JPS632221Y2 - - Google Patents

Info

Publication number
JPS632221Y2
JPS632221Y2 JP16872784U JP16872784U JPS632221Y2 JP S632221 Y2 JPS632221 Y2 JP S632221Y2 JP 16872784 U JP16872784 U JP 16872784U JP 16872784 U JP16872784 U JP 16872784U JP S632221 Y2 JPS632221 Y2 JP S632221Y2
Authority
JP
Japan
Prior art keywords
floating object
slag
container
molten metal
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16872784U
Other languages
Japanese (ja)
Other versions
JPS6187654U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16872784U priority Critical patent/JPS632221Y2/ja
Publication of JPS6187654U publication Critical patent/JPS6187654U/ja
Application granted granted Critical
Publication of JPS632221Y2 publication Critical patent/JPS632221Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、溶融金属を精錬炉から容器へ、容器
から他の容器へ、又は容器から精錬炉へ移し替え
る際、精錬滓の流出を防止する為の精錬滓流出防
止装置に関するものである。
[Detailed description of the invention] (Industrial application field) This invention prevents smelting slag from flowing out when transferring molten metal from a smelting furnace to a container, from a container to another container, or from a container to a smelting furnace. This relates to a device for preventing smelting slag from flowing out.

(従来の技術およびその問題点) 溶融金属の所定量をいつたん溶融金属鍋等で受
け、然る後にこれを他の容器へ注入せしめる時
に、精錬滓を出来るだけ除去し、後工程での各種
製品の高品質化及び操業安定を図る事は従来より
広く一般に行なわれている。
(Prior art and its problems) When a predetermined amount of molten metal is received in a molten metal pot, etc., and then poured into another container, as much as possible of the smelting slag is removed, and various BACKGROUND ART It has been widely practiced to improve the quality of products and stabilize operations.

従来、上記の溶融金属の移し替えは、容器を傾
動させる際の精錬滓の流出を抑制する為に傾動速
度を極力小さくする操業法がとられている。しか
し、精錬滓の流出検出はあくまで目視であり、溶
融金属の流出速度が操業者により、また同一人で
もバラツキがあるため、どうしても精錬滓が残留
してしまうか、又は後工程の容器へ流出してしま
うという精度の不良に加え、移し替え時間を増長
せしめ、熱ロスを余儀なくなされ、かつ溶銑処理
占有時間が長くなる等の欠点があつた。
Conventionally, the above-mentioned transfer of molten metal has been carried out using an operation method in which the tilting speed is kept as low as possible in order to suppress the outflow of smelting slag when the container is tilted. However, detection of smelting slag leakage is only done visually, and the flow rate of molten metal varies depending on the operator and even within the same person, so smelting slag inevitably remains or flows into a container for subsequent processing. In addition to poor accuracy, such as increased transfer time, heat loss, and longer molten metal processing time.

その対応策としては種々考案されており、例え
ば溶融金属の流出口に回転可能な機械装置(実公
昭52−13295号公報)を設置し、容器回転と共に
機械装置が垂下し、流出スラグを防止する装置が
ある。これは、湯面レベルへの追従が困難なの
で、精錬滓を最初から最後まで流出するのを防止
し得ない。更に、容器の繰返し使用で、流出口部
での精錬滓付着成長により作動不可能となる事が
十分考えられる。又、これらの装置は形状、寸法
等の規制がないので効果を十分発揮し得ないこと
も判る。
Various countermeasures have been devised to deal with this problem, such as installing a rotatable mechanical device (Japanese Utility Model Publication No. 13295/1983) at the outlet of the molten metal, so that the mechanical device hangs down as the container rotates, preventing slag from flowing out. There is a device. Since it is difficult to follow the hot water level, it is impossible to prevent the slag from flowing out from beginning to end. Furthermore, if the container is used repeatedly, it is highly conceivable that the slag may become inoperable due to the growth of smelting slag at the outlet. It is also understood that these devices cannot be sufficiently effective because there are no restrictions on shape, size, etc.

他に溶融金属と精錬滓との比重差を利用する方
法(特公昭47−20803号公報)がある。この方法
は、転炉出鋼時いうず流によるスラグ流出を防止
する方法である。これは容器流出口と浮遊物体の
面が接触するのは最後のみであり、末期には早く
流出口を閉塞してしまうので残銑が多く残り、歩
留低下の原因となつていた。特に溶銑のように流
動性の良いものを取扱うときは、どうしても湯流
れが早いので吐出口の浮遊物体上に精錬滓が溢流
する踏の問題が発生するので、その点を考慮した
浮遊物体の形状、寸法等を決定しなければならな
い。
Another method uses the difference in specific gravity between molten metal and smelting slag (Japanese Patent Publication No. 47-20803). This method is a method for preventing slag outflow due to eddy flow during steel tapping from a converter. This is because the outlet of the container and the surface of the floating object come into contact only at the end, and the outlet is quickly blocked at the end, resulting in a large amount of residual pig iron remaining, causing a decrease in yield. Particularly when handling materials with good fluidity such as hot metal, the flow of the metal is fast, which can cause problems such as smelting slag overflowing onto the floating objects at the discharge port. Shape, dimensions, etc. must be determined.

又、上記の欠点の他に湯面レベルへの追従性が
悪かつた。さらに、装置の保全性、ランニングコ
スト及び各種操業変動への追従性に欠点があつ
た。特に操業変動により精錬滓の厚さが異なり、
容器の良し悪しによつて流出口への付着量が異な
る。
In addition to the above-mentioned drawbacks, the followability to the hot water level was poor. Furthermore, there were shortcomings in equipment maintainability, running costs, and ability to follow various operational fluctuations. In particular, the thickness of the slag varies due to operational fluctuations.
The amount of adhesion to the outlet varies depending on the quality of the container.

そこで、上記の問題を解決するためには流出口
幅方向の浮遊物体の形状、寸法、直方体の形状、
寸法、及び精錬滓層厚と浮遊物体の厚みとの関係
等の最適寸法とその限定範囲があるはずで、同業
者は常にこ点に苦慮していた。
Therefore, in order to solve the above problem, the shape and dimensions of the floating object in the width direction of the outlet, the shape of the rectangular parallelepiped,
There must be an optimal size and its limited range, such as the relationship between the size and the thickness of the slag layer and the thickness of the floating object, and those in the industry have always struggled with this point.

本考案は、これらの欠点を解消し、特に最近の
操業の多様性に確実に追従し、容器或は精錬炉か
らの精錬滓流出防止を最小限に抑制し、溶融金属
ロスを減少させて歩留向上を図り、かつ移し替え
時間の減少による省エネルギーを図る溶融金属の
精錬滓流出防止用浮遊物体を提供するものであ
る。
The present invention eliminates these shortcomings, specifically follows the diversity of recent operations, minimizes the prevention of smelting slag from flowing out from the vessel or smelting furnace, and reduces molten metal loss. The object of the present invention is to provide a floating object for preventing molten metal smelting slag from flowing out, which improves retention and saves energy by reducing transfer time.

(問題点を解決するための手段) この考案の上記目的を達する容器又は精錬炉内
に残溜される精錬滓の簡単な除去手段は、溶融金
属流出口5を容器10の上部一端に設け、該容器
10内の溶融金属9と精錬滓8との界面にまたが
るように比重を調整され常に流出口5に接触する
ように配置される溶触金属の精錬滓流出防止用浮
遊物体7に於いて、該浮遊物体7は半楕円体状に
形成し、該半楕円体状の上部中央には直方体4を
一体となるように設け、該浮遊物体7の長径Bと
流出口幅Aの比が1.2〜2.0、直方体長辺Cと長径
Bの比が0.5〜1.0、及び該浮遊物体7の高さHと
精錬滓厚みhとの比が1.0〜2.0にそれぞれなる事
を特徴とする溶融金属の精錬滓流出防止用浮遊物
体である。
(Means for Solving the Problems) A simple means for removing the slag remaining in the container or smelting furnace that achieves the above object of this invention is to provide a molten metal outlet 5 at one end of the upper part of the container 10, In the floating object 7 for preventing the molten metal from flowing out, the specific gravity is adjusted so as to span the interface between the molten metal 9 and the slag 8 in the container 10, and the floating object 7 is arranged so as to be in constant contact with the outlet 5. The floating object 7 is formed in the shape of a semi-ellipsoid, and the rectangular parallelepiped 4 is integrally provided at the center of the upper part of the semi-ellipsoid, and the ratio of the major axis B of the floating object 7 to the outlet width A is 1.2 to 1.2. 2.0, the ratio of the long side C of the rectangular parallelepiped to the major axis B is 0.5 to 1.0, and the ratio of the height H of the floating object 7 to the thickness h of the smelt slag is 1.0 to 2.0, respectively. It is a floating object to prevent spillage.

即ち第1図に示すように本考案による浮遊物体
7の断面は半楕円体で、該半楕円体の上部に直方
体4が一体となつている。この直方体4も流出口
幅方向に長手になつている。これらはCaO・
SiO2系耐火物からなつている。この直方体4は
精錬滓が多量に発生したとき、容器10或は精錬
炉から精錬滓が溢出するのを防止する役割を有す
るものである。又、上記の浮遊物体に比重調整用
として半楕円体の中央に芯金1が2本貫通して内
蔵されている。
That is, as shown in FIG. 1, the cross section of the floating object 7 according to the present invention is a semi-ellipsoid, and the rectangular parallelepiped 4 is integrated with the upper part of the semi-ellipsoid. This rectangular parallelepiped 4 is also elongated in the width direction of the outlet. These are CaO・
Made of SiO2 -based refractory. This rectangular parallelepiped 4 has the role of preventing smelting slag from overflowing from the container 10 or the smelting furnace when a large amount of smelting slag is generated. Further, two core metals 1 are built into the above-mentioned floating object so as to penetrate through the center of the semi-ellipsoid for specific gravity adjustment.

次に上記した各寸法の限定理由を述べる。 Next, the reasons for limiting each of the above-mentioned dimensions will be described.

まず目的を達成するに必要な基本的な条件は以
下の通りである。
First of all, the basic conditions necessary to achieve the purpose are as follows.

その1は、浮遊物体底面13と精錬炉或は容器
10の流出口近傍の面とが面接触し、強固な支持
体となり得る適正な形状を有する事である。
The first is that the bottom surface 13 of the floating object and the surface near the outlet of the refining furnace or container 10 come into surface contact and have an appropriate shape that can serve as a strong support.

その2は、コスト、作業性及び本体強度を考慮
した適正なサイズである事である。
Second, the size must be appropriate considering cost, workability, and main body strength.

即ち、上記の問題を解消するためには以下の3
つの条件が必須である。
In other words, in order to solve the above problem, the following 3 steps are required.
Two conditions are required.

浮遊物体底面と精錬炉或は容器の流出口周囲
の面とが面接触する様に半楕円体状に形成し、
且つ、半楕円体状の長径Bと流出口幅Aとの比
を1.2〜2.0とする。
Formed into a semi-ellipsoidal shape so that the bottom surface of the floating object and the surface around the outlet of the refining furnace or container are in surface contact,
Moreover, the ratio of the major axis B of the semiellipsoidal shape to the outlet width A is set to 1.2 to 2.0.

浮遊物体の高さHと精錬滓厚みhとの比を
1.0〜2.0とする。
The ratio between the height H of floating objects and the thickness h of smelting slag is
Set to 1.0 to 2.0.

半楕円体上部に一体となる直方体長辺Cと該
半楕円体の長径Bとの比を0.5〜1.0とする。
The ratio of the long side C of the rectangular parallelepiped that is integral with the upper part of the semiellipsoid to the long axis B of the semiellipsoid is 0.5 to 1.0.

浮遊物体を上記のように半楕円体状に形成する
のは、耐火物のコスト低減及び軽量化による製
作、運搬、保全性等が主な理由である。
The main reason why the floating object is formed into a semi-ellipsoidal shape as described above is to reduce the cost of refractories and to reduce the weight of the refractory, making it easier to manufacture, transport, and maintain.

特に上記の++でなければ課題を達成し
得ない。その理由は後述する。
In particular, the task cannot be achieved without the above ++. The reason will be explained later.

次にA,B,Cそれぞれの寸法限定理由を上記
〜の必須事項と組合せて説明する。
Next, the reasons for limiting the dimensions of A, B, and C will be explained in combination with the essential items listed above.

まずについて述べる。半楕円体の長径Bと流
出口幅Aとの比が1.2未満であれば、浮遊物体の
幅が余り小さくて精錬滓と共に流出する危険率が
高く、逆に2.0より大きくなると著しいコスト上
昇を招き、又該浮遊物体7が容器10中央2ケ所
に接触して精錬滓が除去し得ない範囲が出てくる
等から適正範囲は1.2〜2.0である。
First of all, let's talk about it. If the ratio between the major axis B of the semi-ellipsoid and the outlet width A is less than 1.2, the width of the floating objects is too small and there is a high risk that they will flow out together with the smelting slag, whereas if it is larger than 2.0, this will lead to a significant increase in costs. Also, the appropriate range is 1.2 to 2.0 because the floating objects 7 come into contact with the two central locations of the container 10 and there are areas where the slag cannot be removed.

次にの寸法限定について述べる。浮遊物体7
の高さHと精錬滓厚みhとの比は、前述の半楕円
体の長径Bと流出口幅Aとの比の考え方と同じ
で、1.0〜2.0である。即ち、この比が1.0未満にな
れば精錬滓が浮遊物体7上から溢流し、所期の目
的は達成し得ない。又2.0を超すと余り大きくて
コスト的に損失となる。上記の比の1.0〜2.0の範
囲の限定は実操業に於ける実績値である。つま
り、操業変動により精錬滓の厚さが異なるが、上
記の数値は精錬滓の厚みバラツキをほゞ吸収し得
る範囲である。
The following dimensional limitations will be discussed. floating object 7
The ratio between the height H and the slag thickness h is 1.0 to 2.0, which is the same as the ratio between the long axis B of the semiellipsoid and the outlet width A described above. That is, if this ratio becomes less than 1.0, the slag will overflow from the floating object 7 and the intended purpose will not be achieved. Moreover, if it exceeds 2.0, it will be too large and cause a loss in terms of cost. The limitation of the above ratio in the range of 1.0 to 2.0 is the actual value in actual operation. In other words, although the thickness of the slag varies depending on operational fluctuations, the above values are within a range that can substantially absorb the variation in the thickness of the slag.

次にの限定理由を述べる。半楕円体上部に一
体に形成する直方体長辺Cと該半楕円体の長径B
との比は、0.5未満であれば半楕円体部分の補強
効果が小さく、容器内にクレーン等の揚重機で吊
つて投入するまでの間浮遊物体が切損、ワレ等を
生じ、本来の目的は達成し得ない。逆に1.0より
も大きくなると、半楕円体部の容器10の流出口
5での面接触が非常に困難となる。即ち直方体4
が半楕円体部より長くなれば、容器の側壁2ケ所
に接触し、上記の面接触が出来なくなる事は勿論
の事、と同様に精錬滓8が除去し得ない範囲が
出てくる等の問題があり、上記の比は0.5〜1.0が
適正である事が判る。
The reason for the limitation is explained below. The long side C of the rectangular parallelepiped integrally formed on the upper part of the semiellipsoid and the long axis B of the semiellipsoid
If the ratio is less than 0.5, the reinforcing effect of the semi-ellipsoidal part will be small, and the floating objects will be damaged or cracked while being lifted into the container by a lifting device such as a crane, and the original purpose cannot be achieved. On the other hand, if it is larger than 1.0, surface contact at the outlet 5 of the semi-ellipsoidal container 10 becomes extremely difficult. That is, rectangular parallelepiped 4
If it is longer than the semi-ellipsoid, it will come into contact with two side walls of the container, and the above-mentioned surface contact will not be possible, but there will also be areas where the slag 8 cannot be removed. There is a problem, and it turns out that the above ratio is appropriate between 0.5 and 1.0.

従つて、上記,,それぞれ単独では目的
を達成する事が出来ない事が判る。
Therefore, it can be seen that the above objectives cannot be achieved by each of them alone.

次に上記〜を組合せて考えてみる。 Next, consider combining the above ~.

まず+の組合せを考えてみる。これは浮遊
物体の断面方向のワレ、切損がなければ所期の目
的を達成する事が出来るが、実際に使用して見て
+は使用出来ず、++の組合せに移向
したものである。
First, let's consider the combination of +. This can achieve the intended purpose if there are no cracks or cuts in the cross-sectional direction of the floating object, but in actual use, + cannot be used, so the combination of + and + has been moved. .

又仮りにだけを採用したとすると、前に説明
している事に加え、精錬滓厚みhと浮遊物体の高
さHとの比が1.0以下であれば精錬滓が浮遊物体
の上面から溢流してしまい、全く効果を達し得な
い。
In addition to what has been explained before, if only the above is adopted, if the ratio between the thickness h of the smelting slag and the height H of the floating object is less than 1.0, the smelting slag will overflow from the top of the floating object. and cannot achieve any effect.

以上の理由で、++で初めて所期の目的
を達成し得るのである。
For the above reasons, the desired purpose can only be achieved with ++.

ここで、該浮遊物体の形状は溶融金属或は溶融
精錬滓の性状によつて適宜変えられるべきもので
あり、例えば、底面に溝6を有する第4図に示す
浮遊物体がより効果的な場合もある。
Here, the shape of the floating object should be changed as appropriate depending on the properties of the molten metal or molten slag. For example, if the floating object shown in FIG. 4, which has grooves 6 on the bottom surface, is more effective. There is also.

(作用) 本考案に係る浮遊物体を容器10或は精錬炉に
使用したときの作用を第2図及び第3図により以
下に示す。
(Function) The function when the floating object according to the present invention is used in the container 10 or the refining furnace is shown below with reference to FIGS. 2 and 3.

第1図に示す本考案に係る浮遊物体を起重機等
の揚重機を用いて金属容器10或は精錬炉の流出
口5の近傍に常に面接触するように配置する。こ
のときの溶融金属9と精錬滓8及び浮遊物体の高
さ方向の位置は、溶銑と溶滓の中間に位置すると
ころに比重差により浮遊するようにする。
The floating object according to the present invention shown in FIG. 1 is placed in the vicinity of the metal container 10 or the outlet 5 of the smelting furnace using a lifting device such as a hoist so that it is always in surface contact with the object. At this time, the positions of the molten metal 9, the slag 8, and the floating objects in the height direction are such that they are suspended at a position midway between the molten pig iron and the slag due to the difference in specific gravity.

この条件下で該容器10或は精錬炉を適正な速
度で傾動し、浮遊物体の直方体4で精錬滓の流出
を抑えながら別容器11に該浮遊物体7の下端を
通つた溶融金属9を連続的に移し替える。一方精
錬滓8は該浮遊物体7の直方体部で止められ、精
錬滓8流出防止が可能となる。
Under this condition, the container 10 or the smelting furnace is tilted at an appropriate speed, and the molten metal 9 that has passed through the lower end of the floating object 7 is continuously transferred to another container 11 while the rectangular parallelepiped 4 of the floating object prevents the smelting slag from flowing out. to be transferred. On the other hand, the slag 8 is stopped by the rectangular parallelepiped portion of the floating object 7, making it possible to prevent the slag 8 from flowing out.

こゝでより精錬滓8の除去の効果を上げるため
に、前述したように底面に溝6を有する第4図に
示す浮遊物体を使用すれば、溝6を通過した残溶
融金属がいくらかでもしぼりきれ、歩留向上につ
ながる。
In order to increase the effectiveness of removing the smelting slag 8, if the floating object shown in FIG. This will lead to improved yield.

(実施例) 本考案に係る浮遊物体を溶銑鍋の流出口にセツ
トし、以下の操業条件下で後工程である受け取り
容器に注入し、その効果を確認した。
(Example) A floating object according to the present invention was set at the outlet of a hot metal ladle, and the effect was confirmed by injecting it into a receiving container, which is a subsequent process, under the following operating conditions.

〔周囲の設備条件〕[Surrounding equipment conditions]

Γ 溶融金属容器……60トン溶銑取鍋 Γ 移し替え容器……90トン溶銑取鍋 Γ 移し替え方法……クレーン等の揚重機 〔操業条件〕 溶銑性状 移し替え前温度:1310〜1390℃ 成分(%):〔C〕4.53〜4.97、〔Si〕0.70〜0.97、
〔Mn〕0.50〜0.69、〔P〕0.043〜0.072、〔S〕
0.012〜0.021、〔Cr〕0.019〜0.029、〔Ti〕0.016
〜0.029 精錬滓成分(%):〔TFe〕6.0〜15.5、
〔CaO〕21.3〜33.2、〔SiO2〕29.4〜34.8、
〔MnO〕5.0〜21.9 上記の設備及び操業条件下で実施した結果、
0.1〜0.5トンのスラグ流出量であつた。
Γ Molten metal container...60 tons hot metal ladle Γ Transfer container...90 tons hot metal ladle Γ Transfer method...lifting equipment such as a crane [Operating conditions] Hot metal properties Temperature before transfer: 1310 to 1390℃ Ingredients ( %): [C] 4.53-4.97, [Si] 0.70-0.97,
[Mn] 0.50-0.69, [P] 0.043-0.072, [S]
0.012-0.021, [Cr] 0.019-0.029, [Ti] 0.016
~0.029 Refining slag component (%): [TFe] 6.0 ~ 15.5,
[CaO] 21.3-33.2, [ SiO2 ] 29.4-34.8,
[MnO] 5.0 to 21.9 As a result of carrying out the experiment under the above equipment and operating conditions,
The amount of slag flowing out was 0.1 to 0.5 tons.

結果として、第5図、第6図に示すように荒銑
発生量減による歩留向上と移し替え時間半減によ
り省エネを図る事が出来た。
As a result, as shown in Figs. 5 and 6, it was possible to improve the yield by reducing the amount of rough pig iron generated and to reduce the transfer time by half, thereby saving energy.

ここで荒銑とは移し替えのとき容器或は精錬炉
に残留したもので、溶融金属と精錬滓との混合物
をいう。
Here, rough pig iron is what remains in the container or smelting furnace during transfer, and refers to a mixture of molten metal and smelting slag.

(考案の効果) 本考案に係る浮遊物体を使用すると、第2図、
第3図に示すような作業は円滑に遂行され、歩留
向上、省エネを大幅に図る事が出来、且つコスト
面でも大幅に削減し得る。
(Effect of the invention) When the floating object according to the invention is used, Fig. 2,
The work shown in FIG. 3 can be carried out smoothly, yields can be improved significantly, energy can be saved significantly, and costs can also be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る精錬滓流出防止用浮遊物
体の一例を示す図、第2図、第3図はその使用態
様を示す見取図、第4図は本考案に係る他の形状
の一例を示す図、第5図、第6図は本考案による
効果について従来法との差で示したものである。 1……芯金、2……耐火物、3……浮遊物体上
面、4……直方体、5……流出口、6……溝、7
……浮遊物体、8……精錬滓、9……溶融金属、
10……容器、11……受け取り容器、12……
流出溶融金属、13……浮遊物体底面。
Figure 1 is a diagram showing an example of a floating object for preventing smelting slag outflow according to the present invention, Figures 2 and 3 are sketches showing how it is used, and Figure 4 is an example of another shape according to the present invention. The figures shown in FIGS. 5 and 6 show the effects of the present invention as compared to the conventional method. 1... Core metal, 2... Refractory, 3... Upper surface of floating object, 4... Rectangular parallelepiped, 5... Outlet, 6... Groove, 7
... Floating object, 8 ... Smelting slag, 9 ... Molten metal,
10...Container, 11...Receiving container, 12...
Outflowing molten metal, 13... bottom of floating object.

Claims (1)

【実用新案登録請求の範囲】 溶融金属流出口5を容器10の上部一端に設
け、該容器10内の溶融金属9と精錬滓8との界
面にまたがるように比重を調整され常に流出口5
に接触するように配置される溶融金属の精錬滓流
出防止用浮遊物体7に於いて、 該浮遊物体7は半楕円体状に形成し、該半楕円
体状の上部中央には直方体4を一体となるように
設け、該浮遊物体7の長径Bと流出口幅Aの比が
1.2〜2.0、直方体長辺Cと長径Bの比が0.5〜1.0、
及び該浮遊物体7の高さHと精錬滓厚みhとの比
が1.0〜2.0にそれぞれなる事を特徴とする溶融金
属の精錬滓流出防止用浮遊物体。
[Claims for Utility Model Registration] A molten metal outlet 5 is provided at one end of the upper part of the container 10, and the specific gravity is adjusted so that the outlet 5 always spans the interface between the molten metal 9 and the slag 8 in the container 10.
In the floating object 7 for preventing the outflow of smelting slag of molten metal, which is placed in contact with the floating object 7, the floating object 7 is formed in the shape of a semi-ellipsoid, and a rectangular parallelepiped 4 is integrated in the upper center of the semi-ellipsoid shape. The ratio of the major axis B of the floating object 7 to the outlet width A is
1.2 to 2.0, the ratio of the long side C of the rectangular parallelepiped to the major axis B is 0.5 to 1.0,
and a floating object for preventing smelting slag from flowing out of molten metal, characterized in that the ratio between the height H of the floating object 7 and the thickness h of the smelting slag is 1.0 to 2.0.
JP16872784U 1984-11-07 1984-11-07 Expired JPS632221Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16872784U JPS632221Y2 (en) 1984-11-07 1984-11-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16872784U JPS632221Y2 (en) 1984-11-07 1984-11-07

Publications (2)

Publication Number Publication Date
JPS6187654U JPS6187654U (en) 1986-06-07
JPS632221Y2 true JPS632221Y2 (en) 1988-01-20

Family

ID=30726487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16872784U Expired JPS632221Y2 (en) 1984-11-07 1984-11-07

Country Status (1)

Country Link
JP (1) JPS632221Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200064662A (en) * 2018-11-29 2020-06-08 주식회사 포스코 Ladle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200064662A (en) * 2018-11-29 2020-06-08 주식회사 포스코 Ladle

Also Published As

Publication number Publication date
JPS6187654U (en) 1986-06-07

Similar Documents

Publication Publication Date Title
CN102212749B (en) Method for producing steel for high-efficiency alloy welding wires through continuous billet casting
CN201632636U (en) Covered nodulizing bag
CN112981032B (en) Method for smelting low-titanium high-carbon chromium bearing steel by high-titanium molten iron
JPS632221Y2 (en)
US4930827A (en) Hoisting hooks used to lift, transport and dump metallurgical ladles
JP2647707B2 (en) How to pour a tundish
Arth et al. Tundish technology and processes: ladle to mould systems and solutions (Part I)
Manninen et al. Low reoxidation tundish metallurgy at Fundia Koverhar steel plant
JP3323644B2 (en) Method of pouring molten steel into tundish for continuous casting
CN110860683A (en) High-purity molten iron slag-free control casting equipment and process for pig casting machine
JP2795157B2 (en) Continuous casting method
JP3589075B2 (en) Ladle for molten metal and method for refining molten metal
KR101665467B1 (en) Fabrication Method of Ferro Alloy by Thermit Reaction of Oxidation-Reduction
JPS6138767Y2 (en)
EP0163784B1 (en) Two stage deoxidation process in steel-making
CN114959156B (en) Method for thermal state tempering and modification of molten iron desulphurization slag
JP7364893B2 (en) Method of supplying molten steel
ES431907A1 (en) Apparatus and method for refining a metal melt
JPH07103416B2 (en) High carbon steel wire manufacturing method
KR100244629B1 (en) Tundish long nozzle
JPH01294817A (en) Method for cleaning molten metal
KR100224638B1 (en) Deoxidation material of low carbon steel for high purity steel
JPH08112653A (en) Method for transporting molten steel
JPS63130256A (en) Ladle for molten metal
JPH0317219A (en) Method for continuous casting of ti-containing steel