JPS63221913A - End mill - Google Patents

End mill

Info

Publication number
JPS63221913A
JPS63221913A JP5276487A JP5276487A JPS63221913A JP S63221913 A JPS63221913 A JP S63221913A JP 5276487 A JP5276487 A JP 5276487A JP 5276487 A JP5276487 A JP 5276487A JP S63221913 A JPS63221913 A JP S63221913A
Authority
JP
Japan
Prior art keywords
cutting
end mill
cutter
cut
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5276487A
Other languages
Japanese (ja)
Inventor
Tetsuhisa Yamakawa
山川 哲央
Takafumi Yamazaki
山崎 啓文
Takuji Moriguchi
森口 拓治
Seiichiro Kitaura
精一郎 北浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5276487A priority Critical patent/JPS63221913A/en
Publication of JPS63221913A publication Critical patent/JPS63221913A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To smoothly grind a side surface and prevent the deterioration of precision of the undulation on the finished surface by installing a cutter having a torsional outer periphery which always contacts with a a certain number of simultaneously working cutting edges and setting the depth of a cutter groove part to 0.15 or less of the outer diameter. CONSTITUTION:When the cutting-in quantity in the axial direction is (a), cutting-in quantity in the radial direction is (b), diameter of an end mill is D, number of cutting edges is N, number of simultaneously working cutting edges is Ns, center angle of ground surface 2 is phi, torsional angle of cutter is beta, pitch in the axial direction of cutter is l, and the lead is L, Ns=N.l/L, L=pi.D.cotbeta, l=a+D/2.cotbeta.cos<-1>(1-2b/D), phi=cos<-1>(1-2b/D). For example, when a=30mm, b=0.05mm, D=10mm, and Ns=1, beta becomes 27.6 deg. and phi becomes 8.11 deg.. When the first cutter I1 passes through a point P1, the second cutter I2 passes through a point P2, and the grinding without the group surface 2 smooth ly changes from the grinding by the first cutter I1 to the grinding by the second cutter I2. The depth of a cutter groove is set to 0.15 or less of the diameter D, and the center thickness is increased, and rigidity is improved.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、側面切削の精密仕上げ加工を行なうためのエ
ンドミルに関するものである。
The present invention relates to an end mill for precision finishing of side cutting.

【従来技術およびその問題点】[Prior art and its problems]

一般に、エンドミルで側面切削を行なう場合1こは第3
図に示すようにその切削加工か進めらイ1.る。 この場合、エンドミルの外周切刃lが軸方向(こl律し
てねじれているため、1枚の切刃に関して(よ軸方向先
端部から切削が始まり、回転ととも(こ上方へ(シャン
ク側へ)切削に関与する切刃部分力く移動する。すなわ
ち、外周切刃lによって切削さ)tろ仕上げ面としては
コーナ部から上方へ切削力<1子なわれる。 ところが、実際の切削で同時に関与する外周切刃の数は
1枚よりも多く、そのためある切刃h(イ士上げ面のあ
る位置でまだ切削を行なってし)る時(こ、次に続く外
周切刃がコーナ部の切削を始めることが生じる。このよ
うに、同時に切削に関与する外周切刃の数カ月枚になっ
たり2枚になったり、あるいは2枚が3枚になったりす
るため、エンドミルに作用する切削抵抗が変動し、第4
図1こ示1−ように仕上げ面に「うねり」や「倒れ」h
<発生喝−る。 そこで、第5図に示ずような直刃のエンドミルによる側
面切削を考えてみると、ある1枚の切刃は時間的ずれが
ゼロで軸方向の全切り込み量に相当する側面を一時に切
削する。したがって理論的には上述のような「うねり」
等の発生は生じないことになる。しかしながらその実際
は、断続的切削が行なわれるため仕上げ面の「むしれ」
が生じたり、あるいは切刃に衝撃的な切削抵抗が作用す
るためにデツピングが生じてエンドミルの寿命を低下さ
せることになる。 」−述のような二つの事実から判断すると、結論的には
捩れ角(アキシャルレーキ)の存在によって切削はスム
ーズに行なわれることになるが、この捩れ角の存在自体
が仕上げ面における「うねり」等を発生させる原因とも
なっている。 さらに、エンドミルでは片持ち支持の状態で切削が行な
われるため、エンドミル自体の形状は剛性の高いもので
なければ、」二連の仕上げ不良に加えて切削抵抗による
エンドミルの弾性変形のために仕」−げ精度に大きな誤
差を生じることになるが、仕」−げ切削では径方向の切
り込み量が小さいにら拘わらず従来のエンドミルは刃溝
の深さ寸法が大きく設定されていた。 また、これらの問題はその相乗的作用によってさらに増
大し、軸方向の切り込み量が大きい場合(特に切り込み
量がエンドミル直径の2倍量」二の場合)には外周切刃
の刃長も長くなるため、その傾向が顕著に表れる。
Generally, when performing side cutting with an end mill, the first
The cutting process will proceed as shown in the figure.1. Ru. In this case, since the outer peripheral cutting edge l of the end mill is twisted in the axial direction, cutting starts from the tip of one cutting edge in the axial direction, and as it rotates, it moves upward (to the shank side). f) The part of the cutting edge involved in cutting moves with a force of The number of peripheral cutting edges involved is more than one, so that when a certain cutting edge h (cutting is still being performed at a certain position on the raised surface), the next peripheral cutting edge In this way, at the same time, the number of peripheral cutting edges involved in cutting becomes several, two, or two become three, so the cutting resistance acting on the end mill increases. fluctuating, 4th
As shown in Figure 1-1, there may be undulations or collapse on the finished surface.
<Occurrence. Therefore, if we consider side surface cutting using a straight-edged end mill as shown in Figure 5, one cutting edge cuts the side surface equivalent to the total depth of cut in the axial direction at one time with zero time lag. do. Therefore, theoretically, the above-mentioned "undulation"
etc. will not occur. However, in reality, because intermittent cutting is performed, the finished surface may be "peeled".
Otherwise, depping occurs due to impact cutting resistance acting on the cutting edge, which shortens the life of the end mill. - Judging from the two facts mentioned above, the conclusion is that the existence of a torsion angle (axial rake) allows for smooth cutting, but the existence of this torsion angle itself causes "waviness" on the finished surface. It is also the cause of such occurrences. Furthermore, since cutting is performed with an end mill in a cantilevered state, the shape of the end mill itself must be highly rigid, otherwise the end mill will suffer from elastic deformation due to cutting resistance in addition to two series of poor finishing. Although this results in a large error in cutting accuracy, conventional end mills have a large blade groove depth even though the radial depth of cut is small in finishing cutting. In addition, these problems are further exacerbated by their synergistic effects, and when the depth of cut in the axial direction is large (especially when the depth of cut is twice the diameter of the end mill), the length of the outer cutting edge becomes longer. Therefore, this tendency is noticeable.

【発明の目的】[Purpose of the invention]

本発明は上述のごとき従来技術の問題点に鑑み、これら
を有効に解決すへく創案されたものである。 したがってその目的は、側面切削をスムーズに行なうと
ともに仕上げ面の「うねり」等の精度低下を可及的に抑
制できるエンドミルを提供することにある。
The present invention has been devised in view of the problems of the prior art as described above, and is intended to effectively solve these problems. Therefore, the object is to provide an end mill that can smoothly cut the side surface and suppress deterioration of accuracy such as "waviness" on the finished surface as much as possible.

【問題点を解決するための手段】[Means to solve the problem]

本発明のエンドミルは、従来技術の問題点を解決し、目
的を達成するために以下のような構成を備えている。 すなわち、規定された軸方向切り込み量および径方向切
り込み量に相当して円柱面状に区画形成される被切削面
に対して、常に一定の同時切削刃数で接触する捩れ外周
切刃を備え、且つ、前記外周切刃に対応する刃溝部の深
さ寸法が、当該エンlζミルの外径寸法の0.15倍以
下に設定されている。 特に前記同時切削刃数が1の場合には、外周切刃の捩れ
角の正接が、前記軸方向切り込み量と刃数の積に対する
当該エンドミルの外周円の円周寸法の比に等しく設定さ
れている。
The end mill of the present invention has the following configuration in order to solve the problems of the prior art and achieve the objectives. That is, it is equipped with a twisted peripheral cutting edge that always contacts the cut surface, which is divided into a cylindrical shape corresponding to the specified axial depth of cut and radial depth of cut, with a constant number of simultaneous cutting edges, Further, the depth dimension of the blade groove portion corresponding to the outer circumferential cutting edge is set to be 0.15 times or less the outer diameter dimension of the enlarging mill. In particular, when the number of simultaneous cutting blades is 1, the tangent of the helix angle of the peripheral cutting blade is set equal to the ratio of the circumferential dimension of the peripheral circle of the end mill to the product of the axial depth of cut and the number of blades. There is.

【作用】[Effect]

本発明に係るエンドミルによれば、外周切刃は捩れ刃で
あるにも拘わらず同時に切削に関与する切刃の数が常に
一定であるため、ワークの被切削面に対する各外周切刃
の接触は断続的とはならず連続接触となり、かつ各切刃
の分担する切削抵抗が常に一定となり変動がない。 また、刃溝部の深さ寸法は、仕上げ切削用エンドミルて
あり径方向切り込み量は十分に小さいのでエンドミル直
径の0.15倍以下で十分であり、このことによって心
厚寸法が大きく設定され剛性を高めることができる。
According to the end mill according to the present invention, although the peripheral cutting blades are twisted blades, the number of cutting blades simultaneously involved in cutting is always constant, so that the contact of each peripheral cutting blade with the cut surface of the workpiece is The contact is continuous rather than intermittent, and the cutting resistance shared by each cutting edge is always constant and does not fluctuate. In addition, since the depth of the blade groove is 0.15 times the diameter of the end mill or less because it is an end mill for finish cutting and the radial depth of cut is sufficiently small, this allows the core thickness to be set large and increases rigidity. can be increased.

【実施例】【Example】

以下に本発明の好適一実施例について第1図および第2
図を参照して説明する。 第1図は本発明に係るエンドミルのワークに対する接触
状態を模式的に示す説明図である。ここで、規定される
軸方向切り込み量aを30mm、径方向切り込み量(切
削幅)bを005肛とし、エンドミル直径りを10mm
、刃数Nを2枚、同時切削刃数Nsをl、エンドミルの
回転方向を矢印Rの方向、被切削面2の中心角をφ、外
周切刃の捩れ角β、第1切刃l、と第2切刃I、との軸
方向ピッチをρとする場合、同時切削刃数Nsは式(+
)で表せる。 但し、Nはエンドミルの刃数、Lはリードて(2)式に
より表され、Qは(3)式により表される。 L−π・D−cotβ            −(2
)ま ノニ、 で表される。 (2)、(3)式ニa= 30 mz、b = 0 、
05 myn。 D=IOmmを代入し、Lおよびρをβの関数で表し、
さらにそのLおよびρとともにN5=1を(+)式に代
入してβを求めるとβ−27,6°となる。 但しこのときcosφ−099であり、φ−8.■1°
(#O,I 42rad)である。 図中11は、被切削面2に対して切削が終了してこの被
切削面2がら離れて行こうとしている第1切刃である。 12は、第1切刃11の切削終了と同時に被切削面2に
対して接触し始め、切削を開始しようとしている第2番
目の切刃である。被切削面2の四隅の各点をP、、P2
.P3.P、とし、第1切刃IIが点P1を通過すると
き、第2切刃1゜が点P1を通過し、被切削面2内での
切削は第1切刃1.による切削から第2切刃I、にょる
切削へ7一 連続的に滑らかに移行し、同時切削刃数Nsは常に一定
の値となる。すなわち、第1切刃I、による切削が終了
しないうちに、換言すれば第1切刃11が点PIに至ら
ないうちに第2切刃1.ににる切削が始まると、この時
点から第1切刃11が点P、を通過する時点までの間は
同時切削刃数Nsが2になってしまい、切削抵抗が変動
して「うねりj等を生ずる。一方、第1切刃IIが点P
1を通過しても第2切刃12はまだ点P3に至っていな
いと、いずれの切刃によっても切削が行なわれていない
時間帯が生じ、断続的な切削の結果、第2切刃1、によ
る切削が始まるときには衝撃的な切削抵抗が第2切刃I
、に作用することになってチッピングや被切削面の「む
しれ」を生ずる。 なお、径方向切り込み量すは、仕上げ切削でもあること
からエンドミル直径りに比して十分に小さく、b=oと
みなして近似計算することも可能である。この場合には
(2)式においてQ=aとなり、これを(1)式にN5
=1とともに代入ずればが得られ、捩れ角βの正接は次
のとおりとなる。 また、第2図は本実施例のエンドミルの軸直角方向の断
面図であるが、切り屑排出用の刃溝部3の深さ寸法dは
1.4mmでエンドミル直径りの0.15倍以下に設定
されており、不必要に大きな刃溝を形成せず、径方向切
り込み量すに応じて最低限必要なだけの寸法となってお
り、その分だけ心厚寸法Cが大きくなって剛性が高めら
れている。 なお、本実施例では同時切削刃数Nsが1の場合、即ち
1枚目の切刃が被切削面から離れて行くと同時に新たに
この被切削面に接触し始める切刃が次の2枚目の切刃で
ある場合について説明したが、この場合に限らず、この
タイミングで接触し始める切刃が3枚目あるいは4枚目
の切刃であっても理論的には可能である。
A preferred embodiment of the present invention will be described below with reference to FIGS. 1 and 2.
This will be explained with reference to the figures. FIG. 1 is an explanatory diagram schematically showing the contact state of the end mill according to the present invention with a workpiece. Here, the specified axial depth of cut a is 30 mm, the radial depth of cut (cutting width) b is 005, and the end mill diameter is 10 mm.
, the number of blades N is 2, the number of simultaneous cutting blades Ns is l, the rotation direction of the end mill is the direction of arrow R, the central angle of the surface to be cut 2 is φ, the helix angle β of the outer cutting edge, the first cutting edge l, When the axial pitch between the second cutting edge I and the second cutting edge I is ρ, the number of simultaneous cutting edges Ns is calculated using the formula (+
) can be expressed as However, N is the number of blades of the end mill, L is expressed by Equation (2), and Q is expressed by Equation (3). L−π・D−cotβ −(2
) Ma Noni, expressed as . (2), (3) formula nia = 30 mz, b = 0,
05 myn. Substitute D=IOmm, express L and ρ as a function of β,
Furthermore, when β is determined by substituting N5=1 into the (+) equation along with L and ρ, it becomes β-27.6°. However, at this time cos φ-099, and φ-8. ■1°
(#O, I 42rad). In the figure, reference numeral 11 denotes a first cutting edge that has finished cutting the surface 2 to be cut and is about to move away from the surface 2 to be cut. Reference numeral 12 denotes a second cutting edge which starts to come into contact with the surface to be cut 2 at the same time as the first cutting edge 11 finishes cutting, and is about to start cutting. Each of the four corners of the surface to be cut 2 is defined as P, , P2
.. P3. P, and when the first cutting edge II passes the point P1, the second cutting edge 1° passes the point P1, and cutting within the cut surface 2 is performed by the first cutting edge 1. There is a continuous and smooth transition from cutting by the second cutting edge I to cutting by the second cutting edge I, and the number of simultaneous cutting edges Ns always remains a constant value. That is, before cutting by the first cutting edge I is completed, in other words, before the first cutting edge 11 reaches the point PI, the second cutting edge 1. When cutting begins, the number of simultaneous cutting edges Ns becomes 2 from this point until the first cutting edge 11 passes point P, and the cutting resistance fluctuates, resulting in "undulations etc." On the other hand, the first cutting edge II is at point P
If the second cutting blade 12 has not yet reached the point P3 even after passing through the point P3, there will be a time period in which no cutting is performed by any of the cutting blades, and as a result of intermittent cutting, the second cutting blade 12 will not reach the point P3. When cutting begins, an impactful cutting force is applied to the second cutting edge I.
, causing chipping and "peeling" of the cut surface. Note that since the radial cutting amount is also finish cutting, it is sufficiently smaller than the end mill diameter, and it is also possible to perform approximate calculations by assuming that b=o. In this case, Q=a in equation (2), and this is applied to N5 in equation (1).
By substituting with =1, we obtain, and the tangent of the torsion angle β is as follows. In addition, FIG. 2 is a cross-sectional view of the end mill of this embodiment in the direction perpendicular to the axis, and the depth d of the blade groove 3 for discharging chips is 1.4 mm, which is less than 0.15 times the diameter of the end mill. This design does not form an unnecessarily large blade groove, and the size is the minimum required size according to the radial depth of cut, and the core thickness dimension C increases accordingly, increasing rigidity. It is being In this example, when the number of simultaneous cutting blades Ns is 1, that is, when the first cutting blade leaves the surface to be cut, the next two cutting blades start to newly contact the surface to be cut. Although the case where the cutting edge is the second cutting edge has been described, the case is not limited to this case, and it is theoretically possible that the cutting edge that starts contacting at this timing is the third or fourth cutting edge.

【発明の効果】【Effect of the invention】

以上の説明より明らかなように、本発明によれば次のご
とき優れた効果が発揮される。 すなわち、側面切削を行なうに際して切削抵抗の変動を
なくし、かつ各外周切刃間での移行が連続的でスムーズ
な切削を可能にし、特に軸方向切り込み量の大きい切削
の場合においてもエンドミルの剛性を高められ、仕上げ
面の「うねり」や「むしれ」を防止して仕上げ面精度を
可及的に向上できる。
As is clear from the above description, the present invention provides the following excellent effects. In other words, it eliminates fluctuations in cutting resistance when performing side cutting, enables continuous and smooth transition between each peripheral cutting edge, and improves the rigidity of the end mill, especially when cutting with a large axial depth of cut. It is possible to prevent "waviness" and "peeling" on the finished surface and improve the precision of the finished surface as much as possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るエンドミルのワークに対する接触
状態を模式的に示す説明図、第2図は本実施例のエンド
ミルの軸直角方向の断面図、第3図は捩れ刃エンドミル
による側面切削の状況を説明する斜視図、第4図は従来
技術によるエンドミルで切削された仕」二げ面の状態を
説明する斜視図、第5図は直刃エンドミルによる側面切
削の状況を説明する斜視図である。 11+ 12・外周切刃、2・・・被切削面、3 ・刃
溝部、a・・軸方向切り込み量、b・径方向切り込み量
、C・・・心厚寸法、d・・刃溝部の深さ寸法、D・・
・エンドミルの直径寸法、β・外周切刃の捩れ角第 1
 図 第2x 1N閏日、UG3−221913  (4)第3図 第4図 鴬さ− □
FIG. 1 is an explanatory diagram schematically showing the contact state of the end mill according to the present invention with a workpiece, FIG. 2 is a cross-sectional view of the end mill of the present embodiment in the direction perpendicular to the axis, and FIG. FIG. 4 is a perspective view illustrating the state of the finished face cut with a conventional end mill, and FIG. 5 is a perspective view illustrating the state of side cutting with a straight edge end mill. be. 11+ 12・Outer peripheral cutting edge, 2...Cut surface, 3・Blade groove, a...Axial depth of cut, b.Radial depth of cut, C...Core thickness dimension, d...Depth of blade groove Size, D...
・Diameter dimension of end mill, β ・Torsion angle of peripheral cutting edge 1st
Figure 2x 1N leap day, UG3-221913 (4) Figure 3 Figure 4 Tsumugisa - □

Claims (2)

【特許請求の範囲】[Claims] (1)、規定された軸方向切り込み量(a)および径方
向切り込み量(b)に相当して円柱面状に区画形成され
る被切削面(2)に対して、常に一定の同時切削刃数(
Ns)で接触する捩れ外周切刃(1_1、1_2)を備
え、 且つ、前記外周切刃(1_1、1_2)に対応する刃溝
部(3)の深さ寸法(d)が、当該エンドミルの外径寸
法(D)の0.15倍以下に設定されたことを特徴とす
るエンドミル。
(1) A constant simultaneous cutting edge is always applied to the cut surface (2), which is divided into cylindrical sections corresponding to the specified axial depth of cut (a) and radial depth of cut (b). number(
The end mill is equipped with twisted peripheral cutting edges (1_1, 1_2) that contact each other at the peripheral cutting edges (1_1, 1_2), and the depth dimension (d) of the blade groove (3) corresponding to the peripheral cutting blades (1_1, 1_2) is equal to the outer diameter of the end mill. An end mill characterized in that the dimension (D) is set to 0.15 times or less.
(2)、前記外周切刃(1_1、1_2)の捩れ角(β
)の正接が、前記軸方向切り込み量(a)と刃数(N)
の積に対する当該エンドミルの外周円の円周寸法の比に
等しい特許請求の範囲第1項記載のエンドミル。
(2), the helix angle (β
) is the axial depth of cut (a) and the number of teeth (N).
The end mill according to claim 1, wherein the ratio of the circumferential dimension of the outer circumference of the end mill to the product of is equal to the ratio of the circumferential dimension of the outer circumferential circle of the end mill.
JP5276487A 1987-03-07 1987-03-07 End mill Pending JPS63221913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5276487A JPS63221913A (en) 1987-03-07 1987-03-07 End mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5276487A JPS63221913A (en) 1987-03-07 1987-03-07 End mill

Publications (1)

Publication Number Publication Date
JPS63221913A true JPS63221913A (en) 1988-09-14

Family

ID=12923941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5276487A Pending JPS63221913A (en) 1987-03-07 1987-03-07 End mill

Country Status (1)

Country Link
JP (1) JPS63221913A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004034171A (en) * 2002-06-28 2004-02-05 Mitsubishi Materials Kobe Tools Corp Machining method of endmill
JP2007138877A (en) * 2005-11-22 2007-06-07 Fujitsu General Ltd Scroll compressor
JP2012045647A (en) * 2010-08-25 2012-03-08 Jtekt Corp Cutting method and nc data preparing device
JP2019202395A (en) * 2018-05-24 2019-11-28 三菱日立ツール株式会社 End mill

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357016B2 (en) * 1984-01-23 1988-11-10 Kaneyasu Kk

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357016B2 (en) * 1984-01-23 1988-11-10 Kaneyasu Kk

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004034171A (en) * 2002-06-28 2004-02-05 Mitsubishi Materials Kobe Tools Corp Machining method of endmill
JP2007138877A (en) * 2005-11-22 2007-06-07 Fujitsu General Ltd Scroll compressor
JP2012045647A (en) * 2010-08-25 2012-03-08 Jtekt Corp Cutting method and nc data preparing device
JP2019202395A (en) * 2018-05-24 2019-11-28 三菱日立ツール株式会社 End mill

Similar Documents

Publication Publication Date Title
JP3376727B2 (en) Indexable end mill
JPH1071521A (en) Cutting tip and milling tool
JP2003275919A (en) Throw-away tip and throw-away cutting tool
JPS5947110A (en) End mill
JPS5950450B2 (en) Throwaway tip
JPS6040328B2 (en) Cutting tools
JPS63221913A (en) End mill
JPH0319002B2 (en)
US2137146A (en) Method of finishing gears
JPH0618737Y2 (en) End mill
JPH10263915A (en) Cemented carbide end mill
JP5492357B2 (en) Christmas cutter
JPH0526604B2 (en)
JPH0120008B2 (en)
JPH0319003B2 (en)
JP2522828B2 (en) Hole finishing tool
JPH0131370Y2 (en)
JPS6348334Y2 (en)
JP2509299Y2 (en) Rotary cutting tool
JPS6135373Y2 (en)
JPH0347780Y2 (en)
JP2561493Y2 (en) Roughing end mill
JPH04146015A (en) Throw-away tip and end mill
JPS5920897Y2 (en) rotary cutting tool
JPS6142726Y2 (en)