JPS63222210A - Image distortion measuring phantom - Google Patents

Image distortion measuring phantom

Info

Publication number
JPS63222210A
JPS63222210A JP62054089A JP5408987A JPS63222210A JP S63222210 A JPS63222210 A JP S63222210A JP 62054089 A JP62054089 A JP 62054089A JP 5408987 A JP5408987 A JP 5408987A JP S63222210 A JPS63222210 A JP S63222210A
Authority
JP
Japan
Prior art keywords
image
image distortion
radiation
support member
phantom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62054089A
Other languages
Japanese (ja)
Inventor
Kazuhiko Hamaya
和彦 浜谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP62054089A priority Critical patent/JPS63222210A/en
Publication of JPS63222210A publication Critical patent/JPS63222210A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure image distortion with high accuracy, by arranging spherical distortion measuring members having high radiation absorptivity and a small diameter to the surface or interior of a plate-shaped support member, which has low radiation absorptivity and high rigidity, in a lattice pattern. CONSTITUTION:A rectangular support member 7 is formed of a material having low radiation absorptivity and high rigidity, for example, a synthetic resin or an acrylic resin. A large number of distortion measuring members 8 are arranged to the surface of interior of the support member 7 in a lattice pattern so that an adjacent interval (d) is provided by required quantity to form an image distortion measuring phantom 6. Each of the distortion measuring members 8 is formed of a material having high radiation absorptivity, for example, a small steel sphere. The diameter of the small sphere is set to about 0.1-5mm and the interval (d) is set to about 5-50mm. Points A'-D' where an image is formed in a distorted state are detected by an image intensifier using the phantom 6 as an object to irradiate the same with radioactive rays from a radiation source and converting said rays to visible light to be compared with points A-D where an image is supposed to be originally formed and image distortions P1-P4 are measured. By this method, image distortion is measured with high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、放射線像撮影装置における放射線検出器の検
出面により発生する画像歪を計測するための画像歪計測
ファントムに関し、特に歪結像点の位置が正確に検出で
き画像歪を高精度に計測することができる画像歪計測フ
ァントムに関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an image distortion measurement phantom for measuring image distortion generated by the detection surface of a radiation detector in a radiographic imaging apparatus, and in particular, to The present invention relates to an image distortion measurement phantom that can accurately detect the position of an image and measure image distortion with high precision.

〔従来の技術〕[Conventional technology]

放射線像撮影装置における放射線検出器としては、被検
体を透過した放射線像を入射して可視光に変換するイメ
ージ・インテンシファイア(以下r1.1.Jと略称す
る)などが用いられているが。
As a radiation detector in a radiographic imaging device, an image intensifier (hereinafter abbreviated as r1.1.J), etc., which converts a radiation image transmitted through a subject into visible light, is used. .

この1.1.の検出面は球面状とされているので、この
球面状の検出面に入射して可視光に変換され該放射線検
出器の出力面に結像する画像は歪んだものとなる。そこ
で、その画像の歪を補正するために、上記放射線検出器
による画像歪を予め計測しなければならない。従来、そ
の画像歪を計測するための画像歪計測ファントム1とし
ては、第4図に示すように、細い鋼製の線材2a、2b
を適宜の間隔をあけて縦横に組んだ格子状のものが提案
されている。そして、上記画像歪計測ファントム1を被
写体として放射線源から放射線を照射し、格子状に組ま
れた線材2a、2bの各交点3,3゜・・・が1.1.
で歪んで結像する位置を検出し、上記各交点3,3.・
・・が本来結像すべき位置と比較して画像歪を計測して
いた。
This 1.1. Since the detection surface of the radiation detector is spherical, the image that is incident on the spherical detection surface, converted into visible light, and formed on the output surface of the radiation detector is distorted. Therefore, in order to correct the image distortion, it is necessary to measure the image distortion caused by the radiation detector in advance. Conventionally, as an image distortion measurement phantom 1 for measuring the image distortion, as shown in FIG. 4, thin steel wires 2a and 2b are used.
A lattice-like structure in which the elements are arranged vertically and horizontally at appropriate intervals has been proposed. Then, radiation is irradiated from a radiation source using the image distortion measurement phantom 1 as a subject, and each intersection point 3, 3° of the wire rods 2a, 2b arranged in a grid shape is 1.1.
The position where the image is distorted and formed is detected, and each of the above intersection points 3, 3 .・
... was measuring image distortion by comparing it with the position where the image should originally be formed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、このような従来の画像歪計測ファントム1にお
いては、各線材2a、2bが縦横に連続していることと
その径が細いことから、交点3が像としてはっきり結像
せず、上記各交点3,3゜・・・の歪結像点を抽出する
のが困難であった。従って1画像歪を計測するのも困難
であった。また、上記各交点3,3.・・・の歪結像点
を抽出できたとしても、その交点3は二本の線材2a、
2bが交差したものであるので、該交点3の形状は真上
から見た場合と斜めから見た場合とでは異なり、第5図
に示すように、放射線源が4a→4b→4cのように移
動して曝射角が変化したときは、4a。
However, in such a conventional image distortion measurement phantom 1, since the wire rods 2a and 2b are continuous in the vertical and horizontal directions and their diameters are small, the intersection point 3 is not clearly imaged, and each of the above-mentioned intersection points It was difficult to extract distorted imaging points of 3, 3 degrees, etc. Therefore, it was difficult to measure the distortion of one image. In addition, each of the above intersection points 3, 3. Even if the distorted imaging points of ... can be extracted, the intersection point 3 is the two wire rods 2a,
2b intersect, the shape of the intersection 3 is different when viewed from directly above and from an angle, and as shown in Figure 5, the radiation source is 4a → 4b → 4c. 4a when the exposure angle changes due to movement.

4b、4cの各方向からの放射線の照射による交点3の
結像点5a、5b、5cの大きさが異なり、その中心位
置も各結像点5a、5b、5cごとに変化するものであ
った。従って、各交点3,3゜・・・の歪結像点の位置
が放射線の曝射角によって位置ずれを起こし、その歪結
像点の位置が正確に検出、できないものであった、この
ことから、画像歪の計測が高精度に行えないものであっ
た。
The size of the imaged points 5a, 5b, 5c at the intersection point 3 due to radiation irradiation from each direction of 4b, 4c was different, and the center position also changed for each imaged point 5a, 5b, 5c. . Therefore, the position of the distorted image forming point at each intersection point 3, 3°, etc. was shifted depending on the radiation exposure angle, and the position of the distorted image forming point could not be detected accurately. Therefore, it was not possible to measure image distortion with high accuracy.

そこで1本発明は、このような問題点を解決することが
できる画像歪計測ファントムを提供することを目的とす
る。
Therefore, one object of the present invention is to provide an image distortion measurement phantom that can solve such problems.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題点を解決する本発明の手段は、放射線吸収係
数が低くかつ剛性の高い材料でできた平板状の支持部材
の表面または内部に、放射線吸収係数の高い材料で直径
の小さい球状に形成された多数の歪計測部材を、上記支
持部材の略全面にわたって互いに隣接する間隔を所要量
だけあけて散点状に配置し固定した画像歪計測ファント
ムによってなされる。
The means of the present invention for solving the above-mentioned problems is to form a spherical shape with a small diameter made of a material with a high radiation absorption coefficient on the surface or inside of a flat support member made of a material with a low radiation absorption coefficient and high rigidity. This is done by using an image distortion measurement phantom in which a large number of strain measurement members are arranged and fixed in a scattered manner over substantially the entire surface of the support member, adjacent to each other with a required distance between them.

〔実施例〕〔Example〕

以下、本発明の実施例を添付図面に基づいて詳細に説明
する。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明による画像歪計測ファントムの実施例を
示す平面図である。この画像歪計測ファントム6は、放
射線像撮影装置における放射線検出器1例えば1.1.
の検出面により発生する画像歪を計測するためのもので
、支持部材7と、多数の歪計測部材8,8.・・・とを
組み合わせて成る。
FIG. 1 is a plan view showing an embodiment of an image distortion measurement phantom according to the present invention. This image distortion measurement phantom 6 is connected to a radiation detector 1, for example, 1.1.
This is for measuring image distortion caused by the detection surface of the supporting member 7 and a large number of distortion measuring members 8, 8 . It consists of a combination of...

上記支持部材7は、後述の歪計測部材8,8゜・・・を
支持固定するもので、放射線吸収係数が低くかつ剛性の
高い材料、例えば合成樹脂あるいはアクリル樹脂などで
矩形の平板状に形成されている。
The support member 7 supports and fixes strain measurement members 8, 8°, etc., which will be described later, and is formed into a rectangular flat plate made of a material with a low radiation absorption coefficient and high rigidity, such as synthetic resin or acrylic resin. has been done.

なお、この支持部材7が放射線吸収係数の低い材料でで
きているのは、放射線源からの放射線の照射に対してそ
の放射線をよく透過し、放射線による陰影像が残らない
ようにするためである。また。
The reason why the support member 7 is made of a material with a low radiation absorption coefficient is to allow the radiation to pass through well when irradiated from the radiation source, and to prevent shadow images from remaining due to the radiation. . Also.

剛性の高い材料でできているのは、平面性を維持して歪
計測部材8,8.・・・が照射放射線に対して一定の位
置となるように保持させるためである。
The strain measuring members 8, 8 . are made of a highly rigid material while maintaining flatness. . . is held at a constant position with respect to the irradiation radiation.

上記支持部材7の表面または肉厚内部には、多数の歪計
測部材8,8.・・・が固定されている。この歪計測部
材8は、放射線源からの放射線の照射による歪結像点を
抽出するためのもので、放射線吸収係数の高い材料1例
えば鋼で直径の小さい球状に形成されており、上記支持
部材7の略全面にわたって互いに隣接する間隔dを所要
量だけ等間隔にあけてマトリクス状に配置し固定されて
いる。
On the surface or inside the support member 7, there are a number of strain measurement members 8, 8. ...is fixed. This strain measurement member 8 is for extracting a strain imaged point due to radiation irradiation from a radiation source, and is made of a material 1 having a high radiation absorption coefficient, such as steel, and is formed into a spherical shape with a small diameter. They are arranged and fixed in a matrix over substantially the entire surface of 7, with adjacent intervals d equally spaced by a required amount.

上記歪計測部材8の大きさは、放射線の照射によす画像
として結像した状態で数画素程度となる大きさととれて
おり、具体的には例えば直径0.1〜5IIll程度で
ある。これは、この程度の大きさが画像としての結像点
のピークが出易いからである。
The size of the strain measuring member 8 is set to be about several pixels when formed as an image by radiation irradiation, and specifically, the diameter is about 0.1 to 5 IIll, for example. This is because a peak of the imaging point as an image is likely to appear when the size is around this level.

また、上記隣接する歪計測部材8,8間の間隔dは、各
歪計測部材8,8.・・・の歪結像点の間の任意の位置
の歪をその周りの歪結像点から補間により求められる間
隔とされており、具体的には例えば5750m程度であ
る。なお、この歪計測部材8が放射線吸収係数の高い材
料でできているのは、放射線源からの放射線の照射に対
してその放射線をよく吸収し、その結像点が画像として
十分認識できるようにするためである。また、歪計測部
材8を球状としたのは、球はどの方向から見てもその形
状は同じであると共にその中心も同じであり、第2図に
示すように、放射線源が4a→4b→4Cのように移動
して曝射角が変化しても、4a。
Further, the distance d between the adjacent strain measuring members 8, 8 is the same as the distance d between the adjacent strain measuring members 8, 8. The distance is determined by interpolating the distortion at an arbitrary position between the distortion imaging points of . The strain measurement member 8 is made of a material with a high radiation absorption coefficient so that it can absorb the radiation well when it is irradiated from the radiation source, and its imaged point can be sufficiently recognized as an image. This is to do so. Moreover, the reason why the strain measurement member 8 is made spherical is that a sphere has the same shape and the same center no matter what direction it is viewed from, and as shown in FIG. Even if the exposure angle changes by moving like 4C, 4a.

4b、4cの各方向からの放射線の照射に対して歪計測
部材8の結像点9a、9b、9cの大きさが常に同じと
なり、その中心位置も各結像点9a。
The sizes of the imaged points 9a, 9b, and 9c of the strain measurement member 8 are always the same when radiation is irradiated from each direction of 4b and 4c, and the center position is also the same as each imaged point 9a.

9b、9cで一致するからである。This is because 9b and 9c match.

そして、このように構成された画像歪計測ファントム6
を被写体として放射線源から放射線を照射し、支持部材
7の略全面にマトリクス状に配置固定された多数の歪計
測部材8,8.・・・が、第3図に示すように、1.1
.で歪んで結像する結像点A’ r B ’ + C’
 HD ’ T・・・の位置を検出し、上記各歪計測部
材8,8.・・・が本来結像すべき位置A。
Then, the image distortion measurement phantom 6 configured in this way
A large number of strain measuring members 8, 8, . ...is 1.1, as shown in Figure 3.
.. Image forming point A' r B ' + C'
Detecting the position of HD'T..., each strain measuring member 8, 8. ... is the position A where the image should originally be formed.

B、C,D、・・・と比較して、それぞれの点における
画像歪P工9 P2j P3f P4t・・・を計測す
ればよい。このとき、第2図を参照して説明した理由に
より、各歪結像点A I 、 B / 、 C/ 、 
D /、・・・は位置ずれを生ぜず、その歪結像点の位
置が正確に→  −→  −→  → 検出できるので、画像歪P1.P、、P、、P4.・・
・の計測を高精度に行うことができる。
What is necessary is to measure the image distortion P 9 P2j P3f P4t... at each point in comparison with B, C, D, . . . . At this time, for the reason explained with reference to FIG. 2, each distorted imaging point A I , B / , C / ,
P1. P,,P,,P4.・・・
・Can be measured with high precision.

なお、第1図においては、多数の歪計測部材8゜8、・
・・は四方に等間隔としマトリクス状に配置固定したも
のとして示したが、本発明はこれに限らず、各歪計測部
材8,8.・・・の位置が予めわかっているならば間隔
dを等間隔とせず、所要量だけあけてバラバラの間隔で
散点状に配置してもよい。
In addition, in FIG. 1, a large number of strain measurement members 8°8, .
Although the strain measurement members 8, 8, . If the positions of .

また、以上の説明においては、放射線検出器は主として
1.1.を用いた場合で述べたが、画像歪を生ずる放射
線検出器ならば他のものでも同様に適用できる。
In addition, in the above explanation, the radiation detector mainly refers to 1.1. Although the above description is based on the case where a radiation detector is used, other radiation detectors that cause image distortion can be similarly applied.

〔発明の効果〕〔Effect of the invention〕

本発明は以上のように構成されたので、放射線吸収係数
の低い平板状の支持部材7の略全面に、放射線吸収係数
の高い小径で球状の歪計測部材8゜8、・・・を多数数
点状に配置固定することにより、上記歪計測部材8,8
.・・・の像がはっきりと結像し、その歪結像点A /
 、 B / 、 C/ 、 D /、・・・を明瞭に
抽出することができる。また、各歪結像点A / 、 
B / 、 C/ 、 D /、・・・の位置は、放射
線源からの放射線の曝射角が変化しても位置ずれを起こ
すことはなく、その歪結像点の位置を正確に検出するこ
とができる。従って、本発明の画像歪計測ファントム6
によれば、放射線検出器の検出面→   →  →  
→ により発生する画像歪P工、 P、、 P、、 P4を
高精度に計測することができる。
Since the present invention is constructed as described above, a large number of small-diameter, spherical strain measuring members 8° 8,... having a high radiation absorption coefficient are installed on substantially the entire surface of the flat support member 7, which has a low radiation absorption coefficient. By arranging and fixing them in a dotted manner, the strain measuring members 8, 8
.. The image of ... is clearly formed, and its distorted image point A /
, B/, C/, D/, . . . can be clearly extracted. In addition, each distorted imaging point A/,
The positions of B/, C/, D/, ... will not shift even if the radiation exposure angle from the radiation source changes, and the position of the distorted image point will be accurately detected. be able to. Therefore, the image distortion measurement phantom 6 of the present invention
According to the detection surface of a radiation detector → → →
→ Image distortion P, P, P, P4 caused by can be measured with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による画像歪計測ファントムの実施例を
示す平面図、第2図は放射線の曝射角が変化しても歪計
測部材の結像点の大きさ及び中心位置が変化しない状態
を示す説明図、第3図は画像歪の計測の状態を示す説明
図、第4図は従来の画像歪計測ファントムを示す平面図
、第5図は放射線の曝射角が変化することによって線材
の交点の結像点の大きさ及び中心位置が変化する状態を
示す説明図である。 6・・・画像歪計測ファントム、 7・・・支持部材、
8・・・歪計測部材、 d・・・間隔。
Fig. 1 is a plan view showing an embodiment of the image distortion measurement phantom according to the present invention, and Fig. 2 shows a state in which the size and center position of the imaged point of the distortion measurement member do not change even if the radiation exposure angle changes. FIG. 3 is an explanatory diagram showing the state of image distortion measurement. FIG. 4 is a plan view showing a conventional image distortion measurement phantom. FIG. 5 is an explanatory diagram showing the state of image distortion measurement. FIG. 3 is an explanatory diagram showing a state in which the size and center position of the imaging point at the intersection of the two images change. 6... Image distortion measurement phantom, 7... Support member,
8... Strain measurement member, d... Interval.

Claims (1)

【特許請求の範囲】[Claims] 放射線吸収係数が低くかつ剛性の高い材料でできた平板
状の支持部材の表面または内部に、放射線吸収係数の高
い材料で直径の小さい球状に形成された多数の歪計測部
材を、上記支持部材の略全面にわたって互いに隣接する
間隔を所要量だけあけて散点状に配置し固定したことを
特徴とする画像歪計測ファントム。
A large number of strain measuring members made of a material with a high radiation absorption coefficient and formed in a spherical shape with a small diameter are placed on or inside a flat support member made of a material with a low radiation absorption coefficient and high rigidity. An image distortion measurement phantom characterized in that the image distortion measurement phantom is arranged and fixed in dots adjacent to each other at a required distance over substantially the entire surface.
JP62054089A 1987-03-11 1987-03-11 Image distortion measuring phantom Pending JPS63222210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62054089A JPS63222210A (en) 1987-03-11 1987-03-11 Image distortion measuring phantom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62054089A JPS63222210A (en) 1987-03-11 1987-03-11 Image distortion measuring phantom

Publications (1)

Publication Number Publication Date
JPS63222210A true JPS63222210A (en) 1988-09-16

Family

ID=12960891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62054089A Pending JPS63222210A (en) 1987-03-11 1987-03-11 Image distortion measuring phantom

Country Status (1)

Country Link
JP (1) JPS63222210A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049234A1 (en) * 2017-09-06 2019-03-14 株式会社島津製作所 Method for calculating distortion amount in plane surface detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049234A1 (en) * 2017-09-06 2019-03-14 株式会社島津製作所 Method for calculating distortion amount in plane surface detector
JPWO2019049234A1 (en) * 2017-09-06 2019-11-14 株式会社島津製作所 Distortion calculation method for flat panel detector

Similar Documents

Publication Publication Date Title
US6324249B1 (en) Electronic planar laminography system and method
US6876443B2 (en) Process and apparatus for automatically determining the modulation transfer function of focal plane array cameras
JP4551919B2 (en) Tomographic inspection system and method
US6175609B1 (en) Methods and apparatus for scanning an object in a computed tomography system
CA2892799C (en) Method for detecting geometrical imaging properties of a flat panel detector, correspondingly configured x-ray testing system and calibrating body
JP2002022678A5 (en)
US6813338B2 (en) Method for measuring powder x-ray diffraction data using one-or-two-dimensional detector
US20130230150A1 (en) Measurement arrangement for a computed tomography scanner
CN103648388A (en) Phase contrast imaging apparatus
EP3109625B1 (en) Combination of cad data and computer tomography
US5625192A (en) Imaging methods and imaging devices
US9952163B2 (en) Coded-aperture X-ray imaging
CN108981589B (en) Device and method for measuring cup rim height
CN1494872A (en) Computer chromatographic X-ray camera
US4466113A (en) X-Ray examination device having a high local resolution
CA1145068A (en) Radiation imaging apparatus with a slit collimator
TW200422607A (en) Precise x-ray inspection system utilizing multiple linear sensors
JPS63256844A (en) X-ray device
JPS6267432A (en) X rays ct apparatus
JPS63222210A (en) Image distortion measuring phantom
JP2851319B2 (en) Radiation detector of radiation measurement device
CN104792805B (en) A kind of transmission detectors and interpolated data computational methods
JPH0866388A (en) Radiation image pick-up device
RU50314U1 (en) DEVICE FOR RADIOGRAPHY AND TOMOGRAPHY
JP2870908B2 (en) Method and apparatus for measuring perspective distortion