JPS63222221A - Membrane flowmeter - Google Patents

Membrane flowmeter

Info

Publication number
JPS63222221A
JPS63222221A JP62057079A JP5707987A JPS63222221A JP S63222221 A JPS63222221 A JP S63222221A JP 62057079 A JP62057079 A JP 62057079A JP 5707987 A JP5707987 A JP 5707987A JP S63222221 A JPS63222221 A JP S63222221A
Authority
JP
Japan
Prior art keywords
membrane
pipe
electrode
film
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62057079A
Other languages
Japanese (ja)
Other versions
JPH0718731B2 (en
Inventor
Kotohiko Sekoguchi
言彦 世古口
Masayuki Takeishi
雅之 武石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP62057079A priority Critical patent/JPH0718731B2/en
Publication of JPS63222221A publication Critical patent/JPS63222221A/en
Publication of JPH0718731B2 publication Critical patent/JPH0718731B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To measure the flow rate of gas with good accuracy, by detecting the passage of the membrane composed of the soap solution moving in a pipe while carried by the gas flowing through the pipe by an electrode probe consisting of a pair of electrode needles. CONSTITUTION:Two electrode probes consisting of a pair of upper and lower electrode needles 12, 13 are provided to the side surface of a round pipe 3 so as to provide an interval therebetween. The leading end 12c of the bent part 12b of the upper electrode needle 12 protrudes into the round pipe from the inner surface thereof and, when the leading end surface 13a of the electrode needle 13 and the aforementioned leading end 12c are brought into contact with a membrane composed of a soap solution, both of them are brought to a continuity state to output an electric signal. Herein, when the air introduced into the round pipe 3 from the opening part at the lower end thereof rises through the round pipe 3, the membrane 9 also rises through the round pipe 3 with the rising of the air but, based on the time period from the point of time when the passage of the membrane 9 is detected by the electrode probe arranged at the lower position to the point of time when said passage is detected by the electrode probe arranged at the upper position, the flow rate of the air is calculated by an operation.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、気体流量の測定に用いる膜流漬汁に関し、特
に、膜の通過を電気的に自動検出して測定精度を上げる
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a membrane dipping liquid used for measuring gas flow rate, and in particular, to automatically detect passage through a membrane electrically to improve measurement accuracy.

延未へ衷粧 従来、気体流mの測定にはオリフィス等の絞り流量計、
ロータメータ等の面積流量計および容積t&電量計用い
られている。これらの流量計は測定部における圧力損失
が大きく、この測定部における圧力損失が測定対象とし
ている装置の特性に影響を与える場合は利用することが
出来ない。
Traditionally, gas flow m has been measured using a restrictor flowmeter such as an orifice,
Area flowmeters such as rotameters and volumetric t & coulometers are used. These flowmeters have a large pressure loss in the measuring section, and cannot be used if the pressure loss in the measuring section affects the characteristics of the device being measured.

測定部における圧力損失が小さいものとして、膜流量計
が提供されている。該膜流量計は、気体流通管に石鹸水
等で生成した膜を付着し、該膜が管内へ流入される気体
に同伴して移動することにより、膜が2つの測定点を通
過する時間を測定することにより、流量を計測している
Membrane flowmeters are provided as devices with low pressure loss in the measurement section. This membrane flow meter attaches a film made of soapy water or the like to a gas flow pipe, and the film moves along with the gas flowing into the pipe, thereby measuring the time it takes for the film to pass two measurement points. By measuring, the flow rate is measured.

上記した膜流量計は圧力損失が小さい利点を有するが、
測定点での膜通過の測定が自動化されていないため測定
精度に問題があった。即ち、従来、2つの測定点の通過
を人の目視により判断し、通過時間をストップウォッチ
などを用いて計っているため、目視による誤差、ストッ
プウォッチ操作時の誤差等が発生しゃい。例えば、流速
が速い場合はストップウォッチを押すタイミングの微少
な差異が大きな誤差となり、また、膜は表面張力で凸状
となっているため、膜の上端部と下端部とで通過点の通
過時間に差異があり、目視による場合には膜の通過時の
判断にバラツキが生じやすい等の問題がある。
The membrane flowmeter described above has the advantage of low pressure loss, but
There was a problem with measurement accuracy because the measurement of membrane passage at the measurement point was not automated. That is, conventionally, the passing of two measurement points is determined visually by a person, and the passing time is measured using a stopwatch or the like, so errors due to visual observation and errors when operating the stopwatch occur. For example, if the flow rate is fast, a small difference in the timing of pressing the stopwatch will result in a large error, and since the membrane has a convex shape due to surface tension, the passage time between the upper and lower ends of the membrane will be different. There is a difference in the amount of water, and when visually inspected, there are problems such as variations in judgment when passing through the membrane.

また、従来は膜の生成、該膜の管への付着も手動で行っ
ているため、手数がかかるという問題があった。
Furthermore, in the past, the production of the membrane and the attachment of the membrane to the tube were performed manually, which caused the problem that it was time-consuming.

発明の目的 本発明は上記問題に鑑みてなされたもので、膜流量計に
おいて、測定点での膜の通過を自動検出し、その検出結
果を電気信号として容易に取り出せるようにし、更に、
通過時間の測定を電子式カウンタで行うことによって、
測定精度の向上を図るものである。
Purpose of the Invention The present invention has been made in view of the above-mentioned problems, and provides a membrane flowmeter that automatically detects passage through a membrane at a measurement point, easily extracts the detection result as an electrical signal, and further includes:
By measuring the transit time with an electronic counter,
The aim is to improve measurement accuracy.

さらに、膜の生成、該膜の気体流通管への付着も自動化
し、人手を用いることなく、精度の良い測定結果が得ら
れる膜流量計を提供せんとするものである。
Furthermore, it is an object of the present invention to provide a membrane flowmeter that automates the production of a membrane and the attachment of the membrane to a gas flow pipe, and can obtain highly accurate measurement results without using human hands.

発明の構成 本発明は上記目的を達成するため、気体流通用の管に、
流通する気体と同伴して管内を移動する石鹸液等からな
る膜を生成する手段と、上記管の軸方向に沿った2箇所
に間隔をあけて設置し、上記移動する膜の通過を自動的
に検出して電気信号を出力するセンサーとを備え、上記
センサーからの電気信号により演算回路を経て流量を自
動測定する構成としたことを特徴とする膜流量計を提供
するしのである。
Structure of the Invention In order to achieve the above-mentioned object, the present invention includes a pipe for gas circulation,
A means for generating a film made of soap liquid or the like that moves in the pipe together with the circulating gas, and a means installed at two locations spaced apart along the axial direction of the pipe to automatically control the passage of the moving film. The present invention provides a membrane flowmeter characterized in that the membrane flowmeter is equipped with a sensor that detects the flow rate and outputs an electric signal, and is configured to automatically measure the flow rate via an arithmetic circuit based on the electric signal from the sensor.

詳しくは、気体導入口を設けた本体内に上記気体流通用
の管を垂直に設置し、膜管の下端開口部を本体の底面よ
り所定間隔をあけて位置し、本体内に導入された気体が
管内に下端開口部より流入させる一方、本体の底部に石
鹸液等の膜生成用の液を溜めておき、核酸と管開口部と
の間に膜生成用のリングを駆動手段で支持して昇降自在
に配置し、リングを上昇させて液から空中へ出る時に膜
を生成すると共に膜を保持したリングを管に外嵌するこ
とにより管の開口部内周面に膜を付着するようにし、該
膜が気体と同伴して上昇する管には、その2箇所の測定
点に上記センサーを設置し、これらセンサーは夫々一対
の電極針からなる点電極プローブより構成し、各点電極
プローブの一方の電極針は先端を数ミクロンの針状とし
て移動する膜に点接触させると共に、他方の電極針の膜
接触面を広面として管内周面の膜液に接触させる構成と
していることを特徴とする膜流量計を提供するものであ
る。
Specifically, the above-mentioned gas distribution tube is installed vertically inside the main body provided with the gas inlet, and the lower end opening of the membrane tube is positioned at a predetermined distance from the bottom of the main body, and the gas introduced into the main body is is allowed to flow into the tube from the lower end opening, while a liquid for film production such as soap solution is stored at the bottom of the main body, and a ring for film production is supported between the nucleic acid and the tube opening by a driving means. The ring is arranged so that it can be raised and lowered freely, and when the ring is raised and exits from the liquid into the air, a film is generated, and the ring that holds the film is fitted onto the tube so that the film is attached to the inner circumferential surface of the opening of the tube. The above-mentioned sensors are installed at two measurement points in the tube in which the membrane rises with the gas, and each sensor consists of a point electrode probe consisting of a pair of electrode needles. A membrane flow rate characterized in that the tip of the electrode needle is shaped like a needle of several microns and is brought into point contact with the moving membrane, while the membrane contacting surface of the other electrode needle is a wide surface that is brought into contact with the membrane liquid on the inner peripheral surface of the tube. It provides a meter.

X監鯉 以下、本発明を図面に示す実施例により詳細に説明する
Hereinafter, the present invention will be explained in detail with reference to embodiments shown in the drawings.

第1図に示す如く、気密構造とした装置本体lには、−
側部に空気導入口2を設けると共に、アクリル管等から
なる空気流通用の円管3を上面部laを貫通させて本体
lの中に垂直に設置し、その下端開口部3aを下面部1
bより間隔をあけて配置している。よって、空気導入口
2より導入される空気は図中矢印で示すように、本体l
内を経て円管3に下端開口部3aより導入し、円管3内
を軸方向に沿って上昇して流出するようにしている。
As shown in Fig. 1, the device main body l has an airtight structure, -
An air inlet 2 is provided on the side, and a circular tube 3 for air circulation made of an acrylic tube or the like is installed vertically inside the main body l by passing through the upper surface la, and its lower end opening 3a is connected to the lower surface 1.
They are spaced apart from each other.b. Therefore, the air introduced from the air inlet 2 flows through the main body l as shown by the arrow in the figure.
The liquid is introduced into the circular tube 3 from the lower end opening 3a through the inside thereof, and is caused to rise inside the circular tube 3 along the axial direction and flow out.

本体l内の底部には膜生成用の石鹸液4を円管3の上面
開口部より供給して所定量溜めており、かつ、該石鹸液
供給時に円管3の内周面を石鹸液4で濡らしている。本
体1の底部に溜めた石鹸液4の液面Sより一定距離を隔
てて上記円管3の下端開口部3aを対向配置しており、
該円管開口部3aと石鹸液4との間には、円管3の外径
より一廻り大きい膜生成用のリング5を駆動手段で支持
して昇降自在に配置している。即ち、該リング5の一側
部に昇降用ロッド6の下端部を連結し、その上端部を本
体I内に設置したツレノドコイル7のプレンジャー8に
連結しており、ソレノイドコイル7への通電状態に応じ
て、リング5は図中実線で示す石鹸液中に沈んだ下端位
置から鎖線で示す円筒3に外嵌する上端位置へ昇降する
ようにしている。その際、リング5の上昇時には、石鹸
液4の液中がら空中に出る際にリング5中に膜9を生成
させ、リング5が円管3に外嵌する時に開口部3aの内
面に上記膜9が付着するようにしている。
A predetermined amount of soap solution 4 for film formation is supplied from the upper opening of the circular tube 3 and stored at the bottom of the main body l, and when the soap solution is supplied, the inner peripheral surface of the circular tube 3 is filled with the soap solution 4. It's getting wet. The lower end opening 3a of the circular tube 3 is arranged to face the liquid surface S of the soap solution 4 stored at the bottom of the main body 1 at a certain distance,
Between the circular tube opening 3a and the soap solution 4, a ring 5 for forming a film, which is one size larger than the outer diameter of the circular tube 3, is supported by a driving means and arranged to be able to rise and fall freely. That is, the lower end of the lifting rod 6 is connected to one side of the ring 5, and the upper end thereof is connected to the plunger 8 of the tsurenoid coil 7 installed in the main body I, and the solenoid coil 7 is energized. Accordingly, the ring 5 is raised and lowered from a lower end position indicated by a solid line in the drawing, where it is submerged in soap solution, to an upper end position, indicated by a chain line, where it is externally fitted into the cylinder 3. At that time, when the ring 5 rises, a film 9 is generated in the ring 5 when it comes out of the soap solution 4 into the air, and when the ring 5 is fitted onto the circular tube 3, the film 9 is formed on the inner surface of the opening 3a. 9 is attached.

上記円管3には、本体1より外方へ突出した上部に一定
間隔をあけて@9の通過を検出するための上流側点電極
プローブ10A1下流側点電極プローブIOBからなる
センサーを設置している。
In the circular tube 3, sensors consisting of an upstream point electrode probe 10A and a downstream point electrode probe IOB are installed at regular intervals on the upper part of the tube 3 projecting outward from the main body 1 to detect the passage of @9. There is.

これら点電極プローブIOA、IOHの構造は第2図に
示す通りであり、円管3の側面に穿設した測定孔3bを
囲繞するようにプローブユニット11を円管外面に固定
している。該プローブユニット本体11には上下一対の
電極針12.13を測定孔3b内へ突出させるように取
り付けており、これら一対の電極針12と13が石鹸液
4と接触すると導電して電気信号を出力するようにして
いる。
The structure of these point electrode probes IOA and IOH is as shown in FIG. 2, and a probe unit 11 is fixed to the outer surface of the circular tube 3 so as to surround a measurement hole 3b formed in the side surface of the circular tube. A pair of upper and lower electrode needles 12 and 13 are attached to the probe unit body 11 so as to protrude into the measurement hole 3b, and when these pair of electrode needles 12 and 13 come into contact with the soap solution 4, they conduct and generate an electrical signal. I am trying to output it.

上記した上下一対の電極針12.13は第3図に示す形
状で、上方の電極針12はプローブユニット本体11に
固定される水平部12aから突出部側を約45度下向き
に傾斜させて屈折し、該屈折部12bの先端12cを円
管3の内面より2mm程度内方へ突出させている。該電
極針12は白金、サス、インコネルなどの導電材で約0
 、1 am程度の太さに形成しており、屈折部先端1
2cを除いて全体を絶縁材でコーティングし、数ミクロ
ンの先端12cが石鹸液4の膜9に接触した時のみ導電
状態になるように設定している。
The pair of upper and lower electrode needles 12 and 13 described above have the shape shown in FIG. However, the tip 12c of the bent portion 12b is made to protrude inward from the inner surface of the circular tube 3 by about 2 mm. The electrode needle 12 is made of a conductive material such as platinum, sass, or inconel, and has a conductive material of approximately 0.
, is formed to a thickness of about 1 am, and the bending part tip 1
The entire surface except for the tip 2c is coated with an insulating material, and the tip 12c, which is several microns in size, is set to become conductive only when it comes into contact with the film 9 of the soap solution 4.

一方、下方の電極針13は直線状で、上方の電極針12
と比較して大径としており、プローブユニット本体11
に水平状態で固定して、その広面の先端面13aを円管
3の内面位置に位置させている。円管3の内周面は前記
したように石鹸液4て前以て濡らしているため、該電極
針13の先端面13aは常時石鹸液と接触状態となって
いる。
On the other hand, the lower electrode needle 13 is linear, and the upper electrode needle 12
The diameter is larger than that of the probe unit body 11.
The wide end face 13a is located at the inner surface of the circular tube 3. Since the inner circumferential surface of the circular tube 3 is pre-wetted with the soap solution 4 as described above, the tip end surface 13a of the electrode needle 13 is always in contact with the soap solution.

よって、点電極プローブl0AS IOBにおいては、
膜9が上昇して電極針12の先端12cが膜9に接触し
た時に電気回路が閉成して膜通過の電気信号を出力する
ようにしている。
Therefore, in the point electrode probe l0AS IOB,
When the membrane 9 rises and the tip 12c of the electrode needle 12 comes into contact with the membrane 9, an electric circuit is closed and an electric signal passing through the membrane is output.

上記点電極プローブIOA、IOBはコンピュータ15
に接続しており、夫々膜通過検出信号をコンピュータ1
5に入力し、該コンピュータ15内に設置しているカウ
ンタ(図示せず)で点電極プローブIOAとIOB間を
通過するに要する時間會を計測し、演算回路(図示せず
)で円管3の内径りおよび点電極プローブIOAと10
8間の距離12pなどより流量を計測するようにしてい
る。
The point electrode probes IOA and IOB are computer 15
are connected to the computer 1, and each membrane passage detection signal is sent to the computer 1.
5, a counter (not shown) installed in the computer 15 measures the time required to pass between the point electrode probes IOA and IOB, and an arithmetic circuit (not shown) measures the time required to pass between the point electrode probes IOA and IOB. Internal diameter and point electrode probe IOA and 10
The flow rate is measured from the distance 12p between 8 and the like.

次に、上記自動膜流量計による測定作用を説明する。Next, the measurement operation by the automatic membrane flowmeter described above will be explained.

ソレノイドコイル7に通電してプランジャー8を上昇さ
せてリング5を石鹸液4内より空中へ出し、その時にリ
ング5内に膜9を生成し、膜9を保持した状態でリング
5をさらに上昇して円管3に外嵌することにより円管3
の下端開口部3aの内面に膜9を付着する。ついで、空
気導入口2より空気を本体1内に導入すると、空気は円
管3に下端開口部3aより流入し、円管3内を上昇する
The solenoid coil 7 is energized and the plunger 8 is raised to take the ring 5 out of the soap solution 4 into the air. At that time, a film 9 is generated inside the ring 5, and the ring 5 is further raised with the film 9 held. By fitting the circular pipe 3 externally into the circular pipe 3,
A film 9 is attached to the inner surface of the lower end opening 3a. Next, when air is introduced into the main body 1 through the air introduction port 2, the air flows into the circular tube 3 through the lower end opening 3a and rises inside the circular tube 3.

この空気に押されて開口部3aに付着している膜9が空
気の上昇に伴って膜9が円管3内を上昇する。膜9が円
管3内を上昇する時、まず、下方位置に設置した上流側
点電極プローブIOAで通過を検出し、ついで、上方位
置に設置した下流側点電極プローブIOBで膜9の通過
を検出する。この検出結果は電気信号としてコンピュー
タ15に入力され、膜9が上記2つの点is極プローブ
1゜A、103間を通過するに要する時間tをカウンタ
で計数し、演算回路で空気流量Qを次式により求めてい
る。ただし、前記したように、Dは円管3の内径、I2
pは点電極プローブIOAと1013間の距離である。
The membrane 9 attached to the opening 3a is pushed by the air and rises inside the circular tube 3 as the air rises. When the membrane 9 moves up inside the circular tube 3, first, the upstream point electrode probe IOA installed at the lower position detects the passage, and then the downstream point electrode probe IOB installed at the upper position detects the passage of the membrane 9. To detect. This detection result is inputted to the computer 15 as an electric signal, the time t required for the membrane 9 to pass between the two points is pole probes 1°A and 103 is counted by a counter, and the air flow rate Q is calculated by an arithmetic circuit as follows. It is calculated by the formula. However, as mentioned above, D is the inner diameter of the circular tube 3, I2
p is the distance between the point electrode probe IOA and 1013.

Q=πD”Qp/4を 上記膜胤置針において、点電極プローブIOA。Q=πD”Qp/4 In the above-mentioned membrane-separated needle, the point electrode probe IOA.

10Bから得られる検出信号は、第4図(AXB)に示
す通りであり、(A)とCB)は異なった時間軸上を示
したものである。膜通過時の出力信号は(A)に示す如
く、信号の立ち上がり鋭く、かっ、ノイズレベルより大
きな出力を有し、よって、容易に検出可能である。また
、(B)は点電極の立ち上がり時定数tpを算出したも
ので、本実施例による実験例では、立ち上がり時定数は
73±24μsであった。
The detection signal obtained from 10B is as shown in FIG. 4 (AXB), and (A) and CB) are shown on different time axes. As shown in (A), the output signal when passing through the membrane has a sharp rising edge and has an output greater than the noise level, and is therefore easily detectable. Further, (B) shows the calculation of the rise time constant tp of the point electrode, and in the experimental example according to this embodiment, the rise time constant was 73±24 μs.

上記したように出力信号が大きく、かつ、立ち上がりが
鋭いのは、点電極プローブ10A、lOBにおいて、一
方の電極針12の接触点を鋭角的として点接触させてい
る為であり、このような出力信号を得ることにより、測
定誤差を小さく出来、その結果、測定精度を上げること
が出来る。また、測定精度を下げることなく測定流量を
大きくとることを可能にするために、あらかじめQpの
大きさの異なる位置に多数の点電極プローブを設置し、
これらを使い分けることも出来る。
The reason why the output signal is large and has a sharp rise as described above is because in the point electrode probes 10A and 1OB, the contact point of one electrode needle 12 is made at an acute angle to make point contact. By obtaining the signal, measurement errors can be reduced, and as a result, measurement accuracy can be increased. In addition, in order to make it possible to increase the measured flow rate without reducing measurement accuracy, we installed a large number of point electrode probes in advance at positions with different Qp sizes.
You can also use these separately.

(実験例) 管内径が50mn+と26ma+の円管3を用い、Q=
2xlO−’から7xl O−’m ’/s 、 Qp
=150mffiについて流量測定を行った。その結果
、内径5011Illの円管で±0.7%以下、内径2
6齢の円管で±0.8%以下の誤差であった。
(Experiment example) Using circular pipe 3 with inner diameters of 50 mn+ and 26 ma+, Q=
2xlO-' to 7xl O-'m'/s, Qp
Flow rate measurement was performed for =150mffi. As a result, for a circular pipe with an inner diameter of 5011Ill, the inner diameter was 2
The error for the 6th instar round tube was less than ±0.8%.

尚、本発明は上記実施例に限定されず、測定点での膜通
過の検出を点電極を用いたセンサーによらず、投光機と
受光機とからなる光センサーを用いても良く、膜通過を
自動的に検出し、電気信号として取り出せ、所定距離を
通過するに要した時間をカウンタすることが出来るもの
であれば適宜に採用することが出来る。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and the detection of membrane passage at a measurement point may be performed using an optical sensor consisting of a light emitter and a light receiver instead of a sensor using a point electrode. Any device that can automatically detect passing, extract it as an electrical signal, and count the time required to pass a predetermined distance can be adopted as appropriate.

また、膜9を生成する液体は石鹸液に限定されず、所要
の安定した液のある膜を生成できるものであれば良い。
Further, the liquid for forming the film 9 is not limited to soap solution, and any liquid that can form a film with the required stable liquid may be used.

発明の効果 以上の説明より明らかなように、本発明に係わる膜流量
計によれば、2箇所の測定点における膜の通過を自動的
に検出して、電気信号として取り出すことが出来るため
、該電気信号により時間差をカウントして所定距離を移
動するに要する時間を計測し、該時間より流量を自動的
に測定することが出来、よって、従来の目視などによる
測定と比較して測定精度を大幅に向上させることが出来
る。かつ、上記膜通過の検出信号は立ち上がりが鋭く大
きな信号であるため、容易に検出可能であり、しかも、
時間遅れも少ないと共に流量に対応する電気出力が得ら
れるため、より測定精度が向上する。また、本膜流量計
は測定部における膜の移動を検出するだけであるため、
測定部の圧力損失はな(、測定対象としている装置の特
性に影響を与えることを防止することが出来る。
Effects of the Invention As is clear from the above explanation, the membrane flowmeter according to the present invention can automatically detect passage through the membrane at two measurement points and extract it as an electrical signal. It is possible to measure the time required to travel a predetermined distance by counting the time difference using electrical signals, and automatically measure the flow rate from that time.This greatly improves measurement accuracy compared to conventional visual measurements. can be improved. In addition, since the detection signal for passing through the membrane is a large signal with a sharp rise, it can be easily detected.
Since there is less time delay and an electrical output corresponding to the flow rate can be obtained, measurement accuracy is further improved. In addition, since this membrane flowmeter only detects the movement of the membrane in the measuring section,
Pressure loss in the measuring section can be prevented from affecting the characteristics of the device being measured.

さらに士た一太障滞最!+でけ 隨のルー 祐晒の空気
流通管への付着なども含めて全工程を自動化しているた
め、人手を介することなく流量の測定を行うことが出来
、各種の自動システムに好適に利用することが出来るな
どの種々の利点を有するものである。
What's more, Shita Ichida's biggest problem! Since the entire process is automated, including the process of attaching the sukewarashi to the air flow pipe, the flow rate can be measured without manual intervention, making it suitable for use in various automated systems. It has various advantages such as being able to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す断面図、第2図(1)は
点電極プローブを詳細に示す水平断面図、第2図(II
)は垂直断面図、第3図は電極針と膜との接触状態を示
す拡大図、第4図(D([[)は点電極信号の立ち上が
り部の詳細を示す線図である。 !・・本体、    2・・空気導入口、3・・円管、
    4・・石鹸液、 5・・リング、   7・・ソレノイドコイル、9・・
膜、 10A・・上流側点電極プローブ、 10r3・・下流側点電極プローブ、 11・・プローブユニット本体、 !2.13・・電極針、 15・・コンピュータ。
FIG. 1 is a cross-sectional view showing an embodiment of the present invention, FIG. 2 (1) is a horizontal cross-sectional view showing details of a point electrode probe, and FIG.
) is a vertical sectional view, FIG. 3 is an enlarged view showing the contact state between the electrode needle and the membrane, and FIG. 4 (D ([[) is a line diagram showing details of the rising part of the point electrode signal. !・Main body, 2. Air inlet, 3. Circular pipe,
4. Soap solution, 5. Ring, 7. Solenoid coil, 9.
Membrane, 10A...upstream point electrode probe, 10r3...downstream point electrode probe, 11...probe unit body, ! 2.13...electrode needle, 15...computer.

Claims (3)

【特許請求の範囲】[Claims] (1)気体流通用の管に、流通する気体と同伴して管内
を移動する石鹸液等からなる膜を生成する手段と、 上記管の軸方向に沿った2箇所に間隔をあけて設置し、
上記移動する膜の通過を自動的に検出して電気信号を出
力するセンサーとを備え、 上記センサーからの電気信号により演算回路を経て流量
を自動測定する構成としたことを特徴とする膜流量計。
(1) A means for generating a film made of a soap solution or the like that moves inside the pipe together with the circulating gas, and a means installed in the pipe for gas distribution at two locations spaced apart along the axial direction of the pipe. ,
A membrane flowmeter comprising a sensor that automatically detects the passage of the moving membrane and outputs an electrical signal, and is configured to automatically measure the flow rate through an arithmetic circuit using the electrical signal from the sensor. .
(2)特許請求の範囲(1)記載の膜流量計において、
上記管の2箇所の測定点に設置するセンサーは、夫々一
対の電極針からなる点電極プローブより構成し、各点電
極プローブの一方の電極針は先端を数ミクロンの針状と
して移動する膜に点接触させると共に、他方の電極針の
膜接触面を広面として管内周面の膜液に接触させる構成
としていることを特徴とする膜流量計。
(2) In the membrane flowmeter according to claim (1),
The sensors installed at the two measurement points on the tube are each composed of a point electrode probe consisting of a pair of electrode needles, and one electrode needle of each point electrode probe has a needle-like tip of several microns and is attached to a moving membrane. A membrane flowmeter characterized in that the membrane contacting surface of the other electrode needle is made into a wide surface and is brought into contact with the membrane liquid on the inner circumferential surface of the tube.
(3)特許請求の範囲(1)記載の膜流量計において、
気体導入口を設けた本体内に上記気体流通用の管を垂直
に設置し、該管の下端開口部を本体の底面より所定間隔
をあけて位置し、本体内に導入された気体を管内に下端
開口部より流入させる一方、本体の底部に石鹸液等の膜
生成用の液を溜めておき、該液と管開口部との間に膜生
成用のリングを駆動手段で支持して昇降自在に配置し、
リングを上昇させて液から空中へ出る時に膜を生成する
と共に膜を保持したリングを管に外嵌することにより管
の開口部内周面に膜を付着する構成としたことを特徴と
する膜流量計。
(3) In the membrane flowmeter according to claim (1),
The above-mentioned gas distribution pipe is vertically installed inside the main body provided with the gas inlet, and the lower end opening of the pipe is positioned at a predetermined distance from the bottom of the main body, so that the gas introduced into the main body can flow into the pipe. While the flow is allowed to flow from the lower end opening, a liquid for forming a film such as soap solution is stored at the bottom of the main body, and a ring for forming a film is supported between the liquid and the pipe opening by a driving means, so that it can be raised and lowered freely. Place it in
A membrane flow rate characterized by having a structure in which a film is generated when the ring rises and exits from the liquid into the air, and the film is attached to the inner peripheral surface of the opening of the pipe by fitting the ring holding the film onto the pipe. Total.
JP62057079A 1987-03-12 1987-03-12 Membrane flow meter Expired - Fee Related JPH0718731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62057079A JPH0718731B2 (en) 1987-03-12 1987-03-12 Membrane flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62057079A JPH0718731B2 (en) 1987-03-12 1987-03-12 Membrane flow meter

Publications (2)

Publication Number Publication Date
JPS63222221A true JPS63222221A (en) 1988-09-16
JPH0718731B2 JPH0718731B2 (en) 1995-03-06

Family

ID=13045468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62057079A Expired - Fee Related JPH0718731B2 (en) 1987-03-12 1987-03-12 Membrane flow meter

Country Status (1)

Country Link
JP (1) JPH0718731B2 (en)

Also Published As

Publication number Publication date
JPH0718731B2 (en) 1995-03-06

Similar Documents

Publication Publication Date Title
CN102175130B (en) Real-time measuring device and measuring method for thickness of gas-containing liquid film in interface fluctuation
CN102998343B (en) Two-phase flow tomography system based on array-type monopole conducting probe
US9631966B2 (en) Fill level monitoring system and flow measuring device
CN215114687U (en) Electromagnetic flowmeter capable of measuring low-conductivity liquid
CN109163769B (en) Detection method of pipeline flow electromagnetic array sensor
CN104406663B (en) A kind of liquid metal flux demarcates container
CN206038103U (en) Electric capacity level sensor
CN206161071U (en) Ultrasonic water meter
JPS63222221A (en) Membrane flowmeter
CN107389742A (en) Cross-sectional distribution formula sensor array and method for oil-in-water emulsion measurement
CN110793583A (en) Plug-in pipeline gas measuring instrument
CN208223566U (en) A kind of new plug-in differential pressure flowmeter
CN105911306B (en) Flow velocity automatic measurement mechanism and measurement method
JPS6039967B2 (en) Flow measurement and adjustment device
RU2491519C1 (en) Level indicator
CN103743445A (en) Oxygen flow concentration detection device
CN203893894U (en) Flexible body based vortex shedding flowmeter
CN205720294U (en) Flow velocity automatic measurement mechanism
CN208238866U (en) A kind of ultrasonic flowmeter
CN111521234A (en) Magnetostrictive guided wave liquid level meter for high-temperature liquid
CN105486360A (en) Annular space double-sensor conducting probe for flow parameter measurement of two-phase flow
CN105181083A (en) Liquid level monitoring system of liquid nitrogen filling device
CN218035161U (en) Large-diameter vortex shedding flowmeter
JPS6146420Y2 (en)
US6200815B1 (en) Method for measuring the volume of liquid and/or solid in a suspension

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees