat distortion temperature that is 30°C or more higher than the heat distortion temperature of the synthetic paper of the front and back layers. (d) The Young's modulus of synthetic paper is 9000 to 26000 Kg/cm 2 . (e) The Young's modulus of the image-receiving sheet for thermal transfer recording is
It is 17000 to 40000 Kg/cm 2 , and the Taber stiffness measured according to JIS P-8125 is 3 to 15 g-cm. 2. The image-receiving sheet for thermal transfer recording according to claim 1, wherein the rigid sheet is a biaxially stretched sheet of polyethylene terephthalate. 3 The synthetic paper has a surface layer (the side in contact with the image-receiving layer) of a polyolefin resin film containing 0 to 10 wt% of inorganic fine powder with a particle size of 3 microns or less, and the inorganic fine powder with a specific surface area of 10,000 cm 2 /g or more. The core layer of the polyolefin resin film contains more than the surface layer and contains many voids caused by stretching, and 25 to 75% by weight of inorganic fine powder.
A multilayer resin stretched film consisting of the back layer of a uniaxially stretched polyolefin film containing polyolefin, the surface layer of which has no more than 10 protrusions per 0.1 m2 with a maximum length of 50 microns or more that protrudes from the flat surface. 2. The image-receiving sheet for thermal transfer recording according to claim 1, wherein the multilayer resin stretched film has a compression ratio of 20% to 40% under a stress of 32 kg/cm 2 . 4. The thickness of the image-receiving layer is 0.2 to 20 microns,
The synthetic paper has a wall thickness of 30 to 80 microns, the rigid sheet has a wall thickness of 5 to 120 microns, and the image receiving sheet for thermal transfer recording has a wall thickness of 80 to 270 microns. The image-receiving sheet for thermal transfer recording according to item 1.
JP62125400A 1987-05-22 1987-05-22 Image-receiving sheet for thermal transfer recording Granted JPS63290790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62125400A JPS63290790A (en) 1987-05-22 1987-05-22 Image-receiving sheet for thermal transfer recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62125400A JPS63290790A (en) 1987-05-22 1987-05-22 Image-receiving sheet for thermal transfer recording

Publications (2)

Publication Number Publication Date
JPS63290790A JPS63290790A (en) 1988-11-28
JPH0460437B2 true JPH0460437B2 (en) 1992-09-28

Family

ID=14909194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62125400A Granted JPS63290790A (en) 1987-05-22 1987-05-22 Image-receiving sheet for thermal transfer recording

Country Status (1)

Country Link
JP (1) JPS63290790A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2907429B2 (en) * 1988-08-15 1999-06-21 王子製紙株式会社 Base sheet for thermal transfer image receiving sheet
JP2840630B2 (en) * 1988-09-22 1998-12-24 日東電工株式会社 Image transfer paper for thermal transfer
JPH0686157B2 (en) * 1989-07-25 1994-11-02 新王子製紙株式会社 Thermal transfer print sheet
US4999335A (en) * 1989-12-11 1991-03-12 Eastman Kodak Company Thermal dye transfer receiving element with blended polyethylene/polypropylene-coated paper support
JP2925247B2 (en) * 1990-06-04 1999-07-28 三菱製紙株式会社 Support for heat transfer type thermal transfer recording image receiving material
US5244861A (en) * 1992-01-17 1993-09-14 Eastman Kodak Company Receiving element for use in thermal dye transfer
US5698489A (en) 1994-02-25 1997-12-16 Dai Nippon Printing Co., Ltd. Thermal transfer image-receiving sheet
WO1997003840A1 (en) * 1995-07-20 1997-02-06 Bando Chemical Industries, Ltd. Transfer sheet for sublimation heat-transfer printing and process for production thereof
JP3707858B2 (en) * 1996-03-05 2005-10-19 株式会社ユポ・コーポレーション Pressure sensitive adhesive label

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61112693A (en) * 1984-11-07 1986-05-30 Matsushita Electric Ind Co Ltd Image receiving body for thermal transfer recording
JPS6287390A (en) * 1985-10-15 1987-04-21 Oji Yuka Gouseishi Kk Image-receiving sheet for thermal transfer recording

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188866U (en) * 1985-05-16 1986-11-25

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61112693A (en) * 1984-11-07 1986-05-30 Matsushita Electric Ind Co Ltd Image receiving body for thermal transfer recording
JPS6287390A (en) * 1985-10-15 1987-04-21 Oji Yuka Gouseishi Kk Image-receiving sheet for thermal transfer recording

Also Published As

Publication number Publication date
JPS63290790A (en) 1988-11-28

Similar Documents

Publication Publication Date Title
US6562451B2 (en) Coated film
US6447976B1 (en) Foam core imaging element with improved optical performance
JPH03293197A (en) Image receiving sheet for thermal printer
JPH0655549B2 (en) Image receiving sheet for thermal transfer recording
JPH03216386A (en) Support for thermal transfer recording sheet
JPH0460437B2 (en)
JPH0387255A (en) Synthetic paper composed of composite layer film
JPH01115687A (en) Image-receiving sheet for thermal transfer recording
JP2569051B2 (en) Image receiving sheet for thermal transfer recording
JP2001225422A (en) Coated film
JP2593086B2 (en) Composite sheet
JP4086924B2 (en) Inkjet recording paper
JPH043904B2 (en)
JP2575340B2 (en) Laminated resin sheet
US7445736B2 (en) Embossed indicia on foam core imaging media
JP3182843B2 (en) Dye thermal transfer image receiving sheet
JP2674866B2 (en) Image receiving sheet for thermal transfer printer
JPH0478103B2 (en)
JPH05169864A (en) Dye thermal transfer image-receiving sheet
JP2695416B2 (en) Semi-transparent image transfer sheet for thermal transfer recording
JP3878333B2 (en) Melting thermal transfer recording sheet
JP2003136834A (en) Oily ink jet recording sheet
JPH04251793A (en) Support body for thermal transfer recording sheet
JP2701220B2 (en) Synthetic paper
JPS62299391A (en) Image-receiving sheet for thermal transfer recording

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070928

Year of fee payment: 15